
Assignment-Based Partitioning in a Condition
Monitoring System

Yongqiang Huang and Hector Garcia-Molina

Stanford University, Stanford, CA 94305
{yhuang, hector }@cs.stanford.edu

Abstract. A condition monitoring system tracks real-world variables and alerts
users when a predefined condition becomes true, e.g., when enemy planes take
off, or when suspicious terrorist activities and communication are detected. How-
ever, a monitoring server can easily get overwhelmed by rapid incoming data. To
prevent this, we partition the condition being monitored and distribute the work-
load onto several independent servers. In this paper, we study the problem of how
to make a partitioned system behave “equivalently” to a one-server system. We
identify and formally define three desirable properties of a partitioned system,
namely, orderedness, consistency, and completeness. We propose assignment-
based partitioning as a solution that can handle opaque conditions and simplifies
load balancing. We also look at a few typical partitioned systems, and discuss
their merits using several metrics that we define. Finally, an algorithm is pre-
sented to reduce complex system configurations to simpler ones.

1 Introduction

A condition monitoring systemis used to track the state of certain real-world variables
and alert the users when pre-defined conditions about the variables are satisfied. For
example, soldiers in a battlefield need to be notified when the location of enemy troops
is within a certain range. Authorities must be alerted if suspicious money transfer trans-
actions or communication messages are detected that fit into a “terrorist” pattern. The
manager of a nuclear plant has to get a message on his/her Personal Data Assistant
(PDA) whenever the temperature of the reactor is higher than a safety limit.

Figure 1(a) illustrates such a condition monitoring system. It consists of one or more
Data Monitors(DM), a Condition Evaluator(CE), and one or moreAlert Presenters
(AP). A Data Monitor tracks the state of a real world variable, such as the reactor tem-
perature. Periodically or whenever the variable changes, the DM sends out anupdate,
i.e., a temperature reading. The stream of updates arrive at the Condition Evaluator,
which uses them to evaluate a predefined user conditionc, e.g., “reactor temperature is
over 3000 degrees.” If the conditionc is satisfied, analert is sent to the Alert Presenter,
which is responsible for alerting the user. In this case, the user will be notified by a mes-
sage on his/her PDA that the reactor has overheated. If the PDA is off or disconnected,
the CE logs the alert, and sends it later, when the AP becomes available.

We call systems with a single Condition Evaluator, such as the one in Figure 1(a),
centralizedmonitoring systems. One problem with a centralized system is that the CE
can easily get overloaded [1]. High volume of updates may arrive at the CE at a rapid
pace. For each new update received, the CE needs to match it againstc. The matching
can become a time-consuming operation if, for example, the CE needs to extract enemy

(a) Centralized (b) Partitioned (c) Replicated

Fig. 1: Condition monitoring systems

plane movement information from satellite images, or to analyze text messages in order
to determine the topic. Furthermore, for each update that matches, an alert has to be
generated, logged, and sent out to all interested APs. In a system with frequent new
updates and many users, the resources required to match updates and to send alerts may
well exceed the capability of a single machine.

The above problem can be alleviated by introducing multiple independent Condition
Evaluators to share the workload (Figure 1(b)). In apartitionedmonitoring system, each
CEi monitors a modified “condition partition”ci instead ofc. The CEs independently
make their own decisions about when to generate an alert. Ideally, the work at each CEi

is reduced to a fraction of the centralized case, while the outcome is kept “equivalent.”
One way of obtaining theci’s is to break upc into sub-expressions. For example, as-

sumec is “temperature is over 3000 degrees OR temperature has risen for more than 200
degrees since last reading.” We can then split the disjunction to obtainc0 (“temperature
is over 3000 degrees”) andc1 (“temperature has risen for more than 200 degrees”). Such
structure-based partitioningtakes advantage of knowledge aboutc’s internal structure,
and the resulting condition partitions are usually subexpressions ofc.

Structure-based partitioning often gives a natural and efficient way of breaking up
c. However, this type of partitioning is only applicable when the internal structure ofc
is known and amenable to being broken apart. Moreover, it is often difficult to evenly
balance the workload among the CEs because one condition partition may be much
more costly to monitor than another. Instead, we propose a different approach, suitable
for partitioning “opaque” conditions, whose expressionc is treated like a black box.

In assignment-based partitioning, each CEi is ultimately responsible for the whole
c, but only for some fraction of the updates. For example, two CEs can partition the
workload so that one evaluatesc on the even updates, while the other on the odd updates.
More formally, each CEi’s condition partitionci takes on the formci = pi ∧ c, where
pi is an “assignment test” on the updates. Intuitively, when a new update arrives at CEi,
the assignment test is performed first. If the test is passed, we say that the new update
has beenassignedto CEi. In this case, processing of the update continues as in the case
of a centralized system. On the other hand, if the assignment test fails, CEi does not
even evaluatec (in other words, the conjunction inpi∧c is short-circuited). In this way,
each CEi is only responsible for (i.e., evaluates and generates alert for) those updates

assigned to it. Thus, load balancing is achieved by controlling the fraction of updates
that are assigned to each CEi.

