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Abstract

We present a new part-of-speech tagger that
demonstrates the following ideas: (i) explicit
use of both preceding and following tag con-
texts via a dependency network representa-
tion, (ii) broad use of lexical features, includ-
ing jointly conditioning on multiple consecu-
tive words, (iii) effective use of priors in con-
ditional loglinear models, and (iv) fine-grained
modeling of unknown word features. Using
these ideas together, the resulting tagger gives
a 97.24% accuracy on the Penn Treebank WSJ,
an error reduction of 4.4% on the best previous
single automatically learned tagging result.
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first-order HMM, the current tag, is predicted based
on the previous tag_; (and the current word). The
backward interaction betweety and the next tag.
shows up implicitly later, whern,, is generated in turn.
While unidirectional models are therefore able to capture
both directions of influence, there are good reasons for
suspecting that it would be advantageous to make infor-
mation from both directions explicitly available for con-
ditioning at each local point in the model: (i) because
of smoothing and interactions with other modeled fea-
tures, terms likeP(to|t4q,...) might give a sharp esti-
mate oft, even when terms liké(¢14|to,...) do not,
and (i) jointly considering the left and right context to-
gether might be especially revealing. In this paper we
exploit this idea, using dependency networks, with a se-
ries of local conditional loglinear (aka maximum entropy
or multiclass logistic regression) models as one way of
providing efficient bidirectional inference.

Secondly, while all taggers use lexical information,

Almost all approaches to sequence problems such as part-_, . . )
P g P P nd, indeed, it is well-known that lexical probabilities

of-speech tagging take a unidirectional approach to cof .
P 99ing PP e much more revealing than tag sequence probabilities

ditioning inference along the sequence egardless harniak et al., 1993), most taggers make quite limited

whether one is using HMMs, maximum entropy condi- f lexical probabiliti mpared with. for examol
tional sequence models, or other techniques like decisi € Ot lexical probabliities (compare » for exampye,
e bilexical probabilities commonly used in current sta-

trees, most systems work in one direction through the " . X

sequence (normally left to right, but occasionally righ |_st|cal parsers). Wh||_e modern taggers may be more prin-
to left, e.g., Church (1988)). There are a few exce cipled th::_m the classic CLA.WS 'Fagger (Marshall, 1%7)’
tions, such as Brill's transformation-based learning (BriIIthey are in some respects inferior in their use of lexical

1995), but most of the best known and most successfmf?rm?;['orlllz CLAtWrS,d”rLrOEg?nLtS Ir[t)lﬁ)tMTA;(r; rr;c:duleir,]
approaches of recent years have been unidirectional. categorically captured many important, correct taggings
of frequent idiomatic word sequences. In this work, we

Most sequence models can be seen as chaining to- : .
- . incorporate appropriate multiword feature templates so

gether the scores or decisions from successive local mod- .
, that such facts can be learned and used automatically by

els to form a global model for an entire sequence. Clearly

the identity of a tag is correlated with both past and future——-—————

taqs’ identiti H in th idirecti | | *Rather than subscripting all variables with a position index,
ags’ identities. However, in the unidirectional (causa )Ne use a hopefully clearer relative notation, wheyelenotes

case, only one directiqn of influence is e?(p"Ci“y Conslid‘the current position antl_,, andt..,, are left and right context
ered at each local point. For example, in a left-to-rightags, and similarly for words.



@ @ @ ,,,,,,,,,,,, )@ That is, the replicated structure is a local model
P(to|t_1,wp).2 Of course, if there are too many con-

ditioned quantities, these local models may have to be
@ @ T estimated in some sophisticated way; it is typical in tag-
(a) Left-to-Right CMM ging to populate these models with little maximum en-
tropy models. For example, we might populate a model
@ @ @ """""""" @ for P(to|t_1,wo) with a maxent model of the form:

A F A
@ @ @ é’) Px(tolt—1,wo) = P10 40) F Ao )

(b) Right-to-Left CMM 2t XP Nty 1) T Atpuo))

