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Abstract

In peerto-peenP2P)systemsvhereindividualpeersmustcooperatéo proces®achothersrequests,
ausefulmetricfor evaluatingthe systemis how mary remoterequestareservicedby eachpeer In this
paperwe apply this remotework metric to flooding-based2P searchnetworks suchas Gnutella. We
studyhow to maximizetheremotework in theentirenetwork by controllingtherateof queryinjectionat
eachnode.In particularwe provideasimpleprocedurdor findingtheoptimalrateof queryinjectionand
proveits optimality. We alsoshawv thata simplepreferhigh-TTL protocolin which eachpeerprocesses
only querieswith the highesttime-to-live (TTL) is optimal.

1 Intr oduction

Flooding-basegeerto-peersystemdike Gnutella[4] have beendeplo/ed and usedby millions of users
worldwideto shareandexchangdiles. As of April 2003,Gnutellahasover onemillion userg(with atleast
onehundredthousandconcurrentusers[5]) andtentera-byteof shareddata. Also accordingto [3], there
areover 10 vendorsactively developingGnutella-styleclientsfor their applications.

While thereis significantresearchnterestin distributed hashtables[8] [9] [11] [13], Gnutella-style
systemsareusedin practicefor four reasonsl) simpleto implement,2) easyto deploy, 3) extremelyrohbust
in handlingfrequentpeerarrivals anddeparturesand4) supportswild-card searchesMoreover, in ad-hoc
wirelesservironmentswhereunicastis just asexpensve asbroadcastaflooding-basednechanisms more
desirable.

Although a flooding-basedearchmechanisntan be inefficient asa searchqueryis forwardedto all
nodeswithin a certainnumberof hops(e.g.,7 hops),Gnutella-stylenetworks have, neverthelessscaledto
millions of usershy usinga supefnodearchitecturewherehigh speed CPU andbandwidth)nodesactas
proxiesfor regular (slower) nodes Figurel shavs a samplesupernodenetwork with 3 supernodesand16
regularnodes.Eachsupernodeindexesthe contentof its attachedegularnodesandperformstheflooding-
basedsearchon behalfof the regular nodes.In this architecturea network with millions of userscanbe
reducedo onewith tensof thousandef supernodeswhereafloodingmechanisnis adequate.

Even with this architecture supernode networks are still susceptibleo overloadingwhentoo mary
searchqueriesare generatedy users. In the extremecase,if every supernodeusesall of its processing
capacityto inject new searchqueriesinsteadof answeringand propagatingexisting queries,no “useful”
work is donebecausejueriesare not answeredy aryone. We define“useful” or remote work asa super
nodeprocessinga querythatis not inject by itself or by its attachedregular node. At the otherextreme,

*This is the extendedversionof the work of the sametitle thatappearedn DISC 2003. This versionis approximately60%
longerthantheoriginal. It includesanexampleof oscillation,all the proofs,anda simulationresultwhich confirmsour optimal p
selectionandillustratestherelationbetweerp andtotal remotework.
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Figurel: A samplesupernodenetwork.

if supernodesinjecttoo few new queriesthey will have available capacityto processemotequeries,but
therewill not be enoughqueriesto keepthe supefnodesbusy. Thus,our goalis to pick a query-injection
ratebetweerthesetwo extremesthatmaximizestheremotework performed.

We choseremote work asour objective metricbecausét succinctlycapturegshegoalof users.Themore
remotesupernodesthatprocessa givenuserquery the morepotentialanswerghe userwill receve. From
amongthe answersthe usercanthen selectthosehe wants,and the larger the selection,the better For
instancejf theusersearche$or compositiondy “Bach; he canthenselecttitles that soundappealingor
files thathave a goodrecordingquality.

Oneapproacho maximizingtheremotework is to changethe searchprotocolitself, e.g.,usingrandom
walkers[7] or iteratve deepenind12]. In this paperwe attackthe problemfrom a differentangle: we
controltherateof queryinjectionatindividual supefnodes.We addresshe following questions:

¢ How dowe modelqueryinjection,processingandpropagatiorin a Gnutella-stylesystem?

¢ Whatis theoptimalnumberof new queriesghateachsupernodeshouldinject eachroundasto maxi-
mizetheremotework donein a network?

¢ Whatis theimpactof usingdifferentprotocolsto selectwhich queriesto processandpropagateis
thereanoptimal protocol?

¢ Shouldwe enforceafair policy whereevery supernodeinjectsthe samenumberof new queriesinto
thenetwork? Or shouldhighly-connectedupernodesn the“critical” partof thenetwork injectmore

queries(or less)?
¢ Whatis the penaltyin termsof reducedemotework for usinga fair policy?
¢ Whataresomeheuristicsfor morecomplex systemghatareoutsideof our simplemodel?

Daswanietal. in [1] conductedsimulationsto answersomeof the above questiongocusingon theim-
pactof malicioussupernodeswho purposelygeneratdarge numberof bogusqueriesto reducethe amount
of “useful” work donein a flooding-basegeerto-peersystem. In the currentpaper we do not consider
malicioussupernodesdoing denial-of-servic§DoS) attacksusing bogusqueries. Instead we assumaeall
supernodesare cooperatingo maximizeusefulwork in the network. Theresultsin this paperprovide a
firm theoreticalfoundationfor studyingthe effectsof DoS attacksandestablisha baselineof comparison.
Theseresultscanbe easilyincorporatednto [1] to furtherextendtheir results.

Knowing the theoreticaloptimal rate of queryinjection and the maximumremotework possiblecan
improve the constructionof the overlay network. For example,a supefnode canusethe optimal query-
injectionrateto dynamicallydecidewhetherit shouldacceptmoreclientsor disconnecexisting ones.We
canalsouseremotework asmetricto evaluatedifferenttypesof overlaytopologies.