To illustrate the benefit of partitioning, let us assume that processing a new update
takes exactly one unit of time in a centralized system monitoring conditionc. Such
a system can handle a “Maximum Sustained Update Rate” (defined more formally in
Section 5.1) of 1 new update per unit time. Further assume that CEi only takes 1

N time
unit on average to process an update, either becauseci is a much simpler expression, or
because most of the updates received are not assigned to CEi and can be disregarded
quickly. Consequently, such a system can withstand a Maximum Sustained Update Rate
of roughlyN updates per time unit, resulting in anN -fold increase in capability.

Another benefit of a partitioned system is increased partial reliability of the moni-
tored condition. Since the condition is monitored by several CEs together, even if one
of them goes down, the user should still be able to receive some alerts, unlike in the
centralized case. In a previous paper [2], we considered full replication as a solution
for reliability. In a replicated monitoring system (Figure 1(c)), multiple CEs all monitor
the same condition to guard against failures. However, the Maximum Sustained Update
Rate of such a system is not improved compared to a centralized system, even though
more CEs are deployed. A partitioned system is able to reap some of the benefits of a
replicated system without its full cost.

This paper addresses the problem of partitioning a condition so that it can be handled
by multiple CEs in parallel. In particular,
• We define a set of desirable properties that contribute to making a partitioned system

“equivalent” to a centralized system (Section 3.1).
• We prove some fundamental properties of partitioned systems in general (Sec-

tion 3), and assignment-based partitioning in particular (Section 4).
• We propose and compare two methods of doing assignment-based partitioning. We

also present a few representative systems, and develop performance metrics to mea-
sure their relative merits (Section 5).

• Finally, we develop methods to apply our analysis to more complex system config-
urations involving multiple variables (Section 6).

2 Problem Specification

In this section, we give more details on the workings of a condition monitoring sys-
tem, using the nuclear reactor temperature sensing example from Section 1. The Data
Monitor is a temperature sensor attached to the reactor. It is also connected to a com-
munications network which allows it to send temperature readings to other devices. We
assume that each DM monitors only one variable, as a sensor which simultaneously
monitors two targets can be thought of as two DMs co-located on the same device.

An update has the formatu(varname, data, seqno) wherevarname is an iden-
tifier of the real world variable being tracked, anddata reports the new state of this
variable. Theseqno field uniquely identifies this update in the stream of updates from
the same variable. We assume that sequence numbers of updates sent from the same
DM are consecutive. In our reactor example, an updateu(x, 3000, 7) denotes the sev-
enth update sent by this DM for reactorx, reporting a temperature reading of 3000
degrees. In the remainder of this paper, we will use7x to denote such an update.

A condition c is a predicate defined on values of real world variables. The set of
variables that appear in a condition’s predicate expression is thevariable setof that

condition, denoted byV . The CE receives updates from all DMs that monitor variables
in V . When a new update arrives, the CE re-evaluates its condition. The update is said
to match (or trigger)c if the data contained in it causesc’s predicate to evaluate to true.
For example, conditionc1 (“reactor temperature is over 3000 degrees”) is triggered
whenever the temperature reading exceeds 3000.

Note that to evaluate conditionc1, only the current temperature reading is needed.
However, to monitor another conditionc2 (“reactor temperature has risen for more than
200 degrees since last reading”), the CE needs to remember the previous update in
addition to the current one. Thus, we generalize to say that a condition is defined on a
set (H) of “update histories,” one for each variable inV . An update historyfor variable
x, denotedHx, is a sequence ofD x-updates received by the CE. Specifically,Hx =
〈Hx[0], Hx[−1], Hx[−2], . . . , Hx[−(D − 1)]〉, whereHx[−i] is theith most recently
received update of variablex. (See later for how to chooseD). When a newx-update
is received, it is first incorporated intoHx, which is then used to evaluate the condition.
For instance, after update7x arrives,Hx[0] becomes7x, andHx[−1] is 6x, and so on.

The numberD, called the degree ofHx, is determined by the condition. We say
that a conditionc is of degreeD with respect to variablex if the evaluation ofc needs
anHx of at least degreeD. The degree of a condition is inherent in the nature of the
condition itself, and it dictates how manyx-updates the CE will need to store locally
(i.e., the degree ofHx). Thus, conditionc1 can be expressed more formally asc1(H) =
(Hx[0].data > 3000), and is of degree 1 to variablex. On the other hand,c2(H) =
(Hx[0].data−Hx[−1].data > 200), and is of degree 2.

When the condition evaluates to true, an alert is sent out by the CE. An Alert Pre-
senter collects such alerts and displays them to the end user, e.g., by a pop-up window
or an audible alarm. We assume that the alert is of the forma(condname, histories),
wherecondname identifies the condition that was triggered, andhistories are all the
update histories used by the CE in evaluating the condition. The histories are included
if the AP needs them for a final round of processing on the alerts before presenting the
alerts to the user, as will become clear later.

In a partitioned system,N CEs (CE0 through CEN−1) work in concert to handle a
single conditionc. Instead ofc, each CEi monitors a modifiedcondition partitionci.
When a new update arrives at CEi, an alert is triggered if and only ifci(H) is true.
Although the CEs monitor their respective condition partitions independently, the goal
is to produce an “equivalent” overall effect to a single CE monitoring the originalc.