@ @ @ »»»»»»»»»»»»» >@ In this case, thevy andt_; can have joineffectson ¢,
but there are not jointeaturesinvolving all three vari-
@ @ ables (though there could have been such features). We
say that this model uses tHeature templatesto,t_1)
(c) Bidirectional Dependency Network (previous tag features) and,, wo) (current word fea-
tures).
Figure 1: Dependency networks: (a) the (standard) left-to-right Clearly, boththe preceding tag_; and following tag
first-order CMM, (b) the (reversed) right-to-left CMM, and (c) t,1 carry useful information about a current tag Uni-

the bidirectional dependency network. directional models do not ignore this influence; in the
case of a left-to-right CMM, the influence of, on ¢,

h l. . L . :
the que . is explicit in theP(ty|t_1,wo) local model, while the in-
Having expressive templates leads to a large numbﬁr

. —fluence oft,; ontg is implicit in the local model at the
e o g™ hext postion (P (.. ). The stustion i -
S(.)rr.{etf?in not used by previous maxir%lum entro t_a rersed for the right-to-left CMM in figure 1(b).

9 yp by tag- troma seat-of-the-pants machine learning perspective,

ger?ti; mf;lfny tsur?f:hfe?ntu:jesi CI‘;’:S bedadd(fedr mthva? gver\?vlhen building a classifier to label the tag at a certain posi-
Egstroﬁ Ef (Ca:((:)II(i)ns (goog) ew.e ca?]e é?seffornfanc::s gie[i'on, the obvious thing to do is to explicitly include in the

bypreducing the support ’thresholdgforpfeatures to b% irnll?)cal model all predictive features, no matter on which
cluded in the model. Combining all these ideas, togeth side of the target position they lie. There are two good

. o §6rmal reasons to expect that a model explicitly condi-
\tﬁlrtgsa ];S\évsigd;tlogr?o?_znigr;ﬁ;d u:rkvr\llic;\r:vg Weoridofsagir?ning on both sides agach position, like figure 1(c)
9 P P 99 per-p c?fuld be advantageous. First, because of smoothing

0, -
tag accuracy of 97.24%, and a whole-sentence correg, ects and interaction with other conditioning features

AN -]
0,

rate of 56.34% on Penn Treebank WSJ data. This is t:lﬁke the words), left-to-right factors ke (t|¢_1,wo)

0 not always suffice whety is implicitly needed to de-

best automatically learned part-of-speech tagging res

known to us, represen_ting an error reductiqn of 4.4% Operminet,l. For example, consider a case of observation
the modpl presented in Collins (2902)’ using the SaMias (Klein and Manning, 2002) for a first-order left-to-
data splits, and a larger error reduction of 12.1% from thﬁght CMM. The wordto has only one tagTo) in the

more similar best previous loglinear model in Toutanov?DTB tag set. Thao tag is often preceded by nouns, but
and Manning (2000). rarely by modalsNiD). In a sequencwiill to fight, that

trend indicates thawill should be a noun rather than a
modal verb. However, that effect is completely lost in a

When building probabilistic models for tag sequencescMM like (2): P(twiu|will, (start)) prefers the modal
andP(Tolto, tyin) is roughly 1 regardless of

we often decompose the global probability of sequencd@99ing;

using a directed graphical model (e.g., an HMM (Brantst,wi”' While the model has an arrow between the two tag

2000) or a conditional Markov model (CMM) (Ratna- positions, that path of influence is sevefed.he same

parkhi, 1996)). In such models, the pro_bability assigned 2Throughout this paper we assume that enough boundary
to a tagged sequence of worgs= (¢, w) is the product symbols always exist that we can ignore the differences which
of a sequence of local portions of the graphical modelyould otherwise exist at the initial and final few positions.
one from each time slice. For example, in the left-to-right beESpite use ctn)f_ na’L’me; like “I;bel bias” (Laflflert_y etal., 2001)d
MM shown in figure 1 or “observation bias”, these effects are really just unwante
C sho gure 1(a), explaining-away effects (Cowell et al., 1999, 19), where two
nodes which are not actually in causal competition have been
P(t,w) = Hl P(tilti—1,w;) modeled as if they were.

