
Peer-to-peer resource trading in a reliable distributed system

Brian F. Cooper and Hector Garcia-Molina

Department of Computer Science
Stanford University

fcooperb,hectorg@db.stanford.edu

Abstract

Peer-to-peer architectures can be used to build a ro-
bust, fault tolerant infrastructure for important ser-
vices. One example is a peer-to-peer data repli-
cation system, in which digital collections are pro-
tected from failure by being replicated at multiple
peers. We argue that such community-based redun-
dancy, in which multiple sites contribute resources to
build a fault-tolerant system, is an important appli-
cation of peer-to-peer networking. In such a system,
there must be flexible, effective techniques for man-
aging resource allocation. We propose data trading,
a mechanism where a site acquires remote resources
in the community by trading away its own local re-
sources. We discuss the application of data trading to
the data replication problem, and examine other ap-
plications of trading. A general trading infrastructure
is a valuable part of a peer-to-peer, community-based
redundancy system.

1 Introduction

Peer-to-peer systems form a useful architecture for a
wide range of important applications. Although the
term “peer-to-peer” is often associated in the pub-
lic imagination with Napster and related file-sharing
systems, other important services that can be built
on a peer-to-peer framework. For example, a group
of digital libraries may cooperate with each other to
provide preservation by storing copies of each other’s
digital materials. In this system, each library acts as
an autonomous peer in a distributed, heterogeneous
collection replication mechanism. Such a commu-
nity does not require a central controller to manage

the replication of data; instead, each peer can com-
municate with other peers to replicate its own col-
lections. The result of individual libraries seeking
locally to preserve their own information by work-
ing with other peers is a global community in which
every library’s collections are protected.

Such a replication network is an example of a
community-based redundancy system: a group of
peers collaborate to provide resource redundancy and
thus reliability and fault tolerance. There are several
benefits to community-based redundancy. First, each
peer is able to take advantage of a system with large
aggregate resources simply by contributing its own,
relatively small set of resources. Second, the dis-
tribution of resources in the system means that the
value of the aggregate resources is larger than the
sum of the individual contributions. For example, it
is more valuable to the Stanford library to have one
copy of its collections locally and one copy at say
MIT than it is for Stanford to have two copies locally.
If Stanford experiences a failure (such as a hardware
fault, a malicious attack such as a virus or trojan, or a
natural disaster), then it can recover from the failure
by using the unaffected copy at MIT. Third, the het-
erogeneity inherent in a community of autonomous
sites is valuable; if all sites are homogeneous then a
software bug or security vulnerability that afflicts one
site would afflict all sites. Because of these advan-
tages, several systems have been built on the model
of community-based redundancy, including Archival
Intermemory [6], OceanStore [17], LOCKSS [3], and
SAV [9].

A central question in community-based redun-
dancy systems revolves around the contribution and
allocation of resources. Peers must determine how

1



many resources they can reasonably expect from the
community, and how many resources they themselves
must contribute. Moreover, because there is no cen-
tral allocation mechanism, participants must make
careful decisions when determining how resources
are used, in order to avoid a situation where the needs
of some participants are not met by the community
despite the fact that there are nominally enough re-
sources available to meet everyone’s needs.

In order to deal with these allocation issues, we are
investigating a mechanism that we call data trading.
One application of data trading is digital archiving,
where sites protect their collections from failures by
making multiple copies at remote sites. When a site
has a digital collection it wishes to replicate, the site
contacts a remote site and proposes a trade. For
example, Stanford’s library may have a collection of
technical reports that it wants to preserve, and thus
Stanford contacts MIT and proposes a trade. MIT
might respond that it is willing to store Stanford’s
collection, if in turn Stanford is willing to store a
copy of a collection of scientific measurement data
owned by MIT. A series of such binary trades creates
a peer-to-peer trading network. Each peer tries to
maximize its own local reliability, but the effect is
that the whole network is a reliable infrastructure for
archiving data.