Althoughour work is specificto Gnutella-like systemswe do addressanissuethatwe believe will be
of growing importancein distributed systemsthat of gettingautonomougomponentdo provide services
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for eachother Whetherthe systemis a publish-subscrib@ene, or a sensomet, or an ad-hocwirelessnet-
work, nodesmustbalancetheir local needge.g.,disseminateventsor messagesriginatinglocally) with
the servicesthey provide to others(e.qg., paclet forwarding, resourcediscovery). As far aswe know, this
“distributedresourcecoordination”problemhasnot beenstudiedin detail. Our paperis afirst studyof such
coordinationfor autonomousystems.

2 Assumptionsand a Model

We usea very simplemodelof Gnutellato capturekey performancecharacteristicshatarerelevantto our
goal of maximizing remotework. Given thatregular nodesalwaysaccesgshe network via a supernode,
we only needto capturethe actvities of the supernodes. Specifically we modelthe supefnodenetwork
asagraphG = (V, E) whereedgegepresentonnectiondetweersupernodes.For brevity, whenwe say
“node” in theremaindeiof this paper we meansupernodeunlessstatedotherwiseexplicitly.

We modeltheP2Psystemasoperatingn roundswheresearctgueriesareinjectedandprocesseduring
the round andforwardedto neighboringpeershetweenrounds. Although the systemdoesnot have to be
sychronousye will assumesychroty for analysispurposes.Note thatqueries‘injected” by a supernode
aretypically initiated by theregularnodesattachedo it.

We assumeeachqueryhasa time-to-live (TTL) field thatis decrementedby oneeachtime whenfor-
wardedto otherpeers.Whenthe TTL becomesegative, the queryis removed from the network. For our
purposeof maximizing remotework, we only modelthe propagationof searchqueriesandignore other
communicatiorsuchassearchreplies,ping-pongmessagesndactualfile transfers.

We alsoassumehebottleneclof thesystemis theprocessingapacityof thesupernodesatherthanthe
network bandwidth.Furthermorewe assumeeceving queriesirom the network hasnegligible processing
costascomparedo the actualprocessingdf a query Therearethreereasondor theseassumptions(1)
supernodeshave excellentnetwork connectiities, e.g.,10 megabitsor better;(2) backbonebandwidthis
grosslyoverprovisioned;and(3) wild-cardsearchgueriesareexpensve to evaluatebecaussimplehashing
techniqueslo notwork well.

We assigneachsupernode a processingcapacityof C' queriesper round. A supefnode may useits
capacityin two ways: (1) acceptand processa new searchquery from an attachedregular node, or (2)
processa remotequeryforwardedto it by a neighboringsupefrnode. We referto casel asa supernode
injecting new queries, andreferto case2 as processing remote queries. For clarification, processinga
remotequeryinvolvestwo steps:one,matchthe queryagainsthe shareddataindexed by this supefnode;
andtwo, forwardthis queryto neighboringnodes.Obviously in a singleround,the numberof new queries
injectedplusthe numberof remotequeriesprocesseds atmostC.

In mostof ouranalysisn this paperwe assumall nodeshave the sameprocessingapacityto make the
analysigtractable Although Sariouet. al. [10] obsenredlarge variationsamongGnutellaclients,variations
amongsupernodesaremuchsmaller We will briefly outlinethedifficultiesin handlingsupernodeswith
differentcapacitiesasanopenproblemin Section9.2.

Althougheachnodecanonly processipto C queriegperround,its neighboringnodesmaysendit more
thanC remotequeries.Becausave assumedhat network bandwidthis not thelimiting factorandthatthe
costof receving datafrom the network is nggligible, we allow eachnodeto receve all theincomingremote
gueriesevenif it doesnot have the capacityto processhemall. A nodemustthendecidewhich remote
gueriesto processhis round and drop the remainingqueries. We do not allow a nodeto “temporarily”
buffer excessremote queriesfor processingat a later round becausewe are interestedin the long-term
systembehaior wherenodesareconstantlyoverloaded.

Thelong-termbehaior of a peerto-peersystemcertainlydependeavily on how eachnodedecides
which queriesto processand drop. For brevity, we usethe term protocol to refer to a nodes decision
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mechanismAs anexample,anodeis saidto beusingarandomprotocolif it pickswhich querieso process
uniformly atrandom.

Oneimportantparametenf a protocolis how a nodedividesits capacitybetweennjectingnew queries
andprocessingemotequeries.We usea fraction p betweer0 and1 to denotethis parameterFor example,
p = % implies onethird of a nodes capacityis allocatedfor injecting new querieswhile the othertwo
third is usedfor processingemotequeries.We assumehata supernodeinjectsits full quotaof pC' new
guerieseachround,i.e., thereis alwaysan abundanceof queriesthat regular nodeswantto submit. This
assumptions reasonabldecaus®ur goalis to studythe maximumamountof remotework possiblewhich
canonly occurif nodesaregeneratinguficientnumberof new queriego keepthesystembusy In practice,
asupernodecaninjectnew local queriesat afixedrateby buffering anddelayingnew searchqueriesfrom
its attachedegularnodes.

Ratherthantrying to build anaccuratanodelthatcanpredictthe actualperformancef the peerto-peer
systemwe have mademary simplifying assumptionto make our studyof thefundamentasystenbehaior
feasible. This simplified modelretainsall the importantaspectf a flooding-basegeerto-peerprotocol
anddoesnotrestrictdesigndecisions.

3 Notation and Problem Definition

p» denoteghefractionof processingapacitynodew allocatedor injectingnew queriesperround.

p = {pv | v € V} denoteghesetof p, usedby all nodesn network G.

d(u,v) denoteghe minimumhopdistancebetweemodesu andv in network G.

