
Reliably Networking a Multicast Repository
Wang Lam Hector Garcia-Molina

Stanford University
fwlam,hectorg@CS.Stanford.EDU

Abstract— In this paper, we consider the design of a re-
liable multicast facility over an unreliable multicast net-
work. Our multicast facility has several interesting prop-
erties: it has different numbers of clients interested in each
data packet, allowing us to tune our strategy for each data
transmission; has recurring data items, so that missed data
items can be rescheduled for later transmission; and allows
the server to adjust the scheduler according to loss infor-
mation. We exploit the properties of our system to extend
traditional reliability techniques for our case, and use per-
formance evaluation to highlight the resulting differences.
We find that our reliability techniques can reduce the aver-
age client wait time by over thirty percent.

I. INTRODUCTION

Data dissemination to many users remains, despite
the growth of network capacity over time, an expensive
proposition for all but the best-funded servers. When
an information server becomes popular, many users often
show up requesting the same data of the server, or request-
ing data that overlaps with the requests of other users. For
example, a Web server may find that it repeatedly sends
some same items to users (such as a Web site’s front page
and its cited images).

Where multicast-capable networks (such as IP multi-
cast) are available (such as Internet2), a server can instead
retain a repository of data items and offer them over a mul-
ticast facility, so that users can use a corresponding mul-
ticast client to request the subsets of data items that they
are interested in fetching. Such a multicast facility can
send the same data once over multicast to satisfy multi-
ple users’ requests for it simultaneously, dramatically re-
ducing the waste of network resources and lowering the
corresponding network costs.

The idea of such a multicast facility is well-established,
having been envisioned and studied for Teletext [1], Dat-
acycle [2], and broadcast disks [3], among others. As a
local case in point, we are interested in creating a mul-
ticast facility for our WebBase project, which crawls the

Web to create a repository of Web pages for research. We
would like to offer our repository to other researchers so
that they can request subsets of our repository in a sim-
ple and efficient way, using a multicast facility that might
look like Fig. 1. (There are other benefits to a multicast-
distributed crawled Web repository, including less load on
the individual Web servers that get crawled for multicast
distribution, that are documented in earlier work for this
multicast facility [4].)

For such a data multicast facility to be useful, however,
clients must be able to receive all their requested data; the
facility cannot drop bits to its clients because the result-
ing partial data may be unusable. Existing multicast net-
works, such as the IP multicast backbone (MBone), may
not guarantee this; to the contrary, IP multicast is only
a best-effort datagram service and prone to packet loss.
One report [5], for example, found that IP multicast sites
lose anywhere from less than 5% to more than 20% of
the packets they request from a fixed-throughput multicast
source. In short, data sent from a server over multicast
may not reach all—or any—of its clients; the multicast
facility must make special arrangements to ensure that its
clients receive their data.

As a result, a multicast facility transmitting loss-
intolerant data (such as we describe above, in contrast to
loss-tolerant video or audio) will be unusable on exist-
ing multicast networks unless its data transmission can be
made reliable.

In this paper, we will consider the design of a multicast
facility for such lossy multicast networks. While there is
existing work in general-case reliable multicast, peculiar
properties of our multicast facility open up a number of
new possibilities that were not available to generic reliable
multicast, which we will study here.

Current approaches to reliability hinge on two basic
ways to cope with loss on the network: on-demand re-
transmission of data to “make up” for lost data, and addi-
tion of precomputed redundant information to the data so

WWW - crawler - multicast serverc
c

#
#

?reliable multicast channel

client client client client
? ? ? ?

Fig. 1. The WebBase Multicast Facility

that lost data can be reconstructed using the redundant ad-
ditional data (called “forward error correction,” FEC). Our
multicast facility adds one counterintuitive technique not
available to generic multicast—ignoring the losses. Be-
cause the multicast facility schedules data for transmis-
sion as it is requested, it is possible to have clients “give
up” in the face of loss and simply rerequest the data item
for a new transmission later. Because the data may well be
retransmitted later anyway, for other clients requesting the
same data, this scheme could be more efficient. In effect,
clients can get the reliability of retransmission, without
the server ever committing valuable network resources to
specific “make-up” or retransmission packets.

Also, because different data items are requested by dif-
ferent clients, and by varying numbers of clients, we can
attempt to exploit these variations among data items us-
ing new, dynamically adjusted reliability schemes. Lastly,
we can create hybrid approaches that combine multiple
reliability schemes, new and traditional, to improve per-
formance.

Current approaches to reliability have also typically
centered on the transmission of a single data item to
clients requesting it. Unlike such work, we expect clients
to request (need) multiple data items at a time, and choose
our metric to better match this bulk-download case. This
difference in metric requires us to consider not only how
long a multicast server takes to successfully transmit a
data item to its clients, but also how a method for doing
so will impact the transmission of other data items that
clients still need.

In this paper, we will present new extensions to exist-
ing reliability techniques, and define a metric by which
to measure their performance. Finally, we will use sim-
ulations to evaluate these techniques, and to address the
following questions:

� When clients lose data, should a multicast server

send retransmission packets or simply schedule the
data item for later transmission? Would it be advan-
tageous for a server to send retransmission packets
selectively?

� Is forward error correction effective in our multi-
cast facility, even though the data is latency in-
sensitive, and clients can wait for retransmission?
Does a dynamically-adjusted forward error correc-
tion scheme improve performance?

� If forward error correction fails to recover all lost
packets, should the multicast facility revert to re-
transmitting lost packets or rescheduling the data
item for later?

� When a new client connects to a multicast server, re-
questing a particular data item already being sent at
that instant, should the server have the client pick up
partial data and request retransmission, even if it re-
quires more implementation complexity and causes
more retransmission traffic? Or, should the server
not inform the client of the transmission and make
the client wait for the data item’s next transmission?

