
Peer-to-Peer Research at Stanford

Mayank Bawa, Brian F. Cooper, Arturo Crespo, Neil Daswani,
Prasanna Ganesan, Hector Garcia-Molina, Sepandar Kamvar, Sergio Marti,

Mario Schlosser, Qi Sun, Patrick Vinograd, Beverly Yang
Computer Science Department, Stanford University

Contact: smarti@db.stanford.edu

1 Introduction

Peer-to-peer (P2P) systems have become a popular
medium through which to share huge amounts of data.
P2P systems distribute the main costs of sharing data –
disk space for storing files and bandwidth for transferring
them - across the peers in the network, thus enabling ap-
plications to scale without the need for powerful, expen-
sive servers. Their ability to build an extremely resource-
rich system by aggregating the resources of a large num-
ber of independent nodes enables peer-to-peer systems to
dwarf the capabilities of many centralized systems for rel-
atively little cost. Examples include the massive compu-
tation power of systems such as SETI@Home, or the abil-
ity to aggregate data, storage and processing in a network
of mobile, ubiquitous devices. The Kazaa file-sharing sys-
tem alone reported, as of April 30th 2003, over 4.5 million
users sharing a total of 7 petabytes of data.

There are, however, important challenges that must be
overcome before the full potential of P2P systems can
be realized. For example, the scale of the network and
the autonomy of nodes make it difficult to identify and
distribute the resources that are available. Furthermore,
because some peers may be malicious, peers may receive
inauthentic information or may be victims of denial-of-
service attacks.

These issues, and others, have motivated substantial
research on understanding and improving P2P networks.
In this paper we present recent and ongoing research
projects of the Peers research group at Stanford Univer-
sity. Section 2 studies the problems relating to locating
resources in P2P systems. Section 3 discusses work on
resource allocation and aggregation. Section 4 focuses
on issues of resource availability and authenticity. Note,
this paper should not be construed as an overview of all
research problems pertaining to peer-to-peer networks.
Only projects connected to our Peers group are described.
Additional citations can be found in the papers referenced
below.

2 Queries and Topologies

A key challenge to the usability of a data-sharing peer-
to-peer system is implementing efficient techniques for
search and retrieval of data. The best search techniques

for a system depend on the needs of the application. For
example, search techniques based on distributed hash ta-
bles (DHTs) are well-suited for web caches or archival
systems focused on availability, because they guarantee
location of content if it exists, within a bounded number
of hops. In many scenarios, the increased search efficiency
makes structured networks preferable to the widely de-
ployed unstructured networks which rely on flooding. To
achieve these properties, these techniques tightly control
the data placement and topology within the network, and
currently only support search by identifier.

In contrast, other work focuses on more flexible ap-
plications with rich queries such as regular expressions,
meant for a wide range of users from autonomous organi-
zations. We are interested in studying the search problem
for these “flexible” applications because they reflect the
characteristics of the most widely used P2P systems de-
ployed today. Search techniques for such networks must
operate under a different set of constraints than tech-
niques developed for persistent-storage utilities, such as
providing greater respect to the autonomy of individual
peers.

We first discuss our work on unstructured systems, fol-
lowed by a description of our work on structured ones.

2.1 Unstructured Systems

Three main themes have emerged from our work on un-
structured systems. First, the search techniques should
be simple and practical enough to be easily incorporated
into existing systems. Current successfully deployed P2P
data-sharing systems follow very simple protocols. Al-
though these protocols are clearly suboptimal, they high-
light how simplicity is the key to wide and rapid adoption.
Second, we need to understand and characterize the be-
havior of existing P2P applications. Effective search tech-
niques need to make provisions for the unreliable nature
of peers, and take advantage of observed user behavior.
Finally, any technique should be adaptive, and tune it-
self according to the current state of the system. Because
P2P systems are by nature highly dynamic, a rigid search
mechanism that is effective in one scenario or for one par-
ticular user is likely to become ineffective as the system
evolves or users change.