2 Bidirectional Dependency Networks



function bestS
@ Ur:gﬂj)rr:] beesstts(é(c))l;‘z%ub(—k 2, (end, end, end));

() (b) (c) function bestScoreSubg- 1, (ti 1, ti,tis1))
% memoization
Figure 2: Simple dependency nets: (a) the Bayes’ net for if (cachedf + 1, (t;—1,%;, tit+1)))

P(A)P(B|A), (b) the Bayes’ net foP(A|B)P(B), (c) a bidi- return cache(+ 1, (ti—1, s, tit1));
rectional net with models oP(A|B) and P(B|A), which is % left boundary case
not a Bayes’ net. if (1 =—1)
if ((ti—1,ti,tiv1) == (start, start, start))
returnt;

problem exists in the other direction. If we use the sym- else

metric right-to-left modelffightwill receive its more com- returno:

mon noun tagging by symmetric reasoning. However, 9 recursive case

the bidirectional model (c) discussed in the next section returnmax;, _, bestScoreSub((¢;—z, ti—1,%:))x

makes both directions available for conditioning at all lo- P(tilti—1, tiv1,wi);

cations, using replicated models Bﬁt0|%’1’t+1’w0)’ Figure 3: Pseudocode for polynomial inference for the first-
and will be able to get this example corréct. order bidirectional CMM (memoized version).

2.1 Semantics of Dependency Networks 2.2 Inference for Linear Dependency Networks

While the structures in figure 1(a) and (b) are well-Cyclic or not, we can view the product of local probabil-
understood graphical models with well-known semanticdties from a dependency network as a score:

figure 1(c) is not a standard Bayes' net, precisely because

the graph has cycles. Rather, it is a more gendeal score(z) = Hip($i|Pa($i))

pendency networkHeckerman et al., 2000). Each node .

represents a random variable along with a local condivherePa(z;) are the nodes with arcs to the nade In
tional probability model of that variable, conditioned onthe case of an acyclic model, this score will be the joint
the source variables of all incoming arcs. In this sens@robability of the event, P(z). In the general case, it
the semantics are the same as for standard Bayes’ néfdll not be. However, we can still ask for the event, in
However, because the graph is cyclic, the net does niitis case the tag sequence, Wlth the highest score. For
correspond to a proper factorization of a large joint probdePendency networks like those in figure 1, an adaptation
ability estimate into local conditional factors. Considet©f the Viterbi algorithm can be used to find the maximiz-
the two-node cases shown in figure 2. Formally, for th'd Séguence in polynomial time. Figure 3 gives pseu-
net in (a), we can writd®(a, b) = P(a)P(b|a). For (b) docode for the concrete case of t.he'netwo.rkm figure 1(d);
we write P(a,b) = P(b)P(alb). However, in (c), the the general case is _S|m|Iar, and is in fact just a max-plus
nodes A and B carry the informatidR(a|b) and P(ba) ~ VErsion of standard inference algorithms for Bayes' nets
respectively. The chain rule doesn't allow us to recon(Cowell et al., 1999, 97). In essence, there is no differ-
struct P(a, b) by multiplying these two quantities. Un- €nce betwee_n inference on this network qnd a segond—
der appropriate conditions, we coutetonstructP(a, b) order left-to-right CMM or HMM..The only q|fference is
from these quantities using Gibbs sampling, and, in gefat, when the Markov window is at a positionrather
eral, that is the best we can do. However, while recorfh@n receiving the score far(t;|t;—1, ;—», w;), one re-
structing the joint probabilities from these local condi-Ceives the score faP (t;_1 |t;, ti—2, wi—1)- o
tional probabilities may be difficult, estimating the local There are some foundational issues worth mentioning.
probabilities themselves is no harder than it is for acycliéS discussed previously, the maximum scoring sequence
models: we take observations of the local environmenftéed not be the sequence with maximum likelihood ac-
and use any maximum likelihood estimation method w&0rding to the model. There is therefore a worry with
desire. In our experiments, we used local maxent model§i€se models about a kind of “collusion” where the model

but if the event space allowed, (smoothed) relative count@Cks onto conditionally consistent but jointly unlikely
would do. sequences. Consider the two-node network in figure 2(c).

If we have the following distribution of observations (in
“The effect of indirect influence being weaker than direct inthe formab) (11, 11,11, 12, 21, 33), then clearly the most
fluence is more pronounced for conditionally structured modeldikely state of the network i$1. However, the score dfl
but is potentially an issue even with a simple HMM. The prob-g Pla=1b=1)P(b=1a=1)=3/4%x3/4=9/16,

abilistic models for basic left-to-right and right-to-left HMMs while the score 083 is 1. An additional related problem
with emissions on their states can be shown to be equivalent us- :

ing Bayes’ rule on the transitions, provided start and end syrﬁ-S that the training set loss (sum of negative Iogqr!thms
bols are modeled. However, this equivalence is violated in pra@f the sequence scores) does not bound the training set
tice by the addition of smoothing. error (0/1 loss on sequences) from above. Consider the