� Can the multicast scheduler exploit client data-loss
information to improve performance? For example,
would performance improve for a scheduler that uses
client loss rates to more accurately estimate the time
a client needs to receive a data item over its lossy
link? If so, how much improvement would such a
modification gain?

We will outline in Section II a possible network traf-
fic layout that isolates the network-consuming data trans-
mission itself for further study and optimization. In Sec-
tion III, we describe traditional approaches such as re-
transmission and forward error correction, and introduce
new possibilities that are possible for our multicast facil-
ity as suggested above. In Section II-A, we will propose a
simple client delay metric to gauge the performance of our

design decisions. In Section IV, we describe the simula-
tion we use to evaluate our design options. In Sections V
and VI, we will examine some results from our study to
form suggestions for the design of a reliable-multicast fa-
cility over an unreliable multicast network.

II. T HE MULTICAST FACILITY

In our multicast facility, the multicast server has a num-
ber of data items (intuitively, static files) ready for dis-
semination, from which each client will request some (not
necessarily proper) subset. The server breaks each data
item up into a number of same-size packets.

A new client requests a subset of the server’s data items
using a reliable unicast connection to the server. Because
reliable unicast connections are widespread (e.g., TCP),
we will assume the connection exists and always delivers
its data.

To minimize the consumption of clients’ download
links, we should separate the server’s traffic into a low-
bandwidthcontrol channelannouncing data items, and a
data channel, consuming the server’s remaining outgoing
bandwidth, to carry the data items themselves.

All clients would always subscribe to the control chan-
nel, to receive announcements of data items on the data
channel. Clients would use the announcements to deter-
mine when to subscribe to the data channel, so that they
receive the data items they request and skip the ones they
didn’t request.

Clients must receive control channel traffic reliably and
promptly, so the channel must use a latency-sensitive low-
bandwidth reliable multicast protocol to ensure its deliv-
ery. The simplest solution for this channel is to use an
existing reliable multicast protocol to ensure the probabil-
ity of loss is negligible; protocols have been proposed for
this type of application, including SRM [6].

On the data channel, on the other hand, the traffic is
relatively high-bandwidth and latency-insensitive: that is,
performance may suffer if packets take longer to arrive,
but there is no deadline before which packets must arrive
to be useful. Even more notably, data channel traffic has
two properties, enumerated below, that are particular to
this multicast facility and a related system called “broad-
cast disks,” in which a server sends small single-item re-
quests on a local broadcast network to satisfy local clients’
requests. (Broadcast disks are briefly described in Related
Work.) As we shall see later, we can attempt to exploit
these properties for more efficient reliable transmission:

� The information on the data channel is “interesting”
to only a (varying) subset of the server’s clients at
any one time. Unlike the control channel, the data
item being sent on a data channel is probably needed
by some but not all of the server’s clients. As a re-
sult, we may want our reliability scheme for the data
channel to vary in some way with the clients that ac-
tually need the data on the channel at the time. We
consider some of these possibilities in Section III.

� Any information on the data channel can, and is
likely to be, retransmitted at a later time as a result
of new requests from new clients. This is a stronger
claim than saying that the data channel is latency-
insensitive and so we can always resend lost packets;
this claim actually says that if a client does not re-
ceive a data item successfully from the data channel,
the multicast server could decide to not retransmit the
client’s losses at all, instead compelling the client to
wait the next time the entire data item is transmitted
again.

When a client has received all the data items it re-
quested, it disconnects from the control channel and its
request is considered complete. The sooner a client re-
ceives its data, the sooner a user is happy and able to use
the data, so we will use this as our performance metric.

A. Metric

In a number of scenarios—such as researchers analyz-
ing subsets of a Web repository, software updates being
saved and applied, and media downloaders downloading
material to burn to disc or export to a portable device—the
measure of performance users care about is that of client
delay, the time it takes a client to receive all the data it
requested. This simply reflects how users often request
multiple data items because they need them all, and be-
cause even where it is not strictly necessary to do so, it
is often more convenient to batch-process data than incre-
mentally process it.

Because of this, we will focus on client delay as our
performance metric. We define this notion below. It is in-
tuitively similar to the notion of client delay defined in [4].

For a multicast server withn data itemsD =

fd1; d2; d3; : : : ; dng, andk clientsC = fc1, c2; : : :, ckg,
each clientci is characterized by the data items it requests,
Ri � D;Ri 6= ;, and by the time at which the client
makes its request,ti.

We define theclient delayof a clientci using the earli-
est timeTi > ti when the client has all the data items it

requestsRi. We simply say that for this client, its delay is
di = Ti � ti.

Fork clientsC, we define theaverage client delayover
all clients asd = 1

k

Pk
i=1 di.

We might also measure the network usage of the mul-
ticast facility, and use it as a metric; unfortunately, this is
not particularly enlightening because a multicast facility
striving to serve its clients will always be using the net-
work whenever there is new, requested data to distribute.

B. Multicast Operation

The server operates by gathering the clients’ request
subsets and using a scheduler, such as R/Q [4], to decide
which requested data item to send on the data channel.

The R/Q heuristic is designed to help minimize average
client delay, defined in Section II-A, and operate quickly
even when scheduling large numbers of data items. In this
heuristic, for each data itemi, the server determinesRi,
how many clients are requesting the data itemi, andQi,
the size of the smallest outstanding request for a client
requesting that data itemi. The heuristic chooses to send
a data item with the highestRi=Qi score.

Example. Suppose three clients,A, B, andC have
pending requests on a multicast server. ClientA needs
three data items, numbered 1, 2, and 3;B needs items 2
and 4, andC needs items 2 and 3.

A multicast server implementing R/Q would determine
each of the item’sR=Q scores, which begin as (in increas-
ing order of item number)1

3
, 3

2
, 1, and1

2
. In absence of

other clients, then, the server would send item 2 first, then
item 3, then the remaining two items in arbitrary order (af-
ter items 2 and 3 are sent, both items 1 and 4 haveR=Q
score 1).

