Su, Qi and Widom, Jennifer (2003) Indexing Relational Database Content Offline for Efficient Keyword-Based Search. Technical Report. Stanford.
BibTeX | DublinCore | EndNote | HTML |
![]()
| PDF 206Kb |
Abstract
Information Retrieval systems such as web search engines offer convenient keyword-based search interfaces. In contrast, relational database systems require the user to learn SQL and to know the schema of the underlying data even to pose simple searches. We propose an architecture that supports highly efficient keyword-based search over relational databases: A relational database is "crawled" in advance, text-indexing virtual documents that correspond to interconnected database content. At query time, the text index supports keyword-based searches with instantaneous response, identifying database objects corresponding to the virtual documents matching the query. Our system, EKSO, creates virtual documents from joining relational tuples and uses the DB2 Net Search Extender for indexing and keyword-search processing. Experimental results show that index size is manageable, query response time is indeed instantaneous, and database updates (which are propagated incrementally as recomputed virtual documents to the text index) do not significantly hinder query performance. We also present a user study confirming the superiority of keyword-based search over SQL for a wide range of database retrieval tasks.
Item Type: | Techreport (Technical Report) | |
---|---|---|
Uncontrolled Keywords: | keyword search, information retrieval, text database | |
Subjects: | Miscellaneous | |
Projects: | Miscellaneous | |
Related URLs: | Project Homepage | http://infolab.stanford.edu/ |
ID Code: | 577 | |
Deposited By: | Import Account | |
Deposited On: | 17 Feb 2003 16:00 | |
Last Modified: | 24 Dec 2008 11:11 |
Download statistics
Repository Staff Only: item control page