D(v, ) denotesghesetof nodesu, excludingv, in G suchthaté(u,v) < 7.

A

D(v,7) denoteD (v, 1) U {v}.

W7 (v, p) denotesthe setof queriesprocessedy nodew, usingprotocol P with settingsp for the
nodes,during roundt. The setW/ (v, p) includesboth new queriesinjectedby v and processed
remotequeries.We dropthe superscrip®® whenthe contet is clear

R (v, p) C W/ (v, p) denoteshe setof remotequeries processedy nodev attimet.

RWF(p) = S ,ev |RF (v, p)| denotesghe numberof remotequeriesprocessedy all nodesin net-
work G attimet.

With the notationabove, maximizingthe remotework of a network G usingprotocolP canbe stated
formally as:

Problem: GivenagraphG = (V, E), maximumTTL 7, processingapacityC, anda protocolP, find the
optimalrateof injectingnew queriess = {p, | v € V} suchthaty", RW/ (p) is maximized.

The maximizationproblemis statedabove asthe cumulatve numberof remotequeriesprocesseaver
all nodesandall time. We choseto sumover all time to take into accountf protocolswith nondeterministic
or irregular behaiors. However, aswe will see,the protocolsstudiedhereall have someform of “steady-
state”behaior.

4 Protocols

Before describingthe protocols,we first needto discusshow to tag eachquerywith an ID to avoid pro-
cessingduplicatequeriesandto remove querieswhentheir TTL expires. For a queryq, we usea triplet
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Deterministic Prefer-High-TTL Protocol H?

During every round,eachnodev € V' performsthefollowing tasksin the ordershowvn below:

1. Injectp, - C new querieswith thetripletidentifiers{v, 7,1}, {v, 7,2},...,{v, 7, p,C}. Denotethis setof local
queriesL,,. (For clarity in the presentationwe assumep, C' is aninteger We cantake the floor if it is notan
integer)

2. Sortall incomingqueriesfrom adjacentsupernodesin decreasingrderof TTL, breaktiesin a deterministic
mannerthatis independentf the currenttime, andremove queriesthat are duplicatesor have alreadybeen
processe@t someprevioustime step.Denotethis sortedlist of new incomingqueriesl,,.

Take thefirst (1 — p, )C queriesin I,,. Denotethis setof remotequeriesR,,.
Servicequeriesn L, andR, againsiocal index.

DecrementheTTL of queriesin L,, andR, by 1.

Forwardall queriesn L, andR, thathave TT'L > 0 to all neighbors.

o 0 s~w

Figure2: An informal descriptionof the deterministicpreferhigh-TTL protocol.

(sre, ttl, mid) wheresrc is the nodethatinjectedthe query ¢tl is the currenttime-to-live of ¢ asq moves
aroundthe network, and mid is an internal sequencanumberwherel < mid < C. We enforcethree
invariantsaboutthe IDs: (1) for any two queriesinjectedby the samenodein the sameround,their mids
aredifferent;(2) 0 < ttl < 7 wherer is themaximumTTL; and(3) aquerywith ID (src, ttl, mid) attime
t isinjectedattimet — 7 + ttl.

Note that whenthe query travels aroundthe network, its ID changesasthe ¢t/ is decremented.To
determinewhethertwo queryIDs ¢; andgs attimest; andts, respecirely, refer to the samequery we
checkwhetherthesetwo IDs have the samesrc node,the samemid, andwereinjectedinto the network at
the sametime. For example,assumingall queriesinitially have aTTL 7 wheninjected,thena querywith
ID ¢1 = (u,5,2) attime step8 is the samequeryasa querywith ID ¢» = (u, 3, 2) attime stepl0 because
bothqueriesareinjectedby nodeu attime8 + 5 — 7 = 10 + 3 — 7 = 13 — 7 with sequenc@umber2.

UsingtheseDs, we describeheoperationsf thedeterministigoreferhigh-TTL protocol#? in Figure
2. Essentially after eachnodeinjectsits new queriesfor the round, it then processesemotequeriesin
decreasing TL orderuntil the processingapacityhasbeenexhaustedlf two querieshave thesameTTL,
thetie is brokendeterministicallye.g.,lexicographicallyby sourcenodelD andthenthe sequenc@umber

Similarly, therandomizedpreferhigh-TTL protocol#* performsthe samestepsas#? excepttiesare
brokenrandomly Though#® and#P arevery similar, they exhibit differentsteady-statbehaior aswe
will seein the next section. This distinctionhassignificantimpacton how efficiently we cansimulatethe
protocolsfor experimentalstudies.A third protocolthatwe will usefor illustrative purposess the prefer
low-TTL protocol£. Insteadof sortingall the incomingqueriesin the set1, in decreasingrderof TTL
duringstep2 (of Figure?2), protocol £ sortsthe queriesin increasingorderof TTL.

5 SteadyState

Regardlessof the transientbehaior at the beginning of time, a protocol that processeshe mostremote
gueriesin the steadystatewill processhe mostremotework in the long run. Therefore,if two protocols
have steadystatesthenwe cansimply compareheir perroundperformancen the steadystate.lt turnsout
thatnotall protocolshave someform of steadystate.To illustrate,consideran exampletopologyconsisting
of sevennodesshavn in Figure3. If we usethe preferlow-TTL protocol £ with maximumTTL 7 = 2 and
Py = i for all nodesw (i.e., eachnodeinjects% new queriesperround),thenwe obsere an oscillation.
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Figure3: An examplewherepreferlow-TTL doesnot have a steadystate.
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Tablel: Executiontraceof protocol £ ontheexamplein Figure3. Notev andzx oscillate.