As we can see, the heuristic helps minimize client delay
because it sends the items that are most requested, and
most quickly help to satisfy a client request, first.

To keep the computation simple, let us say each item
takes one unit of time to send on the data channel, and
arrives without loss or delay. Let us suppose the R/Q im-
plementation chose to send item 1 before item 4. Then
the client delay for the three clients would bedA = 3,
dB = 4, and dC = 2, for an average client delay of
d = 3. (If the implementation chose the reverse, the av-
erage client delay is the same.) In this simple example,
this is an optimal average client delay, preferrable over
the other possible values ofd = 10

3
, 11

3
, or 4. 2

III. M AKING THE DATA STREAM RELIABLE

To protect an arbitrary data item from loss over an unre-
liable data channel, the server can apply several comple-
mentary approaches. First, the server can try to prevent
the data item from being lost, by sending redundant pack-
ets of (error-correcting) data with the data item so that
clients can use redundant packets to recompute the data
in some lost packets (forward error correction). Next, the
server can react to lost packets by retransmitting data for
the data item as needed (retransmission). Finally, clients
that still do not have the data item can have their request
for the data item added back to the multicast server’s re-
quest list, so that the scheduler can try to send the data
item again in the future (rescheduling).

A. Forward Error Correction

One well-known approach to reliable multicast is to add
a predetermined amount of error-correcting (FEC) data to
the data being sent, so that if some of the data is lost dur-
ing the transmission, receivers (clients) can use the error-
correcting data they receive over the data channel to math-
ematically reconstruct the lost data. Typically, the redun-
dant packets are constructed using error-correcting codes
(or more specifically, erasure codes) that allow any subset
of the packets to be used in reconstructing data. Pack-
ets made using such codes require more precomputation
than would simply cloning particular data packets, but the
error-correcting packets are more widely usable than the
simple copies.

We can apply forward error correction to a multicast
server in a number of ways.

� We can choose a fixedexpansion factorf > 0 for
the server. Ford data packets, the server would then
send an additionaldfde error-correcting packets.

� We can have the server increases its expansion ra-
tio with the number of clients interested in the data
item, such asexpansion factor= fR, for R clients
and a parameterf > 0. Ford data packets, the server
would then send a total ofd(1+ f)de packets of data
and redundancy. Intuitively, we are backing more
popular data items with more redundancy so that its
many (more) clients are less likely to lose the data
item.

� We can make the expansion factor inversely propor-
tional to the number of clients interested in the data
item, such asexpansion factor= f(R)�1, for a pa-
rameterf > 0. Then, the server would send a total

of d(1 + f
R
)de packets of data and redundancy. Intu-

itively, we are backing less popular data items with
more redundancy, because their repeated transmis-
sion would be more costly to the client delay of other
clients. Also, more popular data items are likely to
be scheduled for transmission again shortly, as new
clients request them, so there is less delay in losing,
and waiting for, a popular data item.

� We can attempt to match the expansion factor to a
factor of the maximum estimated loss rate any client
requesting the data item is suffering. (The server can
determine a client’s average loss rate simply by deter-
mining what percentage of packets sent to the client
trigger NAK responses.) That is, if of all clients re-
questing data itemi, the client losing the most pack-
ets has a loss rate ofl, then we can choose an expan-
sion factor offl, for a parameterf presumably near
one.

We will denote the forward error correction scheme,
with expansion factorf , as FEC(f). For example, to de-
note a varying FEC scheme in which the server increases
the expansion factor from zero, by 1% per client request-
ing a data item, we will use FEC(0:01R).

Should forward error correction fail, because a client
does not receive enough redundant packets to reconstruct
an original data item, the multicast facility must fall back
on some other reliability scheme, such as the two schemes
described next, so that the client’s request for the data item
is eventually satisfied.

B. Retransmit

Another well-known approach to reliable multicast is
for the server to receive NAKs from clients indicating
their lost data, then retransmit lost data so that clients have
another chance to receive it.

1) Retransmissions Are Multicast:We notice that the
server must consume the same network resources to send
these additional packets unicast or multicast: It must con-
sume the same number of bytes on its network link to
do so, a resource that could not be spent sending other
data. Because multicast can benefit multiple clients at the
same time, though, it is therefore to the server’s advan-
tage to always send its additional packets of data over the
data channel, where it originally sent its data items. As a
special case, if only one client needs the additional pack-
ets, sending those packets unicast is equivalent to sending
them multicast, except that over a reliable unicast stream

(TCP), we are locked into TCP’s retransmit-as-needed re-
liability scheme, rather than being able to take advan-
tage of the design choices we make for the data channel.
Therefore, we assume below that any additional packets
of data the server must send will be sent over the data
channel.

2) Retransmissions Use Error-Correcting Codes:The
simplest implementation of retransmission could deter-
mine which packets clients need from the NAK, and re-
transmit exactly those packets again. As an enhancement,
instead of actually resending the lost data, a server using
a retransmission scheme should send precomputed error-
correcting packets for the data instead, because a same-
size error-correcting packet can “make up” for the loss of
(allow the reconstruction of) one data packet, even if dif-
ferent clients lost different data packets.

Using error-correcting packets allows the server to send
no more error-correcting packets than the largest num-
ber of data packets lost by one client, even though the
union of all data packets lost by all clients may have larger
cardinality. This scheme is mentioned, for example, in
MFTP [7].

3) Clients Unicast One NAK Per Data-Item Transmis-
sion: In our multicast system, clients will send a NAK
only at the end of a transmission of a data item, when it has
already attempted to use whatever error correction pack-
ets it has already received, and when it has determined the
packets it still needs to complete its copy of a data item.
We require NAKs to be sent this way for two reasons: The
first is that having clients send a separate NAK for each
packet lost can collectively fill the network links to a mul-
ticast server more quickly than if they sent their NAKs in
larger aggregate. The second is that retransmission may
be used as a reliability scheme only after variable forward
error correction fails to make up for client losses; if so,
only after the client has tried to receive all the sent packets
can it determine whether it actually needs any more pack-
ets at all, and if so, how many the client actually needs to
reconstruct a data item.