A trading-based peer-to-peer system has several
advantages. First, it preserves the autonomy of indi-
vidual peers. Each site makes local decisions about
who to trade with, how many resources to contribute
to the community, how many trades to try to make,
and so on. Sites are more willing to participate in
a peer-to-peer scheme if they can retain this local
decision making. Second, the symmetric nature of
trading ensures fairness and discourages free-loading.
In order to acquire resources from the community,
each peer must contribute its own resources in trade.
Moreover, sites that contribute more resources re-
ceive more benefit in return, because they can make
more trades. Third, the system is robust in the face
of failure. Because the trading network is composed
of myriad binary trading links, individual links or
sites can fail without crashing the whole network. In-
stead, the “broken” trading links can be replaced with
freshly negotiated links between surviving peers.

In this position paper, we argue that these advan-

(a)
Site A Site B Site C

1 2 3

(b)
Site A Site B Site C

1 2 312

(c)
Site A Site B Site C

1 2 33 1

(d)
Site A Site B Site C

1 2 33 13 2

Figure 1: Data trading example.

tages make trading a useful component of the infras-
tructure of peer-to-peer systems and of community-
based redundancy systems based on a peer-to-peer
architecture. Specifically, we describe our current
work in developing algorithms and policies for trad-
ing, and then discuss how the generality of a trading
mechanism makes it widely applicable to a variety of
problems.

2 Data trading

In our current work, we have focused on trading for
the application of reliable preservation through repli-
cation. The basic framework for trading in this ap-
plication can be tuned in different ways to achieve
the highest reliability. In this section, we illustrate
an example of a trading session and then discuss the
reliability optimizations we have studied.

Consider the example shown in Figure 1. Fig-
ure 1(a) shows sites A and B, each of which have
two gigabytes of space, and site C, which has three
gigabytes of space. (A gigabyte is represented in the
figure as a box.) Site A owns a collection of data la-
beled “1,” site B owns collection “2,” and site C owns
collection “3.” (A collection is an application unit,
e.g., a set of technical reports, or a set of census files.)
Each collection requires one gigabyte of space. Sites
A and B can trade their collections, resulting in the
configuration of Figure 1(b). Collections 1 and 2 are
now stored more reliably, because if one site goes out
of business, goes on strike or burns down, another

2



copy is available. However, now site C cannot trade
with either A or B since neither site has free space for
collection 3. Thus, collection 3 is not stored reliably.

A different trading order can result in a more desir-
able scenario. For example, say that from the initial
configuration, site A first contacts C and offers a
trade. The result is shown in Figure 1(c). Now there
is still enough space to make another trade, this time
between sites B and C. The resulting situation, in Fig-
ure 1(d), has all three collections reliably stored with
two copies. A trading scheme should be effective
enough so that sites can make local decisions about
which sites to trade with, while still allowing other
sites to replicate their collections. At the same time,
trading must be flexible enough to deal with the ap-
pearance of new sites, new collections, and even new
free storage added at an existing site.

This example illustrates that a great deal of care
must be put into the local decisions that are made by
each site. Although it is often impossible to make
optimal decisions, especially without knowledge of
future events (such as new sites, new storage space
added to an existing site, etc.) we can study useful
heuristics that tend to improve the overall reliability
of the system. We can encapsulate these heuristics
in trading policies that guide the local decision mak-
ing at each peer. In this way, the continuous process
of offering and accepting trades can be automated.
The system, once configured with appropriate trad-
ing policies, autonomously replicates information to
ensure high reliability.

2.1 Trading policies

We have studied several different policies that deter-
mine the the behavior of a trading peer. Examples of
policies include:

Deed trading. One possibility is for peers to trade
collections directly, and this is the approach assumed
in the example presented above. This approach has
the disadvantage that trades may not be very symmet-
ric; for example, Stanford’s collection may be much
larger than MIT’s, which results in a situation where
MIT gives away more storage than it gets in return. A
fairer scheme (and, it turns out, more reliable scheme)
is one in which blocks of space are traded. For exam-
ple, Stanford may give MIT 10 GB of space and in

return get 10 GB of MIT’s space. Each site can then
use the space it has acquired as it sees fit. If MIT’s
collection is smaller than 10 GB, it may be able to use
the space it acquired at Stanford to replicate several
collections. The bookkeeping mechanism for track-
ing these trades is called deeds: a deed represents
the right to use space at another site. Once MIT has
acquired a deed for space at Stanford, it can use the
deed, save it for the future, split it into smaller pieces,
or trade the deed away to another site, as it sees fit.