Finally, we assume that the links connecting the CE to the DMs and APs provide
ordered and lossless delivery. The focus of this paper is not on reliability, and the reader
is referred to [2] for discussion of issues when the links assumption does not hold.

3 Single Variable Conditions

In this section, we present some general results of partitioned systems, regardless of
whether the structure-based or assignment-based method is being used. For now, we
restrict our discussions to conditions involving only one real world variablex, i.e.,V =
{x}. Hence, the monitoring system contains only one Data Monitor, and all relevant
updates will havex as theirvarname. Single variable systems are important both as
basis for more complex configurations, and in their own right. Many useful real-world
scenarios, such as single-issue stock tracking and danger alerts, can be formulated as a
single variable monitoring problem. In Section 6 we will investigate multiple DMs.

(a) Centralized systemC (b) Partitioned systemP

Fig. 2: Analysis model for single variable systems

Figure 2(a) depicts a centralized condition monitoring systemC. Let U represent
the sequence of updates sent out by the DM over some period of time. The Condition
Evaluator receives the sequence of updatesU as input, and generates alert sequenceA
as output, according to the definition ofc, the condition it is monitoring.

Figure 2(b) illustrates a partitioned one-variable systemP based on the centralized
systemC. For now, we assume that all CEs inP receive the same input as the single
CE in the corresponding centralized systemC, i.e.,U0 = U1 = · · · = UN−1 = U . In
other words, the update stream is fully replicated to all CEs. Note that replicating the
update streamN times will likely mean more work for the DM. If it is desired to keep
DM itself simple (since it can be a dumb device such as a networked thermometer),
an additional “update replicator” can be installed to receive updates from the DM and
forward them to all CEs. Section 4 will also investigate scenarios where the full update
replication assumption can be relaxed.

Since each CEi monitors a differentci, their outputs will be different. Specifically,
we useAi to denote the sequence of alerts generated by CEi. Finally, the AP collects all
Ai’s and merges them to produce a final alert sequenceA′, which are displayed to the
end user. To produceA′, the AP uses a simple duplicate elimination algorithm called
EXACTDUPLICATEREMOVAL to filter out some alerts. In particular, the AP discards an
alert if it is “identical” to another alert that has already been presented to the user. Two
alerts are considered identical if their history setsH are the same, i.e., if they triggered
on the same set of updates.

3.1 System Properties

We propose three desirable properties of a partitioned system, defined by comparing
the output ofP to that ofC. We define an alerta’s sequence number to beHx[0].seqno,
namely, the sequence number of thex-update that triggereda. A sequenceA of such
alerts isorderedif the sequence numbers of all alerts contained inA form a ordered
sequence. Furthermore, we useΦA to denote the (unordered) bag consisting of these
sequence numbers.

A partitioned systemP is said to have each of the following properties if every alert
sequenceA′ it outputs satisfies the corresponding criterion.
1. Orderedness:A′ is ordered.
2. Consistency:ΦA′ ⊆ ΦA.
3. Completeness:ΦA′ = ΦA.

The three properties measure how the behavior ofP “conforms” to that ofC. Specif-
ically, orderedness looks at the order in which alerts are presented to the user, while the
other two criteria deal with what alerts are presented. Orderedness indicates that alerts
are delivered to the user in increasing sequence number order. Since a centralized sys-
temC always delivers alerts in this order, a partitioned systemP that is ordered behaves
similarly in this respect.

If a partitioned systemP is consistent, the user can expect to receive (although
perhaps in a different order) a subset of those alerts that would have been generated by
the corresponding centralized systemC. In contrast, an inconsistent system is able to
generate “extraneous” alerts that one would not normally expect fromC. Therefore, it
is easy for a user behind an inconsistent system to tell that partitioning is being used
when he/she sees these “extraneous” alerts.

Completeness is a stricter criterion than consistency. For a partitioned systemP to
be complete, it will have to generate all alerts and only those alerts that would have
been generated byC. Trivially, completeness implies consistency, while the reverse is
not true. An incomplete system implies that the user may miss some alerts as a result of
partitioning the workload among several CEs.

3.2 Discussion

How a conditionc is partitioned among the CEs (specifically, the definition ofci’s)
largely determines the properties achieved by the resulting systemP . The following
theorems discuss the details. Due to lack of space, we omit all proofs in this paper. Bear
in mind that the discussion of this section pertains to single variable conditions, with
EXACTDUPLICATEREMOVAL filtering, and where every CEi sees the same input.

Theorem 1. A partitioned systemP is ordered if and only if@U , such thatci(H) =
cj(H ′) = true and cj(H) = false for somei, j ∈ [0..N−1], i 6= j and H, H ′ ∈
U, Hx[0].seqno < H ′

x[0].seqno.

We deduce from Theorem 1 that in most cases orderedness is not achieved in a par-
titioned system. This is because normally, when the output alert sequences of different
CEs are merged together at the AP, it is possible that alerts will be delivered out of order
due to the different interleaving order of these sequences. Exceptions do exist, but often
involve an impractical “trivial” partitioning. An example of such a trivial partitioning is
wherec0 = c andci ≡ false for all otherci’s.