The NAK is sent unicast instead of multicast be-
cause only the server needs to receive the NAKs; unlike
some other published reliable multicast schemes such as
SRM [6], in this system one client sending a NAK does
not prevent any other client from sending its NAK. It
is perhaps worth noting that unicasting NAKs rules out
SRM-style schemes where clients can transmit data to fill
NAKs in place of the server, but by restricting retrans-
missions to the server, we also easily avoid accidental or

malicious data corruption from clients sending mangled
retransmits to each other.

If all clients send their NAK at the same time following
the end of a data item’s transmission, then the instanta-
neous spike in network traffic to the server may flood the
server’s incoming link and cause NAKs to be lost or de-
layed. To prevent this “NAK implosion” on the server at
the end of each data item, each client delays its NAKs by
a random time, chosen uniformly from a small interval
(e.g., as inwb [6]).

Because error-correcting packets are themselves sent
on the data channel, they too can be lost. Therefore, when
an announced retransmission concludes, clients may again
send NAKs for more packets they still need, and the server
may accommodate. The server could complete as many
rounds of retransmission as necessary for its clients to re-
construct the data item, to guarantee reliability.

4) Selective Retransmission:In our multicast facility,
we can apply our retransmission scheme as we have de-
scribe it so far, but we have other options. In particu-
lar, the server can choose to ignore NAKs and resched-
ule the affected clients, in effect using rescheduling (de-
scribed below) as a backup for a weak-retransmission
scheme. With this flexibility, we could try to choose
when NAKs should be best handled by retransmission,
and when NAKs should be best handled by rescheduling
the client.

In particular, we can choose to honor only retransmis-
sions of small size, on the intuition that they have little
time cost compared to the cost of making the affected
clients wait for the next scheduled transmission of the data
item. The server could begin retransmission, for example,
only when it receives a NAK of no more thanp packets,
and reschedule otherwise.

When the server is retransmitting, since it is already
delaying a new data item to retransmit packets for an old
one, the server could also accept and coalesce subsequent
NAKs so that those NAKs are also satisfied. Outside of
this retransmission period (i.e., if the server does not no-
tice any clients nearly completing a data item, or if the
server has already finished helping a client complete a
data item), the server ignores NAKs from clients. In ef-
fect, a server is “convinced” to honor retransmission re-
quests only if doing so completes a very-nearly-completed
data item.

We will denote the retransmission scheme with R(1),
if the server retransmits for any NAK. If the server sends
retransmissions for a data item only if it receives a NAK

TABLE I
SIMULATION PARAMETERS AND THEIR BASE VALUES

Description Base value

Number of data items available 100
Size of a data item (in packets) 60
Number of data items requested

per client (mean)
9

Time between new clients 4 000 ms (4 sec)
Server link loss rate 0%
Client link loss rate 5%
Time to send one packet 80 ms
NAK delay time (range) [30ms - 210ms)
NAK send time (minimum) 80 ms
NAK send time (mean) 100 ms
Simulated time (length) 86 400 000 ms (1 day)

of no more thanp packets as described above, we will call
it R(p).

C. Reschedule

The server can decide not to change its data transmis-
sion to accommodate losses. Instead, it would receive
NAKs from clients as indications that the client needs the
data item again, and add back the client’s request for the
NAK’d data item. The scheduler would decide when to
reschedule the data item for retransmission. This scheme
is easy to implement and requires no additional network
resources, but at possible cost in higher client delay.

Rescheduling is a reliability option that is particular to
this multicast facility: even if we choose this nearly “do
nothing” scheme, we can still assert that clients will even-
tually receive their entire data request, because the sched-
uler holds the client’s data request.

We will denote this reliability option as R(0). Intu-
itively, the notation considers a reschedule-only scheme
to be equivalent to a retransmission scheme that sends ad-
ditional packets only if the server receives a NAK of zero
packets—a NAK that would never be sent.

IV. SIMULATION

To assess the performance of these different possibili-
ties, we turn to simulation to predict their effect on a mul-
ticast system under a variety of loads. We describe the
simulation in this section, then present the results of the
simulation in the next.

We assume here a simple star-shaped topology for the
multicast network as an approximation of the real mul-
ticast backbone’s (MBone’s) loss behavior, as suggested

in [5]. In this topology, the server and each client have
separate lossy links to the multicast backbone. Because
the multicast “backbone” was observed to lose relatively
few packets that correlate among multiple but not all
clients, functionally we can approximate the core “back-
bone” as reliable and push the dropped packets to server
and client links. Therefore, the backbone is represented
as a single node that simply connects all the lossy links.

We assume also that data transmissions are nonpre-
emptible; that is, once a server decides to send a data item,
or send retransmissions for a data item, it will send all of
that chosen transmission before choosing to send some-
thing else. This reduces the number of announcements
that the server must make to its clients, and reduces the
unneeded (irrelevant) traffic that clients receive from the
data channel.

Because a multicast facility is uninteresting when it is
not loaded enough for client requests to overlap, we will
consider a hypothetical high-load scenario that would be
impractical to service using unicast (TCP) delivery alone.
One can easily imagine a variety of such scenarios, such
as

� a newswire over a low-throughput wide-area wireless
network;

� an ISP reserving a small portion of its network ca-
pacity to deliver its own popular content to its sub-
scribers;

� a software vendor disseminating widely needed
patches for its products; or,

� a government sending reports and instructions to its
diplomatic missions through expensive and full satel-
lite links.