2.1.1 Improving Existing Systems

One important aspect of search we have studied is the
“message routing protocol,” used to disseminate queries
amongst peers. The routing protocols used in practice
(e.g., Gnutella [15]) are based on flooding messages across
the overlay network. The effectiveness of this technique
depends on (i) the availability of the data that can sat-
isfy the query, (ii) the position of the peer in the overlay,
and (iii) the overlay structure itself. This technique can
clearly be suboptimal in many cases. In [29, 11], we in-
vestigate simple but effective improvements over the ex-
isting flooding protocol. Reference [29] presents the Di-
rected BFS technique, which relies on feedback mecha-
nisms to intelligently choose which peer a message should
be sent to. Neighbors that have provided quality results
in the past will be chosen first, yet neighbors with high
loads will be passed over, so that good peers do not be-
come overloaded. Reference [29] also presents the Itera-
tive Deepening technique, which allows search to proceed
incrementally until the user is satisfied with the results.
These two simple techniques allow search to be tuned on
a per-query, per-user basis. Experiments over detailed
query traces from the Gnutella network show that our
techniques greatly reduce the cost of search, while main-
taining good quality of results.

In reference [11], message routing is further improved
with “routing indices”, compact summaries of the con-
tent that can be reached via a link. With routing indices,
nodes can quickly route queries to the peers that can re-
spond, without wasting the resources of many peers who
cannot. Interesting research challenges arise as to how
indices are updated simply and efficiently as links are
created and destroyed. Simulations show that the tech-
niques developed in [11] are effective, and that the cost
tradeoff between maintaining the indices and querying is
significantly positive in many scenarios.

We have also studied “role differentiation,” another im-
portant aspect of an efficient search. For example, super-
peer networks differentiate between “super-peers” and
“clients,” where super-peers act as mini-index servers to a
number of clients, but interact with each other as peers in
a regular P2P system. Super-peers are used in currently
deployed systems and have already proven to be effective
in improving search performance. In [30] we conduct an
in-depth study on the design of super-peer networks and
show how a straightforward implementation can be orders
of magnitude less effective than one that is tuned to the
particular requirements and workload of a system. From
our investigation we present several design principles for
an effective super-peer network, and a global design pro-
cedure that takes as input the workload and constraints
on a system, and produces an efficient super-peer topol-
ogy. Because workload and requirements evolve over time
within a single system, it is important also to be able to
evolve the design of the super-peer network to meet these
changing needs. To this end, our global design procedure
may be applied incrementally, such that peers can be di-
rected to make runtime changes that tune the network.

We also present local decision-making guidelines by which
peers can make individual, runtime decisions that result
in a globally efficient topology.

The results of our studies in [29, 11] show that in-
cremental forwarding of query messages and intelligent
server selection greatly improves search performance
without affecting quality of results, while [30] shows that
an improperly organized network topology and role dif-
ferentiation can result in high overhead in message for-
warding and processing. These conclusions lead us to
consider a new type of search architecture, in which mes-
sages are not forwarded, and a peer has complete control
over who receives its queries and when. We are currently
studying this architecture in the context of the GUESS
protocol [16], an under-construction specification that is
meant to become the successor of the widely-used but
inefficient Gnutella protocol. Under the GUESS proto-
col, peers directly probe each other with their own query
messages, rather than relying on other peers to forward
the message. However, beyond this simple concept, there
are many issues to be addressed before the protocol can
be successful. For example, when processing a query, in
what order should peers be probed? The solution to this
“server selection” problem must balance efficiency of the
query with load-balancing among the peers. Also, prac-
tical problems not directly related to search performance
must also be addressed; for example, since peers no longer
rely on other peers to forward their queries, it is much eas-
ier for peers to abuse the system for personal gain. How
can we detect and prevent selfish behavior? We are cur-
rently investigating solutions to these and other issues to
make GUESS a viable alternative to other proven P2P
search protocols.

2.1.2 New Directions

In addition to studying ways to improve existing systems,
our group is exploring novel ways to organize and use
unstructured P2P systems.