Data Set | Sect'ns| Sent.| Tokens | Unkn istics of the three splité.Except where indicated for the
Training 0-18| 38,219| 912,344 0 modelBEST, all results are on the development set.
Develop | 19-21| 5,527| 131,768| 4,467 One innovation in our reporting of results is that we
Test 22-24| 5,462| 129,654| 3,649 present whole-sentence accuracy numbers as well as the

traditional per-tag accuracy measure (over all tokens,
even unambiguous ones). This is the quantity that most
_ . _ sequence models attempt to maximize (and has been mo-
following training set, for the same network, with eachyated over doing per-state optimization as being more
entire data point considered as a labgl1,22). The sefyl for subsequent linguistic processing: one wants to
relative-frequency model assigns lds$o both training  fing 5 coherent sentence interpretation). Further, while
examples, but cannot do better than 50% error in regen&fs me tag errors matter much more than others, to a first
ating the training data labels. These issues are further dig;; getting a single tag wrong in many of the more com-
cussed in Heckerman et al. (2000). Preliminary work of,on ways (€.g., proper noun vs. Common noun; Noun vs.
ours suggests that practical use of dependency networssy) would lead to errors in a subsequent processor such
is not in general immune to these theoretical concers: & an, information extraction system or a parser that would
dependency network can choose a sequence model thabatly degrade results for the entire sentence. Finally,
is bidirectionally very consistent but does not match thee tact that the measure has much more dynamic range
data very well. However, this problem does not appear tQ;s some appeal when reporting tagging results.
have prevented the networks from performing well onthe 114 per-state models in this paper are log-linear mod-
tagging problem, probably because features linking taggjs pyilding upon the models in (Ratnaparkhi, 1996) and
and observations are generally much sharper discrimi”ﬁ'outanova and Manning, 2000), though some models are
tors than tag sequence features. in fact strictly simpler. The features in the models are
It is useful to contrast this framework with the con-gefined using templates; there are different templates for
ditional random fields of Lafferty et al. (2001). Therare words aimed at learning the correct tags for unknown
CRF approach uses similar local features, but rather thajords? We present the results of three classes of experi-
chaining together local models, they construct a sinments: experiments with directionality, experiments with

gle, globally normalized model. The principal advaniexjcalization, and experiments with smoothing.
tage of the dependency network approach is that advan-

tageous bidirectional effects can be obtained without th&.1 Experiments with Directionality
extremely expensive global training required for CRFs. |, this section, we report experiments using log-linear

To summarize, we draw a dependency network igcpMMs to populate nets with various structures, explor-
which each node has as neighbors all the other nodggy the relative value of neighboring words’ tags. Table 2
that we would like to have influence it directly. Eachjjsts the discussed networks. All networks have the same
node’s neighborhood is then considered in isolation angkrtical feature templatestto, wo) features for known
a local model is trained to maximize the conditional likeyyords and variougto, o (wy,,)) word signature features
lihood over the training data of that node. At test timefor all words, known or not, including spelling and capi-
the sequence with the highest product of local conditionghjization features (see section 3.3).
scores is calculated and returned. We can always find the jyst this vertical conditioning gives an accuracy of

exact maximizing sequence, but only in the case of ag3 ggoy (denoted as “Baseline” in table®2)Condition-

acyclic net is it guaranteed to be the maximum likelihoo

sequence. ®Tagger results are only comparable when tested not only on
the same data and tag set, but with the same amount of training

. data. Brants (2000) illustrates very clearly how tagging perfor-

3 Experiments mance increases as training set size grows, largely because the
percentage of unknown words decreases while system perfor-

The part of speech tagged data used in our experimentsignce on them increases (they become increasingly restricted

the Wall Street Journal data from Penn Treebank 1l (Maras to word class). _
cus et al., 1994). We extracted tagged sentences from the 'Except where otherwise stated, a count cutoff wias used

. . L for common word features argb for rare word features (tem-
parse treeS.We splitthe data into training, development, lates need a support set strictly greater in size than the cutoff

and test sets as in (Collins, 2002). Table 1 lists charact%éfore they are included in the model).