In Table I, we enumerate the parameters for our sim-
ulation’s base case. In this base case, we try to portray
a Web server for a small business that faces a sudden in-
crease in requests over its limited network connection. In
our experiments, we vary some of these base values.

In this scenario, a Web server linked to the world over
a relatively small business “broadband” connection with
IP multicast, is suddenly being deluged with requests be-
cause of its newfound popularity. Normally, using only
unicast traffic, such a Web server would be crippled by
a large spike in requests, because its outgoing link would
be divided by so many requesting Web clients that none of
them get enough throughput to make progress. The Web
server would appear down, and be unable to provide any
service at all for as long as it remains popular—the time
when its service is most needed.

Fortunately, in our scenario, while the server’s main
Web page might be delivered to clients over unicast us-
ing HTTP, most of the requested data by volume—the im-
ages for the Web page, the animated vector graphics, and
the Web client scripts—are sent using a multicast facility,
and Web clients have plug-ins that support this method of
download.

The multicast server could be busy sending about a hun-
dred such very popular items, from images to scripts, to
clients making new requests every few seconds. (In Ta-
ble I, we arbitrarily choose four seconds, a number small
enough to induce numerous simultaneous clients.) Clients
would request about nine such items on average to fill a
typical Web page request.

For these kinds of items (images, vector animation, and
scripts), we estimate an average size of about 30 kilo-
bytes each, which would be broken up into packets of
512 bytes each. The packets size is necessarily so small
because Internet hosts send UDP packets over IP multi-
cast, and IP(v4) requires UDP packets of only up to 576
bytes to be supported for delivery. (Larger packets may
be fragmented or dropped over individual network links.)
Consequently, some popular UDP-based services such as
DNS restrict their packets to a maximum 512 bytes of
payload, to ensure their operation over IP. Our hypotheti-
cal multicast server would be wise to do the same, so the
server’s 30-kilobyte data items are divided into sixty 512-
byte packets each.

The multicast channel is assigned a relatively small
sliver of outgoing network throughput so that even Web
clients running behind modem connections can keep up.
At 50 kilobits per second (just under the 53 kilobits per
second at which the fastest POTS-line modems can cur-
rently download in the United States), the multicast data
channel could send 512 bytes (one packet of data) about
50 * 1024 / 8 / 512 = 12.5 times per second. This means
one packet is sent every 80 milliseconds.

The NAK delay-time range in Table I is chosen to
match the NAK delay-time range described forwb, an
already-available whiteboard application for IP multicast;
a multicast client chooses a delay time for each NAK uni-
formly randomly from the given range of delay times.
Lastly, we estimate the mean NAK send time, the time it
takes a NAK to arrive at the multicast server after a mul-
ticast client decides to send it, at 100 milliseconds, as a
loose estimate of the time it takes a small packet to travel
half the world’s circumference over currently available IP
networks.

We simulate a multicast system over a day of load to
determine its performance for clients over that time.

V. RESULTS FORUNIFORM LOSSRATES

To evaluate the reliability schemes over various condi-
tions, we have performed numerous experiments, chang-
ing assumptions, base parameter values, and algorithms.
Due to space limitations, however, we report on only a
subset of our results here, and refer to the extended ver-
sion of this paper for more results [8].

In this section, we consider how various reliability
schemes compare when when all clients have the same
data-channel packet-loss rate. This is plausible, for exam-
ple, when we have relatively controlled conditions (such
as large-area internal networks or experimental high-
capacity networks) in which a multicast server’s clients
can connect to the server over comparable network links.
This allows us to study the performance of our various
reliability schemes when clients are of fairly similar capa-
bility. In the next section, we will briefly summarize find-
ings for other loss models and algorithm enhancements.

A. Retransmission and Rescheduling

We first consider what happens in the simplest case, in
which the multicast facility uses only retransmission (Sec-
tion III-B). In Fig. 2, we compare several forms of retrans-
mission, including no retransmission. In the figure, we
graph the average client delay as a function of client loss
rates. Other parameters of the simulation are as specified
in Table I. The client delay is the time it takes clients to
request their items, measured in seconds. The client loss
rates are specified in percentage of data-channel packets
lost, fixed for all clients. In this relatively low-loss sce-
nario, the server’s link to the multicast backbone is as-
sumed to lose no packets. The plot labelled “R(1)” rep-
resents a retransmit-always scheme, as described in Sec-
tion III-B. The plot labelled “R(0),” by contrast, repre-
sents a reschedule-only server, which never sends packets
in response to NAKs. The other plots represent a spec-
trum of selective retransmission schemes that lie between
sending packets for all NAKs and no NAKs.

The plot shows, for example, that in a multicast sce-
nario where the server loses no packets and clients in-
dependently lose 2% of packets in the data channel, a
retransmit-always multicast system will have an average
client delay of about 695 seconds, or about 11.5 minutes.
If the system starts retransmitting only on NAKs for few

400

500

600

700

800

900

1000

0 2 4 6 8 10

average

client

delay

(sec)

client loss (percent of data packets)

FEC(0)+R(0)

3

3

3 3 3 3

3
FEC(0)+R(1)

+

+

+

+

+

+

+
FEC(0)+R(2)

2

2

2

2

2

2

2
FEC(0)+R(10)

�

�
�

�

�

�

�
FEC(0)+R(1)

4

4

4

4

4

4

4

Fig. 2. Retransmission Schemes

packets, on the other hand, clients get substantially lower
delay. For NAKs of up to 10 packets, for example, clients
have 460 seconds delay, or about 7.5 minutes (just over
half the delay they would suffer under the reschedule-only
system, which does worst in this group at over 14 min-
utes). Increasing the size of accepted NAKs further does
not dramatically improve performance, so we plot only
the lines shown to reduce clutter. As we can see, there
is advantage to selective retransmission, a system that re-
transmits principally for small losses where retransmis-
sion is short, and that forces larger losses to be resched-
uled.