In particular, we have explored the possibility of a com-
pletely decentralized search network built in an ad hoc
way [8]. Unlike structured topologies, hosts here are not
restricted to certain neighbors. Instead, the protocol is
devoted to incrementally improving the established net-
work through self-supervision. Using two simple opera-
tions (connect() and break()) to maintain the network,
we show that ad hoc networks can be optimized for both
homogeneous and heterogeneous networks and can adapt
to varying search profiles. The results indicate that in sev-
eral situations, hosts make local decisions that are both
beneficial to themselves and good for the network as a
whole.

The design of efficient search networks is complicated
by the vast space of possible design choices: neighbor
selection, query routing, query evaluation, content repli-
cation, etc. To help make exploration of the design space
manageable, we proposed separation of design into two
phases [9]: (a) Architectural and (b) Operational. In the
Architectural phase, designers concentrate on neighbor

selection, query routing and content replication. In the
Operational phase, designers study alternatives for main-
taining neighbors, network exploration, etc. We devel-
oped the Search/Index Link (SIL) model for representing
and visualizing search networks at the Architectural level.
We demonstrated use of the model to design and evaluate
novel architectures that are more robust and efficient.

We have also worked jointly with IBM on the devel-
opment and implementation of a new P2P search infras-
tructure called YouSearch [2]. YouSearch provides a sim-
ple hybrid architecture in which the P2P network is aug-
mented with a light-weight centralized component. Peers
maintain compact site summaries (in the form of a Bloom
filter [4]) which are aggregated at a centralized registrar.
These summaries are queried so that searches target only
the relevant machines. Peers help reduce query load on
the system by caching and sharing query results. Peers
also cooperate to maintain the freshness of the summary
aggregation at the registrar. This minimizes the role of
registrar for low cost and graceful scaling while ensur-
ing fast, fresh and complete searches. YouSearch was de-
ployed within the IBM corporate intranet in September
2002. Within 2 months, it was adopted by nearly 1, 500
users.

Finally, we have also worked on queries that aggregate
information across an unstructured P2P network. For ex-
ample, an administrator who supports an application on
a P2P network needs information about usage trends to
tune their particular application. Specifically, they may
want to compute an aggregate function (e.g., the average
lifetime of hosts) over data residing at hosts in the net-
work. The P2P networks of today lack mechanisms to
compute even such basic aggregates as minima, maxima,
sum, count or average. In [1], we define and study the
above “node aggregation” problem. We study its com-
putability for P2P networks and present generic schemes
that can be used to compute any of the basic aggrega-
tion functions. The schemes can be chosen to balance
accuracy and efficiency concerns for a particular task.

2.2 Structured Systems

In a structured P2P system, the location of an object (re-
source) is determined by a globally agreed-upon scheme,
e.g., hashing the resource’s key. Then, given the key for a
desired object, one can easily find the location where that
object should be. In some cases, there may be multiple
objects associated with a given key. For instance, the net-
work may hold many copies of a given song. In such cases,
users often just want one (or a few) of the objects associ-
ated with a key, not all of the objects. In [28] we formalize
this notion of a partial lookup query and present schemes
for building such a key-lookup service. We study a vari-
ety of ways to distribute objects (not just hashing-based),
and quantify the differences in performance, reliability,
fairness, and other metrics.

In the area of hash-based schemes for full lookups, we
proposed Symphony [20], inspired by Kleinberg’s Small
World construction [19]. Peers form short distance links

with their neighbors on a ring. Additionally, each peer is
equipped with a few long distance links that connects it
with peers farther away along the ring. We showed that
with k = O(1) long distance links per peer in an n-peer
network, it is possible to route lookup queries with an av-
erage latency of O(1

k log2 n) hops. Among the advantages
Symphony offers over existing DHT protocols [23, 27, 24]
are (a) low state maintenance, (b) fault tolerance and (c)
degree vs. latency tradeoffs that allows support for het-
erogeneous nodes, incremental scalability and flexibility.

In [3], we build on Symphony to provide an efficient
search service called SETS, for Search Enhanced by Topic
Segmentation. The key idea is to arrange peers in a topic-
segmented network such that a search query probes only
a small subset of hosts where most of the matching doc-
uments reside. In particular, SETS arranges peers in a
topology where most of the links are short distance join-
ing pairs of sites with similar content. The resulting top-
ically focused segments are joined together into a single
network by long-distance links. Queries are then matched
and routed to only the topically closest regions.