If orderedness is desired, however, it can be enforced by having the AP perform
additional filtering on top of EXACTDUPLICATEREMOVAL. For example, the AP can
remember the last alert it has delivered to the user, and discard new alerts that arrive out
of order. However, orderedness is gained in this situation at the expense of throwing out
some potentially useful alerts.

Theorem 2. A partitioned systemP is consistent iffc0 ∨ c1 ∨ · · · ∨ cN−1 =⇒ c.

Intuitively, if c0 ∨ c1 ∨ · · · ∨ cN−1 logically impliesc, then any update that triggers
at some CEi in P will also trigger conditionc in C. Analogously, the following theorem
states thatP is complete if and only ifc0∨c1∨· · ·∨cN−1 andc are logically equivalent.

Theorem 3. A partitioned systemP is complete iffc0 ∨ c1 ∨ · · · ∨ cN−1 ⇐⇒ c.

Example 1.Conditionc is defined as “temperature is over 3000 degrees OR tempera-
ture has risen for more than 200 degrees”, orc(H) = (Hx[0].data > 3000∨Hx[0].data
−Hx[−1].data > 200). Splitting the disjunction using structure-based partitioning, we
obtainc0(H) = (Hx[0].data > 3000), andc1(H) = (Hx[0].data − Hx[−1].data >
200). Applying the theorems above, we can prove thatP is complete, but unordered.

4 Assignment-Based Partitioning

In this section and the next, we focus on assignment-based partitioning. We haveci(H)
= pi(u) ∧ c(H), wherepi is the assignment test defined on the newly received update
u. We assume that evaluatingpi(u) is a fast operation, with negligible cost, compared
to evaluatingc(H). This ensures that the goal of partitioning is achieved, namely, that
the average workload at each CEi is reduced compared to the single CE in a centralized
system, as long as CEi is assigned only a portion of the steam of updates inU .

4.1 Discussion

The following theorems, derived from those in Section 3.2, illustrate how the definition
of pi determines the properties of an assignment-based systemP . As such, the theorems
apply to single variable conditions, with EXACTDUPLICATEREMOVAL filtering, and
where every CEi sees the same input.

Theorem 4. An assignment-based partitioned systemP is ordered if and only if@U
such thatpi(u) = pj(u′) = true andpj(u) = false for somei, j ∈ [0..N−1], i 6= j
andu, u′ ∈ U, u.seqno < u′.seqno.

Theorem 5. An assignment-based partitioned systemP is always consistent.

Theorem 6. An assignment-based partitioned systemP is complete if and only if∀u,
CN−1

i=0 (pi(u) = true) ≥ 1, whereCN−1
i=0 (pi(u) = true) counts the number ofi’s in

[0..N−1] that makepi(u) true.

Theorem 6 says thatP is complete as long as every update is assigned to at least one
CEi. We observe that duplication of assignment (i.e., one update assigned to more than
one CEs) results in replication of the condition (i.e., the condition being monitored by
multiple CEs simultaneously), which may actually be beneficial in terms of reliability.
Although replication does not affect the system properties (because duplicate alerts are
eventually removed by the AP), it has its own issues which are not studied here. Instead,
we will focus on systems where each update is assigned to exactly one CEi.

4.2 Types of Assignment

Assignment-based partitioned systems are further divided into two categories depend-
ing on how the assignment is determined. Inautonomously assignedsystems, the as-
signment is done by the CEs autonomously. The CEs agree on the definitions ofpi’s
before the system starts running. The DM, not knowing these definitions, simply repli-
cates all updates to all CEs concerned.

A centrally assignedpartitioned system, on the other hand, relies on a central con-
trol to decide on the assignment at run time. Before an updateu is sent out, the DM
inserts anaceid tag, which contains the id of the CE that this update is assigned to
(0 ≤ aceid < N).1 At the other end, CEi recognizes that an update has been assigned
to it if the aceid matches its own id. In effect,pi(u) = (i = u.aceid).

While Theorems 4 to 6 above apply to both types of assignment-based systems, the
following lemmas are tailored specifically for a single variable partitioned system with
central assignment. Such a system is not ordered except in the “trivial” case where all
updates are assigned to one particular CEi. It is also always complete because it assigns
each update to exactly one CE.

Lemma 1. A centrally assigned partitioned systemP is ordered if and only if∃k ∈
[0..N−1] such that∀u, u.aceid ≡ k.

Lemma 2. A centrally assigned partitioned systemP is always complete.

Central assignment can potentially avoid some shortcomings of an autonomously
assigned system. For example, when a new CE joins or an existing CE leaves an au-
tonomously assigned system, all other CEs need to be notified in order to redistribute
workload to achieve balance. This is because the definition ofpi usually depends on
N , the total number of CEs. Hence whenN changes, allpi’s must be redefined. Anal-
ogously, when one CE goes down or gets overloaded temporarily, it is hard to dynami-
cally adjust the work distribution to adapt to the change without inter-CE communica-
tion. With central assignment, on the other hand, the exact assignment of an updateu is
finalized just before it is sent out (whenaceid is tagged on). Thus, a centrally assigned
system has much more flexibility in adapting to a dynamic environment.