Tablel tracesout which querieseachnodeprocessesluring the first four roundswhenexecutingprotocol
L.

In Table1 we usethe notationaz; to indicatea nodehasprocessedjuerieshatwereinjectedby nodez
attimes with internalsequencaumbersl throughaC'. Forinstanceattime0, all nodesareonly processing
gueriednjectedby themseles. At time 1, eachnodeis processingts own newly injectedqueriesandremote
gueriesnjectedby its neighborsattime 0.

In generawhentracingout which queriesare processedby nodez attime i, we simply look at the set
of queries() thatareprocessedy z’'s neighborsattime ¢ — 1. We first eliminatequeriesin Q whoseTTL
have expired or have alreadybeenprocessedbefore. We thensortin increasingT TL orderthe remaining
qgueriesn Q wheretiesarebrokenby the sourcenodelD. (Specifically we breaktiesin thefollowing order:
w,v, 8, T, u,t, andtheny.) For example,considerthe entryin Tablel1 thatcorrespondso nodew attime
2. Tofill in thesquarewe form the set@ from queriesprocessedby nodesv, =, ands attime 1, whichis
{3v1, Tuo, Two, 11, 10, 151, +to}. Wefirstfilter out 2w, becauseve have handledt in theprevioustime
step. We thensortthe remainingqueriesaccordingto TTL to get{tug, 2o, 2t0, 21, 121, 351 }. Because
nodew only has% capacityleft afterits own queriesw simply selects{iuo, iyo, 1to} tofill its capacity

Thekey pointto noticein thistraceis thatnodew decidedo dropqueriedrom its immediateneighbors
attime step2 dueto thelow TTL preferenceAs aresult,whenwe progresgo time step3, nodew is only
ableto forwardthe queriesgeneratedby itself becaus¢he TTL ontheremainingquerieshave expired. This
lack of forwardedqueriescausesy’s neighborgo procesdewer querieshanthe previoustime step.



If we continuethe traceto time step4, it is identicalto time step2, with time indicesadwancedby
2. Hencetracingthe executingfurther will yield an oscillation betweensteps2 and3. The causeof the
oscillationis dueto nodew actingasachoke pointfor forwardingquerieson theeven-numberetime steps.
For this simpleexample we couldhave foreseerihis period2 osicllation. Unfortunatelyin generalprotocol
L’s periodof oscillationis a function of 7, thetie breakingpolicy, andthe network topology G, thusnot
easyto determineapriori.

Oscillationsaside therearetwo flavors of steadystatethatareof particularinterestbecausehey distin-
guishbetweerprotocolsH? andH ™. Thefirstkind is astrong steadystatewherewe candeterminesxactly
which querieswill beprocessetby every node.Formally,

Definition 1. (Strong steady state) A protocol P has a strongsteadystateif given any p, there exists ¢y such
that for every nodev and all t > to, Rf (v, p) = R]. (v, p).

In otherwords, strong steady state guaranteethataftertime ¢y, eachnodewill procesgemotequeries
with thesametriplet ID astheprevioustime step.For example,if nodev processedquerywith ID (u, 5, 2)
attimety, thenv will processaqueryof thesameD from thenon. Thushaving astrongsteadystatemales
simulationstudieseasier Notethatthe sametriple ID attwo differenttimesdoesnot meanthe samequery
becausghetwo queriesarecreatecat differenttimes.

An alternatve is to relaxthe constraintof processingjuerieswith the sametriplet IDs.

Definition 2. (Weak steady state) A protocol P has a weaksteadystateif given any p, there exists ¢y such
that for every nodev and all ¢ > to, |R} (v, p)| = |RF, (v, p)|.

A weaksteadystateonly requireghe numberof remotequeriesprocessedb bethesameratherthanthe
guerylIDs to bethe same.Sinceour objective is to maximizethetotal numberof remotequeriesprocessed,
having a weak steadystateis sufiicient for our analysis. Clearly strongsteadystateimplies weak steady
state.

With thesetwo notionsof steadystate we now shav protocol#H P hasastrongsteadystate.In particular
we shav %P hasa monotonicityproperty

Proposition 3. (Monotonicity) In protocol H?, given p, for any nodev and a query ID ¢ = (src, ttl, mid),
1 ifqg € Wy 4y, (v, p), theng € Wy(v, p) for all t > 7 — ttl,.
2. if g € Wi(v, p) for somet > 7 — ttly, thenqg € W, _y, (v, p).

Informally, monotonicitystateshatoncea queryID ¢ is in Wy, (v, p) for ary nodev andtime ¢, theID ¢

cannever disappeafrom Wy, (v, p) for all to > t;. It alsoguaranteeshe first appearancef q is attime
T — ttl;. Themonotonicityis theresultof breakingtiesamongqueriesof thesameTTL in a deterministic
fashion. Before proving this claim, we first notethatin handlingthe setof queriesW;, becausehe TTL

of a queryis decrementedluring a round, therearetwo possibleTTLs for eachqueryq € Wy(v, p). For
consisteng we usethe TTL beforethedecremenasthe TTL of queryq. We now give theformal proof.

Proof. We prove our claim by inductionon the numberof hopsa queryhastraveled,whichis (7 — ttl).
Base Case: aqueryq with 7 — ttl, = 0. This caseoccurswhenttl, = 7, i.e.,q is alocal querythat
wasjust created Sinceprotocol# P injectsthe samenumberof local querieswith the samemessagéDs 1
throughp, - C for eachnodev ateachtime step,our claim holdstrivially.
Inductive Step: Assumeour claim holdsfor all queriesq thathave traveledlessthann hops,i.e., with
T — ttly < n, wewantto shawv thatour claim alsoholdsfor querieswith 7 — ¢tl, = 7. For part(1), assume
q = (srce, ™ —n,mid) € Wy(v, p) for somenodev. Now we needto shaw g € W, (v, p) for all ¢ > 7,.