Advertising policy. A site advertises the amount
of storage space it is willing to trade away. In the
simplest case, a site advertises all of the space it has
free. However, higher reliability over the long term
can be achieved by reserving some space for future
use. Then, a site only advertises a fraction of its
available resources at any one time. This ensures that
there is always some space to trade away, which may
be needed if the site gets a new collection that it must
replicate by proposing new trades.

Remote site selection strategy. When a site wishes
to make trades, it must decide which remote sites
to offer trades to. One possibility is to choose the
remote site that has the lowest probability of fail-
ure, estimated based on previous history, reputation,
or the quality of components at the site. However,
this policy is counterproductive if every peer uses it,
because the “high reliability” sites quickly become
overloaded. A more effective policy is for peers to
choose a small set of “trusted” trading partners, and
trade repeatedly with those partners.

Bidding policy. When Stanford asks MIT for
a trade, the two sites may exchange equally sized
blocks of space. An alternative is for Stanford to of-
fer a trade by saying that it needs a certain amount
of space at MIT (say, 10 GB), and asking how much
space MIT would want in return. If MIT is eager to
trade, because it has many collections to replicate, it
may offer a low bid, asking for only 5 GB in return.
On the other hand, if MIT is reluctant to trade, say
because its local space is becoming scarce, then it
may offer a high bid, asking for 15 GB in return. In
this way, Stanford can contact multiple sites, get bids
from each one, and then accept the most attractive
offer. In this scenario, each site must decide, based
on its local circumstances, what bid to offer for each
trade.

3



These and other policies have been examined in
more detail in [11, 12, 10]. These papers also describe
our trading simulator, a system we have built to sim-
ulate trading sessions using different policies. Our
simulator has allowed us to identify policies which
provide the highest reliability in different circum-
stances.

3 Generalizing trading in peer-to-peer
systems

Although we have studied data trading specifically
in the context of trading storage space to replicate
collections, we believe it is a general mechanism for
several applications. Trading can serve as a part of
the infrastructure of a peer-to-peer, community-based
redundancy system. In this section we outline some
other possible uses for trading.

Trading can be used to exchange resources besides
storage space. For example, processing cycles for
searching collections can also be traded. Once col-
lections are distributed in a community-based repli-
cation system, users will attempt to find collections or
individual documents within collections by perform-
ing searches. In a highly reliable, highly available
system, users should still be able to perform searches
even in the presence of site failures. If one site is
charged with handling searches for a particular col-
lection, and that site fails or is unreachable due to a
network partition, then users will not be able to search
the collection even though copies may still be avail-
able in the network. On the other hand, the search
load may be replicated and distributed in the same
way that the physical collections are replicated. If
Stanford agrees to process searches over MIT’s col-
lections, and in return MIT agrees to process searches
over Stanford’s collections, then collections can al-
ways be searched despite a failure at either site.

In addition to trading processing for processing, it
is possible that a trading infrastructure can be used to
trade one type of resource for another. For example,
the site that “owns” a collection may not have the
processing capacity or bandwidth to support all of
the searches submitted by users. On the other hand,
this site may have an excess of storage space. The site
may try to shed some of the query load by contracting

with other sites that will take over some of the search
processing. The mechanism for contracting may be
based on trading, in which the site gives away some
of its storage space in return for processing cycles at
other sites.

Trading may also be extended for exchanging more
abstract resources. One example is trading access to
content. A site may have a limited budget, and is not
able to directly purchase access to important collec-
tions. However, that site may also have collections of
its own that are desired by other sites. Then, the site
can gain the right to use a valuable collection owned
by another site by trading away the right to use its
own collections.