- 8Charniak et al. (1993) noted that such a simple model got
Note that these tags (and sentences)rareidentical to  90.25%, but this was with no unknown word model beyond

those obtained from theagged/pos directories of the same disk: a prior distribution over tags. Abney et al. (1999) raise this

hundreds of tags in the RB/RP/IN set were changed to be mokmseline to 92.34%, and with our sophisticated unknown word

consistent in th@arsed/mrg version. Maybe we were the last to model, it gets even higher. The large number of unambiguous

discover this, but we've never seen it in print. tokens and ones with very skewed distributions make the base-

Table 1: Data set splits used.



Model Feature Templates Features | Sentence Token | Unkn. Word
Accuracy | Accuracy Accuracy
Baseline 0 56,805 26.74% 93.69% 82.61%
C {to,t-1) 27474 41.89%| 95.79% 85.49%
R (to, t41) 27,648 36.31% 95.14% 85.65%
L+, (to,t—1), (to,t—2) 32,935 44.04% 96.05% 85.92%
R+R, (to, t41), (to, t+2) 33,423 37.20% 95.25% 84.49%
L+R (to,t—1), {to,t41) 32,610 49.50% 96.57% 87.15%
LL (to,t—1,t—2) 45,532 44.60% 96.10% 86.48%
RR (to,t41,t42) 45,446 38.41% 95.40% 85.58%
LR (to,t—1,t41) 45,478 49.30% 96.55% 87.26%
L+LL+LLL (to,t,1>, (to,tfl,tfg)7 (to,t,ht,z,t,g) 118,752 45.14% 96.20% 86.52%
R+LR+LLR (to,t41), (to,t—1,t41), (o, t—1,t—2,t41) 115,790 51.69% 96.77% 87.91%
L+LL+LR+RR+R | (to,t_1),{to,t—1,t_2), (to,t—1,t41), {to,t+1), (to, t+1,t42) 81,049 53.23% 96.92% 87.91%

Table 2: Tagging accuracy on the development set with different sequence feature templatesdels include the same vertical

word-tag features({o, wo) and variougto, o (w1, ))), though the baseline uses a lower cutoff for these features.

Model Feature Templates Support | Features | Sentence Token | Unknown
Cutoff Accuracy | Accuracy | Accuracy
BASELINE | (to, wo) 2 6,501 1.63% 60.16% 82.98%
(to, wo) 0 56,805 26.74% 93.69% 82.61%
3W (to, wo), {to, w—-1), (to, ws+1) 2 | 239,767 48.27% 96.57% 86.78%
3W+TAGS | tag sequencesto, wo), (to, w—1), (to, w+1) 2 | 263,160 53.83% 97.02% 88.05%
BEST see text 2 | 460,552 55.31% 97.15% 88.61%

Table 3: Tagging accuracy with different lexical feature templates on the development set.

Model | Feature Templates| Support | Features | Sentence Token | Unknown
Cutoff Accuracy | Accuracy | Accuracy
BEST see text 2 460,552 56.34% 97.24% 89.04%

Table 4: Final tagging accuracy for the best model on the test set.

ing on the previous tag as well (model {y,t_,) fea- 3.2 Lexicalization

tures) gives 95.79%. The reverse, model R, using t}E:exicalization has been a key factor in the advance of
next tag instead, is slightly inferior at 95.14%. Model y

L+R, using both tags simultaneously (but with only th S;?ttlztlc?; pawg%énsl?ﬁfdn?ﬁ; ht‘fe tz:?,lerrne;fsv?/o?()j(phlgl\id
individual-direction features) gives a much better acc 99ing. 9

racy of 96.57%. Since this model has roughly twice ubeen occasionally used in taggers, such as (Ratnaparkhi,

a - . .
many tag-tag features, the fact that it outperforms the unz—ggiﬁelaﬂ :\IASI\; rringg{ T;fafgg gta ;?d(;%%%(;r t()Etr I:e\}(?r?ﬁé

directional models is not by itself compelling ewdencqess, the only lexicalization consistently included in tag-

for using bidirectional networks. However, it also out- :
performs model L+, which adds theto, ¢ ») second- ging models is the dependence of the part of speech tag
02 of a word on the word itself.

previous word features instead of next word features, ) . .
which gives only 96.05% (and R+Ryjives 95.25%). We In maximum entropy models, joint features which look
pat surrounding words and their tags, as well as joint fea-

conclude that, if one wishes to condition on two neig . .
boring nodes (using two sets of 2-tag features), the syntlgres_ of the current word an_d_ surrounding words are in
principle straightforward additions, but have not been in-

metric bidirectional model is superior. ‘ )
corporated into previous models. We have found these