As we expect, the average client delay rises as clients
lose more of their data; this is because clients need more
attempted packet transmissions to get the same number of
packets needed to form a data item.

Also, we see that for relatively low client loss rates,
retransmission (FEC(0)+R(1)) is a better choice than
rescheduling (FEC(0)+R(0)). This is because clients will
typically lose a few packets from each data item they re-
quest, and having just a few extra packets retransmitted is
much less time-consuming than waiting for the data items
to be rescheduled.

On the other hand, rescheduling outperforms retrans-
mission for higher loss rates (starting at about 8%). Most
strikingly, the performance of rescheduling only does not
degrade substantially from 6% up to 30% client data-loss
rates (not plotted), holding at about 15 minutes average
client delay.

In retrospect, we can see why this is so: Clearly,
retransmit-always servers must deterioriate over time; as
clients lose more data, the server must spend more time
retransmitting. Worse, as clients lose more data, they be-
come increasingly likely to drop packets from a retrans-
mission, compelling them to send another round of NAKs
and wait for another round of retransmission. On the
other hand, for reschedule-only servers, the loss rate af-
fects only the number of times a client needs to have a
data item scheduled for transmission, before the client re-
ceives enough packets to reconstruct the data item.

We also observe that limiting server retransmissions to
benefit small-NAK clients can provide an improvement
over both schemes discussed so far. In particular, the
improvement is most noticeable when selective retrans-
mission consistently covers the clients losing fairly few
packets. For example, the 1-packet NAK scheme nets
lower client delay than a retransmit-always scheme, but
falters compared to more lenient selective-retransmission
schemes as client losses rise above one packet per data
item (which is about 2% of data-channel packets). This
is because clients having a higher loss rate have a cor-
respondingly smaller chance of losing no more than one
packet for a data item. As the chance of some client los-
ing sufficiently few packets to trigger retransmission falls,
more and more data items must be rescheduled for clients
to receive them in full, incurring higher delay.

Another benefit of selective retransmission is more sub-
tle. It turns out that in practice, it is possible for new
multicast clients to send large NAKs for data items they
missed, causing additional delay in a retransmit-always
system; this delay, selective transmission can avoid.

The reason a new client can send large NAKs is that a
new multicast client connecting to the data channel will
not only receive new data items, it will also receive re-
transmissions for data items the client missed while join-
ing the system. This means that the client can send NAKs
after receiving the partial retransmission, requesting the
remainder of the data item that the client doesn’t yet have.
Relatively few of these clients requesting relatively large
retransmissions in this way would cause delays on the data
channel, increasing clients’ average delay; therefore, the
selective retransmission scheme, which is able to ignore
these large NAKs, can reduce the impact of these requests.
A selective retransmission scheme can better choose to
retransmit when retransmission’s cost is small, and avoid
retransmission when its benefits are small.

We see, therefore, that the choice of retransmission

scheme a designer should apply to the multicast facil-
ity depends on the expected loss rates clients will suffer.
Given the two simplest-to-implement choices, retransmis-
sion is preferable for low loss rates, and rescheduling is
preferable for high loss ones; the two break even near
10%, a loss rate that effectively divides relatively clear
networks from congested or faulty ones. If more complex
server implementations are possible, though, a selective-
retransmission scheme can significantly improve perfor-
mance even more. By triggering retransmissions only for
small NAKs—NAKs of many more packets than neces-
sary for the expected loss rate, but much fewer packets
than the size of a data item—we can help the server appro-
priately isolate small losses for retransmission and large
losses for rescheduling.

More generally, we would like to combine to the most
effective retransmission scheme with the most effective
forward error correction scheme. To evaluate forward er-
ror correction schemes, as we do next, we must choose a
baseline retranmission scheme as a backup for forward er-
ror correction. For simplicity, we will choose retransmit-
always below.

B. Forward Error Correction

If we are willing to consider applying forward error cor-
rection in addition to retransmission, we are able to do
better than retransmission alone. Because in this section,
we are considering a scenario in which client losses are
similar, we could apply a fixed expansion factor of error-
correcting data to each data item. If forward error cor-
rection fails, we must have some form of retransmission
or rescheduling as backup; for simplicity, we will choose
retransmit-always here, R(1).

To evaluate these schemes, we consider a higher-loss
scenario, in which the server’s link drops about 10% of
data-channel packets from the source. Besides allowing
us to illustrate another representative section of the pa-
rameter space that we have studied, this scenario allows
us to highlight variations between the forward error cor-
rection schemes.

The resulting performance for various expansion fac-
tors are shown in Fig. 3. Along the horizontal axis,
we vary the percentage of packets independently lost by
each client. On the vertical axis, we plot the average
client delay of forward error correction schemes applied
with various expansion factors. For our base case, re-
call that FEC(0.0) represents no forward error correction;
the plot so labelled is simply a retransmit-always server.

500

600

700

800

900

1000

1100

1200

1300

1400

0 2 4 6 8 10

average

client

delay

(sec)

client loss (percent of data packets)

FEC(0.0)+R(1)

3

3

3

3

3

33
FEC(0.1)+R(1)

+

+

+

+

+

+
+

FEC(0.2)+R(1)

2

2

2

2

2

2

2
FEC(0.3)+R(1)

� �
�

�

�

�
�

Fig. 3. Constant Forward Error Correction Schemes

If clients lose 4% of data-channel packets, in addition to
the server losing 10% of its outgoing data-channel pack-
ets, for example, we see that a server acting without for-
ward error correction and a server with 10% expansion
show similar performance (at 17.5 minutes average client
delay). Higher expansion factors improved performance
here; 20% expansion cut client delay over 15%, and 30%
expansion almost by half.