In general, any redundancy systems that allocate
limited resources can use a trading mechanism as an
infrastructure component. Some existing systems al-
locate redundant resources in a fixed, static way. Al-
though it is possible to reason about good or even opti-
mal policies for certain configurations, it is difficult to
do so in a distributed system with autonomous peers.
Moreover, if the configuration is highly dynamic then
the fixed allocation may no longer be appropriate. In
contrast, other existing distributed and peer-to-peer
systems allocate resources in response to user de-
mand, or even randomly. Allocating in response to
user requests may mean that less popular collections
are not preserved at all. Allocating randomly may
make inefficient use of community resources. If the
goal is to ensure redundancy and high reliability, then
trading provides a way to achieve effective allocation
while dynamically adapting to changes in user re-
quirements and network configuration.

Finally, in a general trading system, it may be diffi-
cult to distinguish trustworthy trading partners from
less reliable or malicious sites. In some cases, it
may be sufficient to implement a reputation system
to identify (and ostracize) peers that do not fulfill
their responsibilities. However, reputation systems
only operate after a node has misbehaved. It may be
necessary to implement a security policies to prevent
or at least mitigate malicious attacks. Preliminary
work in this area is described in [8].

4



3.1 Related work

Our work draws upon concepts developed in related
systems. Traditional data management schemes,
such as replicated DBMS’s [5, 18], replicated filesys-
tems [15] and RAID disk arrays [22] utilize repli-
cation to protect against failures in the short term.
A peer-to-peer trading system provides more auton-
omy and fairness for individual storage components
than traditional solutions. Another difference is that
traditional solutions are concerned with load distri-
bution, query time and update performance, as well
as reliability [14, 23, 24]. Here, we are primarily
concerned about preservation (given the constraint of
preserving site autonomy). In contrast, traditional
replicated databases tend to trade some reliability
for increased performance [20]. Similarly, replicated
filesystem schemes such as Coda [19] or Andrew [16]
use caching to improve availability. Our goal is dif-
ferent: long term preservation despite failures, rather
than short term preservation in the face of network
partitions.

Many existing peer-to-peer such as Freenet [1] or
Gnutella [2] use “trading” as a model, although these
systems trade content (such documents or audio files),
not necessarily resources (such as storage). Also,
these systems are focused on finding resources within
a dynamic, ever-changing collection, and not on relia-
bility. While popular items may become widely repli-
cated, less popular or frequently accessed items are
deleted. Thus, systems like Gnutella provide search-
ing but do not guarantee preservation. A searching
and resource discovery mechanism could be built on
top of our data trading system; however, our primary
focus is surviving failures over the long term.

Other peer-to-peer systems have focused on re-
liable storage using an economic model similar to
trading. FreeHaven [13] uses a trading system very
similar to our work. However, anonymity and peer
accountability are primary goals of FreeHaven. As a
result, trades occur in order to obscure the true owner
of a document, and trading partners are chosen based
on reputation. Our model aims for a different goal,
that of long term reliability; at the same time, we
examine (and scientifically evaluate) a wider range
of policies for choosing trading partners. MojoNa-
tion [4] also used trading, but transactions were made

via an intermediate currency called “mojo.” As with
any currency-based mechanism, the system is vulner-
able to fluctuations in the money supply and manip-
ulations of the currency value. Barter, such as in our
work, attempts to avoid these problems.

Systems such as the Archival Intermemory [6] and
OceanStore [17] are very good at preserving digital
objects through replication. Our trading techniques
could serve as the storage allocation and replica
placement mechanism for these systems, increasing
reliability and providing site autonomy.

The problem of optimally allocating data objects
given space constraints is well known in computer
science. Distributed bin packing problems [21] and
the File Allocation Problem [7] are known to be NP-
hard. This is one reason we have not sought to find
an optimal placement for data collections. Moreover,
these problems are even harder when the number
of sites and number and sizes of collections are not
known in advance.

4 Conclusion

A peer-to-peer infrastructure is useful for a variety of
applications. One important application is reliability
through redundancy. The large number of individ-
ual resources in the community, the geographical and
administrative distribution, and the heterogeneity of
peers are all advantages to a peer-to-peer architecture
for community-based redundancy system. In such a
system, it is vital that peers can use a dynamic, flexi-
ble and effective mechanism for allocating resources.
Data trading provides such a mechanism. Because it
preserves autonomy, ensures fairness and is robust in
the face of failure, trading is a good mechanism for
providing community-wide replication through deci-
sions made locally by sites in their own self interest.