High-performance taggers typically also include join o
gn-p ) 99 ypically . tfeatures to be very useful. We explore here lexicaliza-
three-tag counts in some way, either as tag tngrargs

(Brants, 2000) or tag-triple features (Ratnaparkhi, 199 ion both alone and in combination with preceding and

Toutanova and Manning, 2000). Models LL, RR, and C Gllowing tag histories.
use only the vertical features and a single set of tag-triple 12°!€ 3 shows the development set accuracy of several
features: the lefttags (», ¢, andto), righttags o, 1 models with various lexical features. All models use the

t.), or centered tagg (1, fo, 1) respectively. Again, same rare word features as the models in Table 2. The

with roughly equivalent feature sets, the left context idIr'St two rows show a baseline model using the current

better than the right, and the centered context is bettford only. The count cutoff for this feature wasn the
than either unidirectional context. first model and 2 for the model in the second row. As

there are no tag sequence features in these models, the ac-

line for this task high, while substantial annotator noise creategUracy drops significantly if a higher cutoff is used (from
an unknown upper bound on the task. a per tag accuracy of about 93.7% to 06ly2%).



The third row shows a model where a tag is der Smoothed | Features | Sentence| Token | Unk. W.
cided solely by the three words centered at the tag S p— AC:X'Z“&}/’ 96?8‘;/- 862;‘30/-
. i , . (] . 0 . 0
sition (3W). As far as we are aware, models_, of this no 45532 | 42.81% | 95.88% | 83.08%
sort have not .been gxplored prewou;ly, but its accy=yeg 202,649 54.88%| 97.10% | 88.20%
racy is surprisingly high: despite having no sequenceno 292,649 | 48.85% | 96.54% | 85.20%

model at all, it is more accurate than a model which
uses standard tag fourgram HMM featurds,(wo),

gl(()a’ g_#n;)ggi i‘jiﬁ}ligo’ t—1,t-2,t—3), shown in Ta- performance. By far the most significant is a crude com-

. . . pany name detector which marks capitalized words fol-

_The_ fourth an_d fifth rows show models with bi- ngd within 3 words by a company ngme suffix like.
directional tagglngh features. The four;cch mOdeor Inc. This suggests that further gains could be made by
Eﬁ\e/vggfsr)n;jeels i:] eTas;reneZtZ(g tset;u(e;nc;: e:1tu>res ﬁ’]scorporatingagood named_entity recognizeras a prepro-
(ot 2. tar) (tostar)s 0. st 0’>)_§1n’d gbr;elr’lt_Q . CESSOrtO the tagger (reversing the most common order of

058 =1y B41/5 V700 54175 110, B 4L, 42 » PT€ hrocessing in pipelined systems!), and is a good example
vious, and next word.  The last model has in adbf something that can only be done when using a condi-
dition the feature templatetto, wo, 1), {to, wo, t41);  fional model. Minor gains come from a few additional
{to, w—1,wo), andk<t°’w°’wtjl>’ adndl. mc(ljgdes thz M features: an allcaps feature, and a conjunction feature of
Eg?]vzrr;egnt\s/\;g lég”nt%\’i\én r\:nvg:jelran ssf mSEslicrngea Itr; S€Gords that are capitalized and have a digit and a dash in
ken accuracy on the final test set of 97.24% and a sethem (such words are normally common nouns, such as

Brc-120r F/A-18). We also found it advantageous to
o - .
tence accuracy of 56.34% (see Table 4).9%%% confi se prefixes and suffixes of length up 1. Together

dence interval for the accuracy (using a binomial mOdeI‘j/ith the larger templates, these features contribute to our

is (97.15%, 97.33%). . . . unknown word accuracies being higher than those of pre-
In order to understand the gains from using right Con\7iously reported taggers

text tags and more lexicalization, let us look at an exam-
ple of an error that the enriched models learn notto makg.4  Smoothing
An interesting example of a common tagging error of th

simpler models which could be corrected by a determinis- ith s0 many features i_n the model, pvertrgining Is a dis-
tic fixup rule of the kind used in the IDIOMTAG module tinct possibility when using pure maximum likelihood es-

of (Marshall, 1987) is the expressias X as(often, as timation.. we avqid this by using a Gauss!an _prior (a_ka
far ag. This should be taggeas/RB X{RB,J} as/INin que}dratlc_ regularization or quadratic penalization) which
the Penn Treebank. A model using only current word an%f“SISts h,'gh feature wgghts u_nle_ss. they produce great
two left tags (model L+L in Table 2), mad&7 errors on score gain. The regularized objectiFes:
this expression, tagging &s/IN X as/IN— since the tag

sequence probabilities do not give strong reasons to dis-  F(\) = Z-IOg(PA(mW’t)) — Z
prefer the most common tagging &$ (it is tagged as IN !