From this data, we notice that as client losses con-
sume the forward error correction, the average client delay
rises until FEC’s effect fades and the system approximates
the performance of retransmission alone. Worse, because
FEC might add unnecessary but fixed error-correcting
data to some data items while neglecting other losses, in-
adequate FEC with retransmission could, as losses rise,
approach a level of performance slightly worse than that
of retransmission alone. (At 10% server loss and 4% in-
dividual client loss as before, for example, a server with
10% expansion factor actually had a client delay about 1%
worse than a retransmit-always server.)

We also see that the performance of forward error cor-
rection is, like retransmission schemes, sensitive to the ac-
tual loss rate of the clients. Excess error correction sim-
ply pads client delay by about the amount of the excess:
at the far left of the plot, for example, a 10% increase in
the expansion factor between 20% expansion and 30% ex-
pansion increased client delay by just over 6%, from 507
seconds to 539 seconds. Though not plotted here, the gap
can be larger: As packet losses decline, client delay un-

der 20% expansion will decline until stabilizing near the
expected client delay when the server needs no retrans-
mission.

We note also, however, that the optimal expansion fac-
tor is not the same as the clients’ net loss rate; the ex-
pansion factor must be set higher, because clients can lose
more or less data than their average rate during any one
data item. For example, FEC with 30% expansion out-
performs FEC with 20% expansion in performance dra-
matically even when clients lose but 14.5% of their data
channel (10% loss due to server, 5% loss due to clients).

If carefully chosen, though, an appropriate expansion
factor can improve the performance of a multicast sys-
tem, beyond that of retransmission alone. This plot, for
example, suggests that a designer can choose an expan-
sion factor about twice the expected packet loss rate of
the system’s clients to exploit added forward error correc-
tion without making it excessive, and yield better delay
than a retransmit-only scheme.

Ideally, a multicast implementation could combine the
best of both forward error correction and retransmission.
After setting the forward error correction expansion fac-
tor, the system designer could then have a multicast server
use selective retransmission to decide between retransmis-
sion and rescheduling when forward error correction fails.
The use of forward error correction reduces the delay of
clients waiting for retransmission, and makes up for most
of the clients’ losses so that selective retransmission could
be configured to retransmit only for small NAKs as sug-
gested in the previous section.

VI. A DDITIONAL RESULTS

There are a number of results that we are unable to fully
describe here, but are detailed in the extended version of
this paper [8]. We mention some of this work in this sec-
tion.

A. Clients Requesting Data in Transmission

When a new client first connects to a server, the server
is likely in the midst of transmitting a data item. If
the client requested the data item already being sent, the
server could decide that the client missed the tranmission
in progress (having certainly missed the announcement or
headers for the data item), and simply let the client wait
for the item’s next scheduled transmission. Alternatively,
the server could specially identify the data item to the new

client, so that it can receive partial data as if it simply lost
earlier packets.

Our results so far have assumed the former design, but
we also consider the effect of having the server explic-
itly notify new clients of a transmission in progress. We
find that it provides a slight benefit (for our scenario,
about 3%-5%, or about half a minute) to reschedule-
backed schemes, because this notification does not impact
the server’s data transmissions, but provides clients more
data. On the other hand, this notification actually hurts
retransmission-backed schemes, even those with forward
error correction, because this notification encourages new
clients to issue large NAKs for data whose tail they re-
ceived when they joined.

B. Results for Non-Uniform Loss Rates

We also consider how reliability schemes behave for
clients of different data-link loss rates, by seeing how they
are affected by a new presence of very poorly connected
clients in varying proportions. To see how our reliability
schemes accommodate these poorly connected clients, we
assign a multicast server’s clients into two groups, low-
loss clients (losing 5% of their data-channel packets) and
high-loss clients (losing an extreme 50% of their data-
channel packets), and vary the relative fractions of these
two groups in the multicast system. This model allows us
to amplify high-loss clients’ effects on the system, so that
we can see it more visibly in our results.

We find that a rescheduling server consistently outper-
forms a retransmitting server (sometimes by over a factor
of 3), because retransmission requests are dominated by
high-loss clients, and as we found in the last section, re-
transmitting servers falter relative to rescheduling servers
when losses are high and retransmissions, many.

When we consider forward error correction, we find
that FEC with rescheduling performs substantially bet-
ter than FEC with retransmission, as the above would
suggest. Further, a linearly-varied forward error cor-
rection scheme, with an expansion factor that increases
linearly with the number of clients requesting the data
(e.g., 1% times the number of interested clients, denoted
FEC(0:01R)), could be tuned to provide enough forward
error correction to satisfy low-loss clients, while forc-
ing high-loss clients to wait for rescheduled transmis-
sions. A server using such a scheme outperforms a fixed-
expansion-factor FEC system in the same environment;
similar linearly-varied schemes using much higher expan-
sion factors (whose performance is less affected by the

proportion of high-loss clients in the system); and simi-
lar linearly-varied schemes using much lower expansion
factors (which may be insufficient for the losses of clients
that dominate the system).

C. Exploiting Client Knowledge

We can also attempt to estimate and exploit informa-
tion about individual clients’ loss rates in the multicast
server. To evaluate this possibility, we consider a hypo-
thetical “omniscient” server, which knows the exact data-
channel packet-loss rate of each client in the multicast sys-
tem, and modify the server to exploit this information, in
its reliability scheme and in the scheduler. We find that the
modifications create little benefit even in the omniscient
server.

We adjust the scheduler so that its “smallest outstand-
ing request” factorQ is replaced with a more meaningful
factor Q=fill, the shortest expected time to completion
of an outstanding request. Though the latter factor takes
each client’s loss rate into account, the resulting scheduler
creates no appreciable benefit. We also try a forward er-
ror correction scheme that sets its expansion factor “just
high enough” for every interested client to reconstruct a
data item in one transmission, and find that a system us-
ing such a scheme performs better than FEC(0:03R) but
worse than FEC(0:01R). By setting the expansion fac-
tor high enough for high-loss clients to reconstruct data,
the client-loss-aware FEC scheme performs worse than a
scheme that neglects high-loss clients.