Finally, we also have explored a new search protocol
that can be viewed as a hybrid of structured and unstruc-
tured systems, providing flexibility and advantages from
both. Our protocol, YAPPERS [14] provides a lookup
service over arbitrary network topologies. The scheme
involves each host participating in a distributed hash-
ing protocol with nearby hosts, enabling efficient par-
tial lookups. A separate protocol (flooding-based) is then
used to combine partial lookups for complete results.

3 Resource Management

Aggregating and allocating peer-to-peer resources is much
more difficult than in a centralized system. One reason
is the autonomous nature of peers: rational, essentially
selfish peers must be given an incentive to contribute re-
sources. In addition, the scale of the system, with per-
haps very many nodes, makes it hard to get a complete
picture of what resources are available. This is especially
true in a dynamic system, with nodes constantly joining
and leaving, where resources and resource demands are
constantly changing. Our approach to dealing with these
issues is to use concepts from economics to construct a re-
source marketplace, where peers can buy and sell or trade
resources as necessary. Economic incentives are used to
encourage resource sharing, while the problem of system-
wide resource allocation is broken down into numerous
exchanges between pairs of nodes to enhance scalability.

For example, the RTR protocol uses an economic model
to allocate query processing resources. In the RTR pro-
tocol, peers buy and sell the right-to-respond (RTR) to
each query in the system. This gives peers an economic
incentive to forward queries, which they otherwise would
not do in a competitive P2P network. Furthermore, peers
in this framework will connect to peers who are likely to
vend them queries to which they can respond. Therefore,
clusters of peers with similar interests are likely to form in

the topology of a network implementing the RTR proto-
col, reducing network overhead and making search more
efficient. Our work, described in [31], shows how peers
can be given a direct incentive to pool resources for the
benefit of others.

Another example of our work is storage resource allo-
cation using “data trading.” Consider a data archive that
is trying to make copies of its data collections at remote
sites to give them a better chance of surviving local fail-
ures. A remote site will not be willing to donate storage
without getting something in return. Under a data trade,
the local archive trades away some of its local storage in
order to get storage at the remote site. Then, both sites
can make remote copies of their collections. A series of
such trades between pairs of sites builds up a peer-to-peer
replication network. In this way, the basic primitive of a
“data trade” is used by sites as needed to allocate storage
resources. In [7, 5], we examine how sites can best use
that primitive to achieve high reliability. Such a trading
marketplace can use techniques from economic models.
For example we have studied how sites can use auctions to
negotiate how much storage space is exchanged [6]. The
techniques we have developed show how a trading-based
economy can be an effective resource allocation mecha-
nism in a peer-to-peer system.

4 Security

P2P data sharing systems are highly susceptible to many
forms of malicious attacks. Nodes in a P2P system oper-
ate in an autonomous fashion, and any node that speaks
the system protocol may participate in the system. How-
ever, just because a node can speak the protocol does not
mean that it will do so with good intentions. As a result,
nodes cannot necessarily assume that other nodes will re-
spond to their queries, limit the number of queries they
generate, produce authentic results, or keep the contents
of their queries private. In this section, we will describe
our work that is targeted at mitigating attacks by nodes
that abuse the P2P network by exploiting the implicit
trust peers place on them. Specifically we discuss re-
search meant to address the security issues around avail-
ability, authenticity and trust.

4.1 Availability

Attacks against a system’s availability are often called
denial-of-service (DoS) attacks, and are targeted at de-
grading system performance, or shutting down a system
completely by having malicious clients use up resources
(CPU cycles, disk space, network bandwidth, etc.) such
that these resources cannot be used by legitimate clients
in the system. In addition, a common characteristic of
such attacks is that it is often hard to distinguish nodes
that are malicious from those that are simply under a high
load. As a result, a common theme in the research we de-
scribe here is to balance the generated load so that ma-
licious nodes can use a portion of the system’s resources,

but not a disproportionate amount of the resources.
In [13], we studied denial-of-service attacks against the