over 80% of the time). However, the model 3WASS,  since we use a conjugate-gradient procedure to maximize
whlch uses two right tags and the two s_urrOUﬂdlng Wordge data likelihood, the addition of a penalty term is eas-
in addition, made only errors of this kind, and model jjy incorporated. Both the total size of the penalty and
BESTmade only6 errors. the partial derivatives with repsect to eath are triv-

ial to compute; these are added to the log-likelihood and
log-likelihood derivatives, and the penalized optimization
Most of the models presented here use a set of UBrocedes without further modification.

known word features basically inherited from (Ratna- \we have not extensively experimented with the value
parkhi, 1996), which include using charactegram pre-  of 52 _ which can even be set differently for different pa-
fixes and suffixes (for up to 4), and detectors for a rgmeters or parameter classes. All the results in this paper
few other prominent features of words, such as capitalizjse 5 constant? — 0.5, so that the denominator disap-
tion, hyphens, and numbers. Doing error analysis on Usaars in the above expression. Experiments on a simple
known words on a simple tagging model (with,? 1),  model withs made an order of magnitude higher or lower
(to,t-1,t2), and (wo, to) features) suggested severalyoih resulted in worse performance than with= 0.5.
additional specialized features that can usefully improve g, experiments show that quadratic regularization

Thede and Harper (1999) uge ., to, wo) templates in is very effectivg in improving the ger_leraliza'tion perfor-
their “full-second order” HMM, achieving an accuracy of mance of tagging models, mostly by increasing the num-
96.86%. Here we can add the opposite tiling and other featureser of features which could usefully be incorporated. The

Table 5: Accuracy with and without quadratic regularization.
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3.3 Unknown word features



Tagger Support cutoff ~ Accuracy

Collins (2002) 0 96.60%
5 96.72%

Model 3W+TAGS variant 1 96.97%
5 96.93%

Table 6: Effect of changing common word feature cutoffs (fea-
tures with supporK cutoff are excluded from the model).

number of features used in our complex models — in the
several hundreds of thousands, is extremely high in com-
parison with the data set size and the number of features
used in other machine learning domains. We describe two
sets of experiments aimed at comparing models with and
without regularization. One is for a simple model with a
relatively small number of features, and the other is for a
model with a large number of features.

The usefulness of priors in maximum entropy models
is not new to this work: Gaussian prior smoothing is ad-
vocated in Chen and Rosenfeld (2000), and used in all
the stochastic LFG work (Johnson et al., 1999). How-
ever, until recently, its role and importance have not been
widely understood. For example, Zhang and Oles (2001)
attribute the perceived limited success of logistic regres-
sion for text categorization to a lack of use of regular-
ization. At any rate, regularized conditional loglinear
models have not previously been applied to the prob-
lem of producing a high quality part-of-speech tagger:
Ratnaparkhi (1996), Toutanova and Manning (2000), and
Collins (2002) all present unregularized models. Indeed,
the result of Collins (2002) that including low support
features helps a voted perceptron model but harms a max-
imum entropy model is undone once the weights of the
maximum entropy model are regularized.

Table 5 shows results on the development set from two
pairs of experiments. The first pair of models use com-
mon word template&, wo), (to,t_1,t_2) and the same
rare word templates as used in the models in table 2. The
second pair of models use the same features as model
BEST with a higher frequency cutoff of 5 for common
word features.

For the first pair of models, the error reduction from
smoothing i$.3% overall and20.1% on unknown words.

For the second pair of models, the error reduction is
even bigger16.2% overall after convergence afd % if
looking at the best accuracy achieved by the unsmoothed
model (by stopping training aftef5 iterations; see be-
low). The especially large reduction in unknown word er-
ror reflects the fact that, because penalties are effectively
stronger for rare features than frequent ones, the presence
of penalties increases the degree to which more general
cross-word signature features (which apply to unknown
words) are used, relative to word-specific sparse features
(which do not apply to unknown words).

Secondly, use of regularization allows us to incorporate
features with low support into the model while improving
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