We have focused on trading as a way to allocate
storage space for data replication. Our research has
examined several heuristic policies that can be used
to achieve high reliability in such a trading system de-
spite the limited information available to each local
site. We have also argued that the trading framework
can be extended for other purposes and applications.
The advantages of trading make it a valuable compo-
nent of the peer-to-peer infrastructure.

5



References

[1] The Freenet Project. http://freenet.sourceforge.net/,
2001.

[2] Gnutella. http://gnutella.wego.com, 2001.

[3] Lots of copies keeps stuff safe (LOCKSS). http://-
lockss.stanford.edu/, 2001.

[4] MojoNation. http://www.mojonation.net/, 2002.

[5] F. B. Bastani and I-Ling Yen. A fault tolerant repli-
cated storage system. In Proc. ICDE, May 1987.

[6] Yuan Chen, Jan Edler, Andrew V. Goldberg, Allan
Gottlieb, Sumeet Sobti, and Peter N. Yianilos. A
prototype implementation of archival intermemory.
In Proc. ACM Int’l Conf. on Digital Libraries, 1999.

[7] W. W. Chu. Multiple file allocation in a multiple
computer system. IEEE Transactions on Computing,
C-18(10):885–889, Oct. 1969.

[8] B. F. Cooper, M. Bawa, N. Daswani, and H. Garcia-
Molina. Protecting the PIPE from malicious
peers. http://www-db.stanford.edu/˜ cooperb/pubs/-
pipe.pdf, 2002. Technical report.

[9] B. F. Cooper, A. Crespo, and H. Garcia-Molina. Im-
plementing a reliable digital object archive. In Proc.
European Conf. on Digital Libraries (ECDL), Sept.
2000. In LNCS (Springer-Verlag) volume 1923.

[10] B. F. Cooper and H. Garcia-Molina. Bidding for
storage space in a peer-to-peer data preservation sys-
tem. http://dbpubs.stanford.edu/pub/2001-52, 2001.
Technical Report.

[11] B. F. Cooper and H. Garcia-Molina. Creating trad-
ing networks of digital archives. In Proc. 1st Joint
ACM/IEEE Conference on Digital Libraries (JCDL),
June 2001.

[12] B. F. Cooper and H. Garcia-Molina. Peer-to-peer
data trading to preserve information. ACM Transac-
tions on Information Systems, to appear.

[13] R. Dingledine, M.J. Freedman, and D. Molnar. The
FreeHaven Project: Distributed anonymous storage
service. In Proceedings of the Workshop on Design
Issues in Anonymity and Unobservability, July 2000.

[14] X. Du and F. Maryanski. Data allocation in a dynam-
ically reconfigurable environment. In Proc. ICDE,
Feb. 1988.

[15] B. Liskov et al. Replication in the Harp file system.
In Proc. 13th SOSP, Oct. 1991.

[16] J. H. Morris et al. Andrew: A distributed per-
sonal computing environment. CACM, 29(3):184–
201, March 1986.

[17] J. Kubiatowicz et al. OceanStore: An architecture
for global-scale persistent storage. In Proc. ASPLOS,
Nov. 2000.

[18] J. Gray, P. Helland, P. O’Neal, and D. Shasha. The
dangers of replication and a solution. In Proc. SIG-
MOD, June 1996.

[19] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. ACM TOCS,
10(1):3–25, Feb. 1992.

[20] E. Lee and C. Thekkath. Petal: Distributed virtual
disks. In Proc. 7th ASPLOS, Oct. 1996.

[21] S. Martello and P. Toth. Knapsack Problems: Algo-
rithms and Computer Implementations. J. Wiley and
Sons, Chichester, New York, 1990.

[22] D. Patterson, G. Gibson, and R. H. Katz. A case
for redundant arrays of inexpensive disks (RAID).
SIGMOD Record, 17(3):109–116, September 1988.

[23] H. Sandhu and S. Zhou. Cluster-based file repli-
cation in large-scale distributed systems. In Proc.
SIGMETRICS, June 1992.

[24] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive
data replication algorithm. ACM TODS, 2(2):255–
314, June 1997.

6