4.3 Dropping Updates

Another problem with autonomous assignment is that the update streamU must be fully
replicatedN times (U0=U1 = · · ·=UN−1 =U). Because the DM does not know about
the definition ofpi, it has no way of predicting which CE or CEs will need a particular
update. Hence it must send any update to all CEs to make the system work. Without an
efficient multicast protocol, this duplication of update sends can be quite wasteful.

In contrast, as an optimization of a centrally assigned system, the DM can poten-
tially drop some updates to certain CEs in order to avoid unnecessarily sending them.
Since the DM controls update assignment, it is also in a position to predict whether a
particular updateu needs to be sent to a particular CEi in order for the system to func-
tion. In essence, we can reduceUi, the input to CEi, to a particular subsequence ofU ,
instead of the fullU , while keeping the system outcome the same.

One might think that only assigned updates need actually be sent to CEi (in other
words,Ui = 〈u | u ∈ U AND u.aceid = i〉). However, as the following example
shows, this naive approach does not work. In fact, the minimalUi also depends onD,
the degree of the condition being monitored.

1 Note that this requires a more intelligent DM. As noted before, an “update replicator” can be
used to keep the DM itself simple. Also, note that the use of a central control in this partic-
ular case does not create an additional single point of failure as the DM is needed even with
autonomous assignment.

Table 1: Comparison of assignment-based systems.<i is thei-th element of an infinite random
sequence of integers, with each element between0 andN − 1, inclusive

Name Definition Comp. Ord. MSUR AWT PUD

TRIVIAL 0
√ √

1 0 1− 1
N

RANDOM <u.seqno
√

X N − ε 2(N
ε
− 1) (1− 1

N
)D

ROUNDROBIN u.seqno mod N
√

X N 0 max(0, 1− D
N

)

q-RNDRBN bu.seqno
q

c mod N
√

X N (N−1)(q−1)
2

max(0, 1− q+D−1
qN

)

Example 2.Assume a condition of degree 2: “reactor temperature has risen for more
than 200 degrees since last reading”. Also assume that update7x is assigned to CE1,
but 6x is not. If Ui = 〈u | u ∈ U AND u.aceid = i〉, then7x ∈ U1, but 6x 6∈ U1.
However, in order for CE1 to correctly evaluate the condition when it receives7x, it
will also need the data from6x. Therefore, even though6x is not assigned to CE1, it
must still be sent to it.

The following lemma shows precisely when an update can be dropped. In short,u
is sent to CEi if it is assigned to CEi, or if a later update (uk) will be assigned to CEi
and the condition evaluation ofuk depends onu.

Lemma 3. The output of a centrally assigned partitioned system remains the same if
Ui is changed fromU to 〈u | u ∈ U AND ∃uk ∈ U such thatuk.aceid = i and
0 ≤ uk.seqno− u.seqno < D〉.

5 Sample Assignment-Based Systems

In this section we show a few sample ways of constructing an assignment-based parti-
tioned systemP . For each system, both an autonomously assigned version and a cen-
trally assigned version exist, and they behave identically (except that the latter can drop
certain updates as an optimization).

Table 1 summarizes the major results which we explain next. If the definition of a
system is given asd in the table, then the autonomously assigned version is obtained
by pi(u) = (i = d), while the centrally assigned version is defined aspi(u) = (i =
u.aceid) andu.aceid = d.

5.1 Performance Metrics

In order to quantitatively compare different systems, we develop three performance
metrics to measure aspects of a system such as its throughput and mean response time.
We use a relatively simple analysis model to capture the important system tradeoffs. Our
model assumes that updates inU are generated at a constant rate ofα. For example, if
α = 2, then a new update appears every half time unit. When a new update arrives at
a CE, the quick assignment test is performed first. If assigned, the update is processed
by this CE. Processing time is assumed to take 1 time unit exactly. However, if the CE
is currently busy processing another previous update, the new update is appended to an
update queue at this CE.

Our first metric measures the throughput of the overall system. TheMaximum Sus-
tained Update Rate(MSUR) of a partitioned system is the maximumα at which the

system is stable, i.e., the update queues at all CEs reach a steady state. As a reference, a
centralized systemC has an MSUR of1 (update/time unit). At update rates greater than
1, updates are generated at a higher pace than they can be consumed by the CE, and the
queue length increases without bound.

TheAverage Wait Time(AWT) is the average time an update has to spend waiting
in the update queue, while the system is running at MSUR. AWT measures the aver-
age response time of the system. In the centralized example, the AWT is0 (time unit)
because a new update arrives just when the previous one finishes processing.

Finally, thePercentage of Updates Dropped(PUD) metric gives the average per-
centage of updates dropped in the centrally assigned version of a partitioned system.
For example, if the centrally assigned version only needs to send each update to half of
theN CEs on average, then the system has a PUD of 50%. The larger the PUD number,
the less work the central control does. If PUD= 0, the centrally assigned solution does
not save any effort over autonomous assignment.