Considerthe setof queries@ with TTL = 7 — n thatis processedy nodewv at time ¢ andthe setof
queriesP with TTL = 7 — 5 4 1 thatis processedy all neighborsof nodev attime ¢ — 1. Notice that
Q C P'whereP' = {(sre,ttl,mid) | (src,ttl + 1,mid) € P}. By ourinductionhypothesisandusing
part(2) of theclaim, thesetP is thesamefor ¢ > n — 1. Thusnodew recevesthesamesetP”’ for all ¢t > 1.
By constructionprotocolH? deterministicallyselectdhe samesubset) from P’ for all ¢ > 7. Therefore,
if ¢ € Q attimen, thenqg € Q for all t > n, asrequired.Part (2) of theclaimis similar. O

Themonotonicitypropertycanbe useddirectly to shaw thatH P hasa steadystate.
Theorem 4. Protocol H? reaches a strong steady state in 7 time steps.

Proof. For ary nodew, let Li(v,p) = {q | ¢ € Wi(v, p) and src; = v} denotethe setof locally injected
queries. Then Ry(v,p) = Wi(v,p) — L(v, p). SinceL;(v, p) is constantfor all ¢, to prove our claim
of achiezing strongsteadystatein 7 steps,it is sufiicient to shav that for every nodev andall ¢ > ,
Wt(vaﬁ) = WT(U,ﬁ); SpeCifica"th(’U,ﬁ) - WT(Uaﬁ) andWT(v,ﬁ) - Wt(’l),ﬁ)-

Forary g € Wy(v, p), usingpart(2) of Propositior8,q € W,_4, (v, p). Becausétl, > 0, 7—ttly < 7.
Applying part (1) of Proposition3, we getq € W, (v, p), whichimplies W;(v,p) C W, (v,p). Similarly,
W (v, p) C Wi(v, p). O

Unlike protocol#?, the randomizedversion™ only hasa weak steadystate. Clearly H* doesnot
have a strongsteadystatebecausdhe randomselectionsgdo not guarantee nodewill consistentlychoose
remotequerieswith the samelDs. The factthat H* hasa weak steadystateis a directly corollary of a
theoremin the next sectionthat statesboth protocols#? andH”? are“optimal” in the numberof remote
queriesprocessed.SinceHP andH* processeshe samenumberof remotequeriesand #? reachesa
strongsteadystatein 7 time stepsthen#® mustreachaweaksteadystatein 7 time steps.

6 Optimality of Protocol #?

We now shaw thatfor ary settingsof 5, thetwo preferhigh-TTL protocols;H? and#*®, processeasmuch
remotework asary otherprotocolsusingthe samep settings,andhenceare optimal. Sinceprotocol H?
is a specialcaseof protocol#*, we only shav the optimality of protocol . We prove this claim by
first establishinganupperboundontheamountof remotework ary protocolcanprocessandthenshawing
protocol?# ®achieresthis upperbound.

For the upperbound,noticethat regardlessof which protocolwe use,the numberof remotequeriesa
nodewv canprocess|R;(v, p)|, is limited by two factors:(1) nodev’s processingapacity and(2) how mary
queriesareinjectedby nodeswithin ~ hopsof v. At maximumcapacity a nodev canprocesq1 — p,)C
queriesgperround. We call suchanodesaturated.

Whenanodev is notsaturatedit canreceve upto K, = C - 3- ¢ p(v,r) Pu queriesirom nodeswithin
7 hops. For protocolswithout steadystate,the actualnumberof queriesprocessedy nodev may vary
betweerrounds,(e.qg.,procesao queriesduring oneround, but a large amountthe next round); however,
theaveragenumberof queriesprocessegerround,overtime, is boundediy K,.

We get our upperboundby combiningthe two limiting factorsand taking the minimum numberof
remotequeriesprocesseh casel andcase? (alongwith aspecialcasewhent < 7).

Proposition 5. For any protocol P, any node v, and any setting p,

> |Ri(v,p)| < C - min (1 — P > pw>
t weD( )

t v,min(7,t



We now shaw in two stepsthat protocol %4 ®achievesthis upperbound. In the first step,we claim that
if anodev’s “neighbors”cannotinject enoughqueriesto continuouslysaturatey, thennodewv will process
every queryinjectedby these'neighbors’. Statedformally,

1 — py. Then for all nodes w € D(v,h) and all 7 such that 1 < i < p,,C, the query with triplet ID
(w, 7 — 6(w,v),i) € Re(v,p) for all timet > §(w,v).

Lemma 6. Consider protocol H* and any node ». Suppose for some hop count & < 7, Y we D(w,h) Pw <

Proof. Noteby assuming_,,¢c p(y,n) Pw < 1 — py, NOqueriesaredroppeddueto lack of capacityi.e., there
areno randomchoicesin decidingwhich queriesto drop. Therefore this lemmabecomes specialcaseof
the monotonicitypropertyin Proposition3. The sameinductionproof holdshere. O

In the secondstep,we claimthatif nodev’s “neighbors”arecontinuouslyinjectingmorequerieshanv
canprocessthennodewv processesxactly (1 — p,)C querieseachround. Formally,

Lemma 7. In protocol #%, for any node v and hop count A, if > weD(v,h) Pw > 1 — py, then node v is
saturated after time h, i.e., |R(v, p)| = (1 — p,)C for al ¢t > h.

Thisclaimis notimmediatelyobviousbecaus¢herandomselectionsn protocol#® mayresultin mary
duplicatequeriesarriving at a nodev andreducethe numberof remotequeriesprocessedFortunately the
preferhigh-TTL mechanismensuresenough” non-duplicatequeriesarrive at v to saturatets processing
capacity We now give theformal proof.