Gnutella P2P system [15]. Nodes in a Gnutella system
search for documents by flooding. That is, nodes broad-
cast searches to all of their neighbors, and each of these
neighbors do the same. While this effectively distributes
a client’s search to a large number of nodes quickly, it also
serves as a natural amplifier for malicious nodes that are
interested in attacking the system by simply generating
many, many queries. To deal with this problem, we devel-
oped a traffic model that can be used to understand the
effects of query flooding in the Gnutella network. We ran
simulations based on the model on small network topolo-
gies (14 to 16 nodes) to fundamentally analyze how dif-
ferent choices of network topology and application-level
load-balancing policies minimized the effect of these types
of DoS attacks. We found that complete and grid net-
work topologies, when used together with “fractional”
and “prefer-high-ttl” traffic management policies, are able
to cut the amount of query processing induced by mali-
cious nodes by a factor of 2 to 4. In [21], we expand on
this work by experimenting with larger networks of thou-
sands of nodes arranged in hypercube-like topologies that
we designed based on our findings in [13].

In [12], we studied the new GUESS protocol, noted
in Section 2.1.1. In this protocol, nodes do not arrange
themselves into an explicit software overlay topology. In-
stead, each node keeps track of a list of other nodes that
they interacted with in the past in a data structure called
a “pong cache.” Since nodes in the system may leave at
any time without giving notice to nodes that include them
in their pong cache, some entries in pong caches may be-
come invalid. In GUESS, nodes continuously exchange
information about which nodes are available to process
queries through a series of ping and pong messages, in
the hopes of keeping their pong caches populated with
nodes that are available.

Malicious nodes may collude in an attempt to attack
a GUESS system in many ways. For example, they may
work to propagate their node ids into the pong caches
of many other nodes, and then all leave the system at
the same time, leaving the pong caches of nodes in the
system filled with invalid entries. The resulting network
is likely to be fragmented or partitioned, and good nodes
will have trouble finding a critical mass of other good
nodes to which to send their queries. In [12], we study
how to mitigate such denial-of-service attacks that can
be carried out by malicious nodes “poisoning” the pong
caches of good nodes in the system. We find that damage
can be minimized by using cache management strategies
that balance node ids equally across pong caches.

4.2 Authenticity and Trust

It has been suggested that the future development of P2P
systems will depend largely on the availability of novel
methods for ensuring that peers obtain reliable informa-
tion on the quality of resources they are receiving [10]. In
this context, attempting to identify malicious peers that

provide inauthentic files or bogus content is more effective
than attempting to identify inauthentic resources them-
selves, since malicious peers can easily generate a virtually
unlimited number of inauthentic resources if they are not
banned from participating in the network. The process
of tracking the apparent behavior of peers and selecting
resource providers based on such information is the work
of a reputation system.

One weakness of reputation systems is their reliance
on persistent identity in order to maintain a behavioral
history of nodes in the network. Due to the open and
anonymous nature of P2P networks, it may be infeasible
to enforce the usage of persistent non-repudiable iden-
tities by all nodes. Thus, a malicious node’s ability to
change identities would require that new nodes in the
network be treated with equal suspicion as overtly mis-
behaving nodes. But malicious nodes could not prevent
well-behaved nodes from accruing a positive reputation,
associated with some form of unforgeable identity. Tying
a node’s ability to access resources to their perceived rep-
utation would encourage nodes to participate fairly and
provide incentive to share resources.

Many reputation systems have been proposed to deal
with authenticity attacks in P2P networks, but little
work has gone into evaluating and comparing them. For
this purpose, we are developing an extensible simulation
model as well as several metrics for analyzing P2P repu-
tation algorithms and techniques.

The first questions our model addresses are, what does
it mean for a file or document to be authentic, and how
is the authenticity verified? For simplicity we maintain
a strict definition of authenticity, appropriate for docu-
ment preservation and retrieval systems: a file must con-
tain sufficient metadata to uniquely describe its content,
and the metadata must be consistent with itself and the
content. When a document is fetched from a peer its
authenticity is checked by the receiver. This may be ac-
complished programmatically, but most often may involve
the human user or a third-party. This authenticity check
is usually the most expensive part of the process from the
user’s perspective. Therefore a key function of a reputa-
tion system would be to reduce the number of authen-
ticity checks performed on bogus files while maintaining
the effectiveness of the system at answering queries. This
constitutes one of the metrics used by our comparative
model.