5.2 Comparison

Due to space limitations, we will only present here a brief comparison of systems, and
omit details such as derivations of various results summarized in Table 1. Our first sam-
ple system, named TRIVIAL (Figure 3(a)), is a “trivial” system because it assigns all the
work to one particular CE, CE0. In the second system RANDOM (Figure 3(b)), an up-
date is assigned to a random CE every time. Note that to implement the autonomously
assigned version of RANDOM, the CEs simply need to agree on a pseudo-random al-
gorithm and a seed at the beginning in order to avoid communication during run time.
ROUNDROBIN (Figure 3(c)) assigns each update to the next CE in turn. Finally, q-
ROUNDROBIN is a variation on regular ROUNDROBIN where each CE gets assignedq
consecutive updates inU before next CE’s turn. Naturally, ROUNDROBIN is simply a
special case of q-ROUNDROBIN with q = 1.2

Figure 4 plots PUD againstN , the total number of CEs, based on the formulas
in Table 1. The various curves represent several different sample systems. The figure
shows that in general PUD rises with more CEs, implying that the advantage of central
assignment in dropping updates is more significant. Incidentally, TRIVIAL has the best
PUD among all partitioned systems because the DM in a centrally assigned TRIVIAL

only needs to send updates to one CE, CE0. However, since one CE handles all the real
work, the system obviously does not benefit from being a partitioned system. As such,
TRIVIAL has the same MSUR (1) as a centralized systemC.

Since RANDOM distributes the work more evenly among theN CEs, it is able to
significantly improve its throughput compared to TRIVIAL . Its MSUR isN − ε, where
ε is an arbitrarily small positive number.3 Note that its MSUR can get infinitesimally
close toN , but not equal toN , due to the randomness in how often each CE gets
assigned. Moreover, as MSUR approachesN , the AWT suffers as a result.

Because of its regular assignment pattern, ROUNDROBIN further improves on RAN-
DOM with an MSUR ofN and no wait time for the updates (AWT= 0). On the other

2 In fact, TRIVIAL can also be considered as a special case of q-ROUNDROBIN with q →∞.
3 The calculation assumes Poisson random arrival at each CEi (M/D/1 queue), which is a close

approximation especially for small time units.

(a) TRIVIAL (b) RANDOM

(c) ROUNDROBIN (d) q-ROUNDROBIN

Fig. 3: Running illustrations of sample partitioned systems, withN = 3, D = 2, andq = 2. A
crossed circle (

N
) means that an update is assigned to a particular CE. A circle (©) implies that

the update is not assigned but still must be delivered to this CE. A dotted circle can be dropped
by a centrally assigned system

0%

20%

40%

60%

80%

100%

1 5(=D) 10(=2D)

P
U

D

N

Trivial
Random
RoundRobin(q=1)
q-RndRbn, q=2
q-RndRbn, q=10

Fig. 4: Comparison of PUD performances
Fig. 5: A partitioned system monitoring a
condition with two variables:x andy

hand, as Figure 4 shows, ROUNDROBIN’s PUD curve falls below that of RANDOM, es-
pecially for smallN ’s. The figure also points out that there is a threshold toN (N = D)
below which no updates can be dropped by ROUNDROBIN.

Finally, q-ROUNDROBIN is designed to improve ROUNDROBIN’s PUD performance,
while preserving its MSUR atN . As shown in Figure 4, a biggerq enhances the PUD
by both reducing theN threshold and increasing the rate at which the curve rises with
N . For instance, atN = 2D, an average update can be dropped to half (50%) of the
CEs if q = 1, but almost 70% ifq = 2.

The tradeoff of a biggerq, on the other hand, is that the stream of updates assigned
to a particular CEi will be more “bursty”, i.e., a bigger chunk of consecutive update
assignment, followed by a longer inactivity period. As a result, updates have to wait
longer in the queue on average. For example, with 10 CEs, regular ROUNDROBIN (i.e.,
q = 1) has no delay in processing updates, whereas an update has to wait on average
18 time units whenq = 5. Hence,q represents a tradeoff between savings in dropped
updates and faster system response time.

6 Multi-variable Conditions

So far we have dealt with conditions involving only a single variable. In this section
we study conditions whose variable set contains more than one variable, i.e.,|V | > 1.
To illustrate, Figure 5 shows a system with two independent data sources,x andy. An
example of such a condition is “temperature difference between two reactorsx andy
exceeds 100 degrees.”

Some of the results in previous sections can be naturally extended to the multi-
variable case. For example, we can define orderedness, consistency and completeness
for multi-variable systems by extending the definitions of Section 3.1 in a straightfor-
ward manner. Similarly, performance metrics for multi-variable systems can also be
defined. The detailed definitions are omitted here to avoid redundancy. However, addi-
tional complications do arise in a multi-variable system, which we explore next.

6.1 Discussion

As in the single variable case, it can be shown that orderedness is seldom achieved in
multi-variable systems except for some trivial configurations. Therefore, we will focus
only on consistency and completeness in the following discussion. For now, we assume
that no updates are dropped (in Figure 5,Ux

0 = Ux
1 = · · · = Ux

N−1, and likewise for
y). We will explore the interesting issue of dropping updates later in this section.

From Figure 5, we observe that the input to CEi, Ui, is a mixed sequence ofx-
andy-updates, obtained from interleavingUx

i andUy
i . Without any safeguard mecha-

nism, it is possible forUx
i andUy

i to interleave differently at different CEs, resulting
in the CEs seeing a different input from each other. Consequently, a multi-variable par-
titioned system is no longer consistent even if the condition in Theorem 2 is satisfied.
The following example illustrates.