Proof. Defineo, to be the smallesthop countwhere}_ cpy ) Pw > 1 — py. In otherwords, nodes
thatarelessthang, hopsaway from v cannotinject enoughqueriesto saturatev. We shawv our claim by
inductionong,,.

Base Case: 0, = 1. Thiscasecorrespondfo thesituationwherenodev’simmediateneighborsdenoted
by N(v), areinjectingmorequeriesthanv canhandlei.e., 3-,,c y(y) Pw > 1 — py. Sincenodesin N (v)
forward newly injectedqueriesto v eachround,nodev recevesatleast(1 — p,)C new querieseachround.
Thusnodev mustbe processingat maximumcapacity or | R:(v, p)| = (1 — p,)C.

Induction Sep: Assumingthe claim holdsfor all nodesv whereo,, = h, we shav the claim alsoholds
for all nodesy whereo, = h+1. Supposer, = h+1 for somenodev. Considetheimmediateneighboring
nodesN (v). Therearetwo casedor N(v): (1) forallw € N(v), Xucpw,p) Pu <1 — puw, 1.8, 00 > h;
and(2) thereexistsw € N (v) suchthaty,c p(w p) Pu > 1 — pu-

In casel, notethatevery nodethatis h + 1 hopsaway from v is h hopsaway from somenodein N (v).
Becauser,, > h for all w € N(v), we canapply Lemmaé to seethatall queriesinjectedby nodesthat
areexactly h + 1 hopsaway from v will beprocessethy somenodein N (v) aftertime h andforwardedto
nodev. Consequentlyfor all timet¢ > A + 1, all queriesfrom A + 1 hopsaway will reachv via nodesin
N (v). Thesequeriesarenot duplicateof old queriesbecausehey traveledalongthe shortespath. Hence
if > weD(e=h+1)Pw > 1 — py, thennodewv recevesatleast(l — p,)C new querieseachround,i.e.,
|Ri(v,p)| = (1 —py,)Cforallt > h+1.

In case2, letw € N(v) bethe nodewhereZueD(w,h) pu > 1 — py. Intuitively, someof the queries
processedby nodew areinjectedby nodesthatareh 4+ 1 hopsaway from v». Call this setof queries@.
We shaw that |Q)] is sufficiently large whencombinedwith queriesinjectedby nodeswithin h hopsof v,
denotedby P, to saturatev. Notethato,, = h becauséf o, < h, theno, is atmosth.

Applying ourinductionhypothesigor nodew, we know w is saturatedor all time¢ > h. Now consider
the setof nodesX = {u|u # v,d(u,v) < h} andY = {ulu # w,d(u,w) < h}. LetZ = X NY and
U =Y — X. Noticethatnodesin U areexactly h + 1 hopsaway from v andthat@ is the setof queries
injectedby nodesn U'.



Becauseat mostC' - Y, ., p. queriesdid not originate from somenodein U, we get |Q| > C -
(1 = pw — Xyez pu)- Usingthefactthat(ZU{w}) C (XU{v}), weknow 3-,c z pu < Yuex Putpo—puw.

Therefore|Q| > C'- (1 — pw — Xyez pu) 2 C - (1 = po — Xyex Pu)-
Also becauser, = h + 1, Lemma6 saysnodewv will receve all queriesfrom nodeswithin ~ hops

of v. Hencewe getthatv processedP| = C - 3 ,cx pu Queriesfrom nodeswithin » hops. Com-
bining P and @), the amountof remotework done per round |R:(v, p)| is at least|P| + |Q| > C -
Cuexpu+1l—py,—>ue Xp,) = (1- p,)C, whichprovesourclaim. O

CombiningLemmas6 and7 with h = 7, we getthatif nodev’s neighborsawithin 7 hopsdo notinject
enoughqueriesto saturatev’s processingapacity thennodev processesvery queryinjectedby them.On
theotherhand,if thereis morethanenoughgueriesthennodev processeat maximumcapacity(1 — p,)C.
Consequently

Theorem 8. In protocol %, for any node v and any setting p,

|Rt(vaﬁ)| = C - min (1 — P, Z pu)
(T1))

u€D(v,min

By applyingTheorem8, we obtainthat}", | R:(v, p)| is equalto the upperboundestablishedn Propo-
sition 5. Therearetwo immediateconsequenced this obseration:

Corollary 9. Protocol #® has a weak steady-state after 7 time steps.
Corollary 10. No protocols can achieve more remote work than protocol .

Corollary 10 givesusour claim thatprotocol#*? is optimal.

Anotherimportantconsequencef Theorem8 is thatin computingremotework, we do not have to
worry aboutwhich querieswere duplicatesor which patha query traveled on. Therefore,we cantreat
all queriesasindistinguishabldrom eachotherandrewrite our optimizationprobleminto a simplelinear
program(LP). Specifically let r, denotethe numberof remotequeriesprocessedby nodew in the steady
stateof ™. Thenmaximizingremotework is equivalentto the objective function

max : er 1)

Theconstraint®f thislinearprogramarethetwo termsin theminimumclauseof TheorenB, i.e.,nodes
may not exceedtheir processingapacity(Eq. 2) andmaynot processnoreremotework thanis injectedby
theirneighborqEq. 3). More formally,

ry < C(l—py) YVEV (2)
rp, < C- Y py VOEV (3)
weD(v,T)

Becausehe optimal r, solutionsfrom the linear programwill be tight (i.e., equality) for eithercon-
straints2 or 3, it is identicalto takingthe minimum of thetwo constraintsTherefore the sumof ther,’sis
preciselythe numberof remotequeriesprocesseth the network perround.