D. The Advantage of Error-Correcting Packets

Lastly, we find that not using error correcting pack-
ets in transmission and retransmission causes a dramatic
penalty. Retransmitting (R(1)) and rescheduling (R(0))
servers that do not use error-correcting packets often have
double or higher client delay than corresponding servers
that do. This suggests that it is helpful to generate and use
as much error-correcting data as system resources allow.

VII. R ELATED WORK

General-purpose reliable multicast protocols have been
widely studied, with numerous variations proposed. A
networking text [9] details the design of IP multicast; a
multicast book [10] can survey a number of such pro-
tocols, such as [6] and [7]. In this paper, we extend

general-purpose techniques to optimize our multicast ap-
plication, which not only has varying numbers of inter-
ested clients from data packet to data packet, but also al-
lows longer client delays to improve network efficiency,
and later rescheduling of requested data items.

The work in this paper is designed to complement re-
liable multicast data dissemination, such as in “broadcast
disks” [3] as well as our own multicast facility [4]. Work
in this area often assumes a reliable network, but multicast
networks such as IP multicast can often lose packets.

Closest to our work in broadcast disks, [11] considers
scheduling given a known fixed loss rate and no specific
client information; here, by contrast, we consider clients
of different loss rates and specific client requests.

Of course, reliable multicast dissemination is also as-
sumed and considered for use in other contexts, such as
publish/subscribe (e.g., Gryphon [12]) and Web caching
(e.g., [13]), but there, client latency is expected to remain
very small, limiting the flexibility of the reliability mech-
anism.

VIII. C ONCLUSION

In this paper we studied how to use a multicast facil-
ity to reliably disseminate data to interested clients over
an unreliable network. Since data is repeatedly transmit-
ted from a repository, reliability can be achieved by ei-
ther rescheduling requests, adding redundancy to trans-
missions, or adding retransmissions.

From numerous simulations, we find that retransmis-
sion is most effective when applied selectively, so that
clients suffering large losses wait for the entire data item
to be rescheduled rather than having their losses retrans-
mitted. This can complement forward error correction,
which in our scenario performs best when set to expand
each data item by a fraction about twice that of the ex-
pected packet-loss rate of the interested clients—a frac-
tion that accommodates clients that may lose more data
than expected for any one item. If a server faces clients of
widely different loss rates, it should have its forward error
correction tuned to satisfy only lower-loss clients, so that
high-loss clients must wait for rescheduled transmissions.

Under a server that only reschedules data items for
losses, it is helpful to direct newly joining clients to the
data item being sent at the time; for other servers, how-
ever, such a direction can actually hurt performance.

Lastly, we find that error-correcting packets are essen-
tial to good performance, but that having the server esti-

mate client loss rates for its reliability scheme or scheduler
can provide little benefit.

We find that the proper choice and tuning of reliability
schemes can improve performance by over 30%, suggest-
ing the importance of careful design choices. The results
provide insights that are guiding the design of our own
multicast facility for Web data.

REFERENCES

[1] M. H. Ammar and J. W. Wong, “The design of Teletext broadcast
cycles,” Performance Evaluation, vol. 5, no. 4, pp. 235–242,
December 1985.

[2] Gary Herman, Gita Gopal, K. C. Lee, and Abel Weinrib, “The
Datacycle architecture for very high throughput database sys-
tems,” inProceedings of ACM SIGMOD 1987 Annual Confer-
ence, May 1987, pp. 97–103.

[3] Demet Aksoy and Michael Franklin, “RxW: A scheduling ap-
proach for large-scale on-demand data broadcast,”ACM/IEEE
Transactions on Networking, vol. 7, no. 6, pp. 846–860, Decem-
ber 1999.

[4] Wang Lam and Hector Garcia-Molina, “Multicasting a Web
repository,” in Fourth International Workshop on the Web
and Databases (WebDB), 2001, pp. 25–30, Available at
http://dbpubs.stanford.edu/pub/2001-28.

[5] Maya Yajnik, Jim Kurose, and Don Towsley, “Packet loss corre-
lation in the MBone multicast network,” inProceedings of IEEE
Global Internet, November 1996.

[6] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne,
and Lixia Zhang, “A reliable multicast framework for light-
weight sessions and application level framing,”IEEE/ACM
Transactions on Networking, vol. 5, no. 6, pp. 784–803, Decem-
ber 1997.

[7] Kenneth Miller, Kary Robertson, Alex Tweedly, and Marc White,
“Starburst multicast file transfer protocol (mftp) specification,”
draft-miller-mftp-spec-03.txt, April 1998, Internet Draft.

[8] Wang Lam and Hector Garcia-Molina, “Reliably net-
working a multicast repository (extended version),”
Tech. Rep., Stanford University, 2002, Available at
http://dbpubs.stanford.edu/pub/2002-37.

[9] Andrew S. Tanenbaum,Computer Networks, Prentice Hall, Up-
per Saddle River, New Jersey, third edition, 1996.

[10] C. Kenneth Miller, Multicast Networks and Applications,
Addison-Wesley, Reading, Massachusetts, 1999.

[11] Nitin H. Vaidya and Sohail Hameed, “Scheduling data broad-
cast in asymmetric communication environments,”Wireless Net-
works, vol. 5, no. 3, pp. 171–182, 1999.

[12] Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Ba-
navar, Robert Strom, and Daniel Sturman, “Exploiting IP multi-
cast in content-based publish-subscribe systems,” inMiddleware,
Joseph S. Sventek and Geoff Coulson, Eds. 2000, Lecture Notes
in Computer Science, pp. 185–207, Springer-Verlag.

[13] Pablo Rodriguez, Ernst W. Biersack, and Keith W. Ross, “Im-
proving the latency in the web: Caching or multicast?,” in3rd
International WWW Caching Workshop, Manchester, UK, 1998.