Example 3.Assume the conditionc being monitored is “temperature difference be-
tween two reactorsx andy exceeds 100 degrees” (c(H) = (|Hx[0].data−Hy[0].data| >
100)). We split c into c0(H) = (Hx[0].data − Hy[0].data > 100), andc1(H) =
(Hy[0].data−Hx[0].data > 100). Notice thatc0 ∨ c1 =⇒ c.

LetUx
0 = Ux

1 = 〈1x(1000
◦
), 2x(1200

◦
)〉, andUy

0 = Uy
1 = 〈1y(1000

◦
), 2y(1200

◦
)〉.

That is, both reactors start at 1000 degrees, and then both increase to 1200 degrees. Fur-
ther assume that streamsUx

0 andUy
0 are interleaved at CE0 such thatU0 = 〈1x, 1y, 2x,

2y〉. However, a different interleaving at CE1 makesU1 = 〈1x, 1y, 2y, 2x〉.
In this case, CE0 triggers when it receives2x, and CE1 will also trigger when it

receives2y. The user will receive both alerts (both will pass through the AP’s filter-
ing system since they are not considered duplicates). However, one can prove that no
centralized monitoring system could generate such an alert combination. Hence the
partitioned system violates consistency.

There are two general approaches to remedy the above consistency problem in
multi-variable systems. First, measures can be taken to ensure that each CE sees the
same input. For example, a centralized “update replicator” can receive updates from all
DMs involved in a condition and then forward them to the CEs checking that condition,
as hinted in earlier sections. As another example, a physical clock system as defined in
[3] can be put in place to enforce a total ordering ofx- andy- updates at all CEs.

In the second approach, the CEs are allowed to see different input. However, the
Alert Presenter is required to take on a more active role in filtering out alerts that can
potentially lead to inconsistency, as illustrated in the next example. The disadvantage is
that the AP may potentially discard useful alerts.

Example 4.We assume the same setup as in Example 3. Furthermore, each alert sent
to the AP is tagged with the updates that it triggered on. For example, the alert gen-
erated by CE0 will be tagged with{2x, 1y}. The AP records this information before
passing the alert on to the user. When the second alert arrives from CE1 tagged with
{1x, 2y}, the AP will be able to detect inconsistency (algorithm detail omitted due to
space constraint) and thereby discard the new alert.

In the rest of our discussion, we assume that all CEs see the same input. In fact,
the following theorem tells us that, with such an assumption, all earlier single-variable
results on consistency and completeness become valid for multiple variables as well.

Theorem 7. GivenU0 = U1 = · · · = UN−1, Theorems 2, 3, 5 and 6, and Lemma 2
apply to multi-variable partitioned systems.

6.2 Dropping Updates

Another interesting consequence of multiple variables is that the DMs in a centrally
assigned system can no longer drop updates as freely. Previously in the single variable
case, the DM for variablex controls the assignment ofx-updates, and it can accurately
predict whether a particularx-updateu will not be needed by CEi in its condition
matching. With multiple independent DMs, however, such a prediction can no longer
be safely made in general because, even when DMx considersu unnecessary for CEi, u
might still be needed in evaluating the condition when a latery-update is sent by DMy.

Example 5.Given a two-variable centrally assigned system, assume that a certainx-
update,6x, is not assigned to a particular CEi. Further assume that the condition is
of degree 1 to variablex, i.e., only the most recentx value is needed in condition
evaluation. Thus, it would appear that6x can be safely dropped by DMx to this CE.

The problem comes, however, when ay-update, say,3y, arrives next. Assume3y is
assigned to this CE. To evaluate the condition, the CE needs the most recent value of
x, which should have been in6x. However, since the CE never received6x, value from
an earlier5x is used instead. Thus the output of this CE is potentially affected by the
dropping of6x. In fact, the resulting system is no longer consistent.

In the most general case it is difficult for the DMs to safely drop an update without
communication between themselves. However, specific circumstances exist where it is
possible to do so, and the following lemma presents one such scenario. In essence,
Lemma 4 says that anx-update can be dropped to CEi if no updates of any variable
other thanx are assigned to CEi, and if the update will not be used to evaluate conditions
triggered by assignedx-updates.

Lemma 4. An updateu can be dropped to CEi if @uk ∈ Ui such thatuk.aceid = i
AND (uk.varname 6= u.varname or 0 ≤ uk.seqno− u.seqno < D).

1. Partition (arbitrarily) the set ofN CEs into|V | disjoint and non-empty groups, oneGv for
each variablev ∈ V .

2. For eachGv, pick any single variable partitioning scheme (such as those presented in Sec-
tion 5), which will be used to assignv-updates to CEs inGv.

3. For each updateu,
3-1. Assignu to one of the CEs inGu.varname, according to the group’s chosen single

variable scheme. We thus have CEu.aceid ∈ Gu.varname.
3-2. Then, sendu to all CEs in all groupsGv wherev 6= u.varname, and in addition, to the

subset of CEs inGu.varname as dictated by the single variable scheme.