Unfortunately solvingthe LP givesuslittle insightinto the problems structure.The next sectionbuilds
suchinsightsfor a specialcaseof the problemwhereeachnodehasthe samep setting,i.e., p, = p for all
V.
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Find_Optimal_Single_p:

1. orderthevertex setV = {v1,vs, . ..,v,} suchthat|D(v;, 7)| < |D(vi1,7)|.

2. constructhe sequencef non-increasingealnumbers{d;, da, . . . d, } whered; = \b(vl- A

3. find thesmallest suchthaty%_, |D(v;, 7)| > n.
4. returnd;.

Figure4: Procedurdor finding the optimal 5 whenall nodeshave the samep.

A el

(a) T=1 (b) T=1 () T=2 (d =1

Figure5: Fourexampletopologies.

7 Identical p for All Nodes

The instanceof every nodehaving the samep is of particularinterestbecauset capturedairnessin the
supernode network. In otherwords, every supernodeinjects the samenumberof nev queriesinto the
network. Thisinstancealsoariseswhenthesoftwareclientshave ahard-codedndpre-determinedapacity
allocation. Clearly, finding the optimal p settingthat maximizesthe total remotework is dependenbn
the network topology In additionto presentinga procedurdor selectingthe optimal 5, we alsoshaw that
imposingthis “fair” criterionof identicalp for all nodesdoesnot significantlyreducethe maximumamount
of remotework.

Figure4 shawvs our procedurdor selectings. Toillustrate,considerexamples(a), (b), and(c) in Figure
5. We first write out |15(v,~, 7)| for all nodesy; in a non-decreasingequenceandthenaddthe numbersn
sequencéom the beginning until the sumexceedghe numberof nodes.Whenwe stoppedaddingat node
1, the optimal j is the correspondingl; = ‘ﬁ(vlm)‘. In example(a), we getthe sequencef |ﬁ(vi,7)| as
{3,3,3}. Becausa is thenumbemodesin this network, we stopimmediatelyat: = 1 andgetthe optimal
p= % asexpected.Moving to themorecomplicatedexampleswe seeexample(b) generateshe sequence

{2,2,2,2,2,2,7}. After addingthefirst four 2s, we get8 > 7, thustheoptimalp = dy = m =1.1n

example(c), we getthesequencé€3, 4,4, 5,5} whichyieldstheoptimal p = i when3 + 4 > 5.

Beforewe formally prove the correctnessf the Find_Optimal_Single_p procedurewe first outline the
generalideabehindthe proof. Notethatgivenary p, we candivide the nodesinto two cateyories: the set
of saturatedhodesS andthe setof unsaturateahodesU. Now considerusingp’ = p + € for somee > 0.
For all nodesv € S, v's remotework is reducedby ¢, i.e., we loseatotal of R~ = ¢|S|. However, for all
nodesw € U, w’'s remotework hasincreasedy ¢|D(w, )|, orwegain Rt = ¢ ¥, <y |D(w,7)|. Thus
intuitively, when R~ = R™, we have found a candidatefor the optimal 5. Fortunately thereis only one
suchcandidateyhich our Find_Optimal_Single_p procedurdinds.

We now prove the correctnes®f the Find_Optimal_Sngle p procedure. First, note that when using
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protocolH#® with eachnodehaving the samep, Theorem8 simplifiesto

|Ri(v,p)] = C-min(l—p,p|D(v,7)|) (4)
RWy(p) = C- ) min(l-p,p|D(v,7)]) (5)
veV

Becauseprotocol H* hasa weak steadystateby Corollary 9, maximizing the total remotework is
equialentto maximizingthe numberof remotequeriesprocessedh a singleroundof the steadystate.To
distinguishthe notationbetweernthis casewhereall nodeshave the samep from the generalcase we use
R(v, p) insteadof R;(v, p) and RW (p) insteadof RWy(p) to signify the specialcaseof identicalp’s. We
droppedhetime subscriptbecausave areonly interestedn the steadystate.

Theproofproceedsn threesteps:(1) we establistarangeof valuesfor theoptimal g, (2) we shav g can
only beoneof n valueswithin this rangewheren is the numberof nodesand(3) we thenfind the optimal
p thatmaximizesRW (p).

For thefirst step,we orderedthevertices{v1, vs, . . . , v, } suchthat|D (v, 7)| < [D(vi41,7)|. Wethen

1

computea correspondingequencéd, ds, . . . ,d, } whered; = B Noticethatthe sequencef d; is

non-increasingWe canmale thefollowing obseration on choosinga particularvalueof p.
Lemmall. If p > d; for somes, then for all 5 > 4, node v; is saturated.

For example,if we know p > d,, thenwe canguaranteaodesy, throughw,, aresaturatedlintuitively,
nodej hasmoreneighborghannodes if j > <. Thereforejf thereis enoughwork to saturatenodes, node
j is alsosaturated.

Proof. We wantto shaw thatif j > 4, thenp|D(v;,7)| > 1 — p. Sincep > d;, p|D(vj, T)| > d;|D(vj, T)|
andl — p < 1 — d;. Thereforejt is sufiicientto shaw thatif j > i, thend;|D(v;, )| > 1 — d;:

Jj=i
= |D(vj, )| 2 [D(vi, 7)|
D) 5 1 __1
ID(vi,m)| = |D(vi,7)|

= d,‘|D(’Uj,T)| >1-—d;
]

Usingthe abore obseration, we completeour first stepby boundingthe optimal p betweend; andd,,,
inclusive.

Lemma12. Theoptimal pisbetweend; andd,,,i.e, dy > p > d,.

Proof. Forary p > d;, Lemmallguaranteethatall nodesaresaturatedTherefore RW (p) = nC(1— p).
Now considerusingp’ = d;. Lemmall still guaranteesll nodesaresaturated. Thus RW (p’ = d;) =
nC(1 —dy). Sincep > dy,1 — p < 1 —d;. Therefore RW (dy) > RW (p).