In addition to developing a model and associated met-
rics for evaluating reputation systems, several projects
have designed new and innovative reputation algorithms
targeted at the authenticity attacks existing in deployed
P2P networks. One such system is known as “Eigen-
Trust”.

The EigenTrust algorithm [25] is a method for assigning
each peer i a unique global trust value that reflects the
experiences of all peers in the network with peer i. At
the same time, the EigenTrust algorithm is applicable
in entirely decentralized P2P systems, not requiring any
centralized, globally-trusted servers.

The basic concept behind EigenTrust is that each peer i
is assigned a global trust value, or EigenTrust score, that
is given by the sum of local trust values assigned to peer i
by the peers who have interacted with it, weighted by the
global trust values of those assigning peers. Thus, authen-
ticity evaluations of peer i’s resources by many different
other peers in the network are aggregated into a fair and
globally known trust value for peer i. The algorithm has
been shown to resist attacks, even when collectives of ma-
licious peers cooperate to boost the global trust values of
selected malicious peers.

The recursive weighting leads to a large eigenvector
computation, much like the PageRank algorithm for web
search [22]. In the EigenTrust algorithm, all peers in the
network participate in computing the global EigenTrust
scores in a distributed and node-symmetric manner with
minimal overhead on the network. The scores are stored
in a content-addressable overlay network formed by the
participating peers themselves and are thus globally ac-
cessible.

Global EigenTrust scores of peers can be used in a va-
riety of ways. First, these values can effectively isolate
malicious peers from a P2P network. Peers that provide
material deemed inappropriate by the users of the net-
work are not chosen as download source any more if peers
bias the selection of their sources of downloads based on
EigenTrust scores.

Second, EigenTrust scores may be interpreted as an
evaluation of a peer’s active contributions to a P2P net-
work [17]. P2P networks tend to suffer from a large per-
centage of freeloaders, peers which do not contribute any
resources to the network, yet consume bandwidth. Eigen-
Trust scores can be used to drive quality of service for
peers in a P2P network. For example, peers with high
EigenTrust scores can be granted superior access and
superior view of the network by reserving them higher
download bandwidths and increasing the hop count hori-
zon of their queries. Such networks – networks in which
high EigenTrust scores are used as incentives – effectively
foster active participation of all peers and may serve to re-
duce the number of freeloaders and to improve the overall
performance of the network.

5 Conclusion

In this paper, we have presented an overview of the re-
search relating to P2P systems proceeding within the
Peers group at Stanford University. For more in-
formation on the projects discussed here, as well as
more recent work, refer to the group’s website at
http://www-db.stanford.edu/peers/.

References

[1] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani.
Estimating aggregates on a peer-to-peer network. Techni-
cal report, Computer Science Dept., Stanford University,
2003.

[2] M. Bawa, R. J. Bayardo Jr., S. Rajagopalan, and E. J.
Shekita. Make it fresh, make it quick — searching a net-
work of personal webservers. In Proc. of the 12th Intl.
Conf. on World Wide Web (WWW), 2003.

[3] M. Bawa, G. S. Manku, and P. Raghavan. SETS: Search
Enhanced by Topic-Segmentation. In Proc. of the 26th
Intl. ACM Conf. on Research and Development in Infor-
mation Retrieval (SIGIR), 2003.

[4] B. Bloom. Space/time Trade-offs in Hash Coding with
Allowable Errors. In Communications of ACM, volume
13(7), pages 422–426, 1970.

[5] B. F. Cooper and H. Garcia-Molina. Creating trad-
ing networks of digital archives. In Proc. 1st Joint
ACM/IEEE Conference on Digital Libraries (JCDL),
June 2001.

[6] B. F. Cooper and H. Garcia-Molina. Bidding for storage
space in a peer-to-peer data preservation system. In Pro-
ceedings of the International Conference on Distributed
Computing Systems (ICDCS), 2002.