Fig. 6: Algorithm MVP. For simplicity we assume thatN ≥ |V |

Based on the above lemma, we have developed an algorithm (Figure 6) to per-
form the partitioning in a centrally assigned multi-variable system. Algorithm Multi-
Variable-Partitioning (MVP) associates a subset of CEs to each variable in the condi-
tion. It then reduces an overall multi-variable problem to single variable partitioning
problems within each variable subset. To illustrate how the algorithm works, we walk
through a simple example next.

Example 6.Assume a system with four CEs and two variables. For simplicity, further
assume that the condition is of degree 1 to bothx andy. Using Algorithm MVP, let
Gx = {CE0, CE1} andGy = {CE2, CE3}. DMx decides to use ROUNDROBIN assign-
ment within its group, while DMy uses RANDOM.

Based on ROUNDROBIN, all x-updates with odd sequence numbers are assigned to
CE1, while even ones are assigned to CE0. In other words,∀u with u.varname = x,
we letu.aceid = u.seqno mod |Gx| = u.seqno mod 2. Furthermore, odd sequence
numbered updates are sent to CE1, its assigned CE, as well as to both CEs inGy.
Analogously for even sequence numberedx-updates. Similarly, ay-update is assigned
randomly to either CE2 or CE3 according to RANDOM. Then it is sent to its assigned
CE inGy, plus to CE0 and CE1.

Intuitively, an even numberedx-updateu can be safely dropped to CE1 because it
is not needed to evaluate the condition when CE1 receives an assigned odd numbered
x-update. Furthermore, since CE1 is never assigned anyy-updates, it does not have
any other evaluations which could have requiredu. Finally, CE1 is guaranteed to have
the correcty-value in its evaluations since it still receives ally-updates. Because each
update is sent to exactly three out of four CEs, the system has an overall PUD of 25%.

As Theorem 8 shows, Algorithm MVP results in systems that are guaranteed to be
complete, while still allowing updates to be systematically dropped. We further observe
that the performance of the overall system is closely tied to that of the single variable
schemes selected in Step 2, and a detailed analysis is omitted due to space limitations.

Theorem 8. A centrally assigned multi-variable partitioned system produced by Al-
gorithm MVP is complete as long as each single variable scheme selected in Step 2
generates complete systems.

7 Related Work

Modern content-based publish/subscribe systems [4–6] route and filter events from their
sources to interested destinations using a network of servers. There is certain overlap of

functionality between these systems and the condition monitoring systems we are in-
terested in. However, the focus of this work is on partitioning a condition to be handled
by multiple servers while maintaining the same semantics.

SIFT [1] implemented an earlier monitoring system that provided batched filter-
ing of newsgroup articles. Based on its experience in operation, SIFT pointed out and
motivated the need for workload distribution. It also proposed the SIFT Grid, which
is a distributed mechanism resembling a variation of our centrally assigned scheme.
However, the SIFT Grid only dealt with degree 1 conditions, and properties about the
partitioning were never analyzed formally.

Large scale World Wide Web servers often use dynamic load balancing and failover
for increased capacity and availability [7]. Although that research mostly focuses on dy-
namic fault detection and traffic redirection for stateless servers, some of the techniques
can very well be adapted to augment our centrally assigned monitoring systems.

Data stream systems are a recent research topic that has generated lots of interest and
activities [8]. Although such systems also deal with streams of updates, the direction
taken (e.g., data models for continuous queries) is quite different from ours. However,
some of our techniques and analysis can very well be applicable in that context.

8 Conclusion

As real-time monitoring of sensors and information sources becomes more widespread,
it will be critical to deal efficiently with large volume of updates and complex condi-
tions. Condition partitioning allows multiple servers (CEs) to share the load, but can
potentially lead to undesirable outcomes. In this paper we have studied what is needed
to preserve orderedness, consistency and completeness in partitioned systems. With
assignment-based partitioning, we have shown that CEs have a more balanced load be-
cause they handle the same condition over different updates. The metrics and analysis
we have presented make it possible to compare assignment-based systems. In partic-
ular, our model suggests that ROUNDROBIN performs well in throughput and mean
response time, while a centrally assigned q-ROUNDROBIN can trade system response
time for less work.

References

1. Yan, T.W., Garcia-Molina, H.: The SIFT information dissemination system. ACM Transac-
tions on Database Systems24.4(1999) 529–565

2. Huang, Y., Garcia-Molina, H.: Replicated condition monitoring. In: Proceedings of the 20th
ACM Symposium on Principles of Distributed Computing. (2001) 229–237

3. Lamport, L.: Time, clocks, and the ordering or events in a distributed system. Communications
of the ACM21.7(1978) 558–565

4. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching events in a
content-based subscription system. In: Proceedings of the 18th Annual ACM Symposium on
Principles of Distributed Computing. (1999) 53–61

5. Zhao, Y., Strom, R.: Exploiting event stream interpretation in publish-subscribe systems. In:
Proc. of the 20th ACM Symposium on Principles of Distributed Computing. (2001) 219–228

6. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressiveness in an
Internet-scale event notification service. In: Proceedings of the 19th Annual ACM Symposium
on Principles of Distributed Computing. (2000) 219–27

7. Bourke, T.: Server Load Balancing. O’Reilly (2001)
8. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream

systems. In: Proc. of the 2002 ACM Symposium on Principles of Database Systems. (2002)