Forp < d,, thecorverseof LemmallimpliesnonodesaresaturatedhenceRW (p) = C-3_, ¢y p|D(v, 7).
In comparisorto choosingp’ = d,, whereRW (¢’ = d,) = C - ¥ ,cy dn - |D(v, )|, we seeRW (p) <
RW (d,,) because < d,,.

Hencetheoptimalp is betweend; andd,,. O
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For the secondstepof our proof, we refineour searchof optimal g by claimingthe optimal 5 is in fact
d; for somej. To prove this claim, we shav thatfor ary choiceof p strictly betweend; andd; ., for some
1, we can“slide” p to oneof thetwo endpointsvithout reducingthe total remotework. More formally,

Lemma 13. If d; > p > d; 11, then either RW (d;) > RW (p) or RW (d;+1) > RW (p).

Proof. Notice thatwe canrewrite RW (p) astwo terms: oneterm that includessaturatechodesand one
termthatincludesthe rest. Using the resultfrom Lemmal11 while knowing d; > p > d;+1, we seethat
nodesv; ;1 throughwv,, arealwayssaturatecandnodesy; throughw;_1 arealwaysnot saturated.Because
d; > p, |RW (v, p)| is atmostl — p, thusit is safeto treatnodewv; asa nodethatis alwaysnot saturated.

Dividing thenodesnto thesetwo cateyories,we canrewrite RW (p) asthesumof work from non-saturated
nodesandwork from saturatedhodes.

RW(p) =C (ZP|D(UjaT)| + > ( —p)) :

J<i i<j<n

Now considertheamountof remotework we gainby usingp ratherthanusingd;, i.e., RW (p) — RW (d;).
Sincenodeshave the samecapacityC, we take out afactorC' whencomputingthe gain. We see

RW (p) — RW (d:)

C
= (ZP|D(U]'77')|+ > (1—P)) - (Zdi\D(UjaT)H > (1_di)>
i<i i<j<n i<i i<j<n
= Y (p—d)|D(vj, 7|+ Y (di—p)
i<i i<j<n
— -9 (n—i—ZID(vj,TH) ©
J<i

FromEqg. (6), usingp is betterthand; when

RW(p) > RW (d;)
< RW(p)— RW(d;) >0
> n—i>) |D(v;7) (7)
J<i
Similarly, we getthatusingp is betterthanusingd;; when

RW (p) > RW (di41)
— n—z’<Z|D(vj,'r)\ (8)
J<i

In orderfor both RW (p) > RW (d;) andRW (p) > RW (d;1) to hold, Eq (7) and(8) mustbetrue
simultaneouslywhich clearly cannotbe the case. Therefore,it is possibleto “slide” p towardsone of the
endpoints. O

CombiningLemmasl2 and13, we completethefinal stepin Theoremi14.
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Theorem 14. In protocol H® with identical p, the optimal p = d},, where k isthe smallest integer such that
Yi<k [D(vi, T)| > n.

Proof. We usetheinsightfrom the proof of Lemmal3. Supposeve setour initial p to d;. Eq. (7) tells
usthatusingp = ds is betterif n — 1 > |D(vy,7)|. Similarly, usingp = ds is betteryetif n — 2 >
|D(v1,7)| 4+ |D(ve, 7)|. We canrepeathis stepof moving to betterdy, until Eq. (7) nolongerholds.At that
point, we have reachedhe optimal becausdeg. (8) tells usthatusingd; for 5 > £ will notimprove total
remotework.

Theformal proof is by contradiction.Supposel; is the optimal p wherei # k. If i < k, thenby Eq.
(7), usingp = d; 1 resultsin moreremotework, which contradictsi; beingoptimal. If i > k, thenby Eq.
(8), usingp = d; 1 yieldsmorework, anothercontradiction. O

Thereis aspecialcasefor Theoreml4 wheny”, |D (v, 7)| = n. In this situation,therearemultiple
optimal p for asingleroundin the steadystate.Specifically

Corollary 15. If 37, |D(v;, 7)| = n for somek, then for all p wheredy, > p > dy,.1, RW (p) isoptimal.

Example(d) in Figure5 illustratesthis occurrencef multiple optimal 5. Thesequencef {|D(vi, )|}
in this caseis {2, 2, 3, 3}. Noticethat|D(v1,7)| + |D(vo, 7)| = 2 + 2 = 4 which is the numberof nodes.
By Corollary 15, we canconcludefor example(d), ary p Whereé <p< % yields the optimal amountof
remotework in asingleroundof the steadystate.

Now thatwe know how to find the optimalfor this specialcaseof identical p for eachnode,a natural
guestions how muchremotework did we sacrificein restrictingto thespecialkcasdansteadof usingarbitrary
p? To boundthis amountof lost remotework, we usethe following thetheorem.

Theorem 16. For any connected network G = (V, E) where |V| = n > 7+ 1, compute the optimal p using
the Find Optimal Single p procedure. Then in steady state, RW(p) > -5nC.

Proof. Becags&he graphis connectedfor ary nodev € V, the numberof nodeswithin + hopsis at least
T+ 1,ie,|D(v,7)| > 7 + 1. Therefored, < —<. FromLemmal2, we seeRW (p) > RW (d;) =

nC(1 — Tlﬁ) = nC. O

Theimmediateconsequencef Theoreml6is thatevenwith therestrictionof identicalp’s, nodedn the
network areprocessingt - of themaximumcapacity Hence thefractionof lossdueto therestrictionis
atmostT—}Ll. A secondargonsequences thatregardlesof whatkind of network G we use ,we canalways