[7] B. F. Cooper and H. Garcia-Molina. Peer-to-peer data
trading to preserve information. ACM Transactions on
Information Systems (TOIS), 20(2), April 2002.

[8] B. F. Cooper and H. Garcia-Molina. Ad hoc, self-
supervising peer-to-peer search networks. Technical re-
port, Computer Science Dept., Stanford University, 2003.

[9] B. F. Cooper and H. Garcia-Molina. SIL: Modeling and
measuring scalable peer-to-peer search networks. Techni-
cal report, Computer Science Dept., Stanford University,
2003.

[10] F. Cornelli, E. Damiani, S. De Capitani Di Vimercati,
S. Paraboschi, and S. Samarati. Choosing reputable ser-
vents in a P2P network. In Proceedings of the 11th World
Wide Web Conference, May 2002.

[11] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. In Proc. of the 28th Interna-
tional Conference on Distributed Computing Systems,
July 2002.

[12] N. Daswani and H. Garcia-Molina. Pong-cache poisoning
in GUESS. preprint.

[13] N. Daswani and H. Garcia-Molina. Query-flood DoS at-
tacks in Gnutella networks. In ACM Conference on Com-
puter and Communications Security, 2002.

[14] P. Ganesan, Q. Sun, and H. Garcia-Molina. YAPPERS:
A peer-to-peer lookup service over arbitrary topology. In
Proc. of the 22nd Annual Joint Conf. of the IEEE Com-
puter and Communications Societies (INFOCOM), 2003.

[15] Gnutella specification. www9.limewire.com/
developer/gnutella protocol 0.4.pdf.

[16] GUESS specification. groups.yahoo.com/group/
the gdf/files/Proposals/GUESS/guess 01.txt.

[17] S. Kamvar, M. Schlosser, and H. Garcia-Molina. Incen-
tives for combatting freeriding on P2P networks. Techni-
cal report, Stanford University, 2003.

[18] Kazaa. www.kazaa.com.

[19] J. Kleinberg. The small-world phenomenon: An algo-
rithmic perspective. In Proc. of the ACM Symposium on
Theory of Computing (STOC), 2000.

[20] G. S. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed hashing in a small world. In Proc. of the
4th USENIX Symp. on Internet Technologies and Sys-
tems (USITS), 2003.

[21] Q. Sun N. Daswani, M. Gulati and H. Garcia-Molina. On
the flood-tolerance of large Gnutella topologies. preprint.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library Technologies
Project, 1998.

[23] S. Ratnasamy, P. Francis, M. Handley, and R. M. Karp. A
Scalable Content-Addressable Network (CAN). In Proc.
of ACM SIGCOMM, 2001.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems. In Proc. of the Intl. Conf. on Dis-
tributed Systems Platforms (Middleware), pages 329–350.
IFIP/ACM, 2001.

[25] M. Schlosser S. Kamvar and H. Garcia-Molina. The
EigenTrust algorithm for reputation management in P2P
networks. In WWW 2003, 2003.

[26] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. A
scalable and ontology-based P2P infrastructure for se-
mantic web services. In Proceedings of the 2nd Interna-
tional IEEE Conference on P2P Computing, Linkoping,
Sweden, September 2002.

[27] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proc. of ACM SIG-
COMM, pages 149–160, 2001.

[28] Q. Sun and H. Garcia-Molina. Partial lookup services. In
Proc. of the 23rd Intl. Conf. on Distributed Computing
Systems (ICDCS), 2003.

[29] B. Yang and H. Garcia-Molina. Improving efficiency
of peer-to-peer search. In Proc. of the 28th Interna-
tional Conference on Distributed Computing Systems,
July 2002.

[30] B. Yang and H. Garcia-Molina. Designing a super-peer
network. In Proc. of the 19th International Conference
on Data Engineering, March 2003.

[31] B. Yang, S. Kamvar, and H. Garcia-Molina. Address-
ing the non-cooperation problem in competitive P2P sys-
tems. Stanford University Database Group Technical Re-
port, 2003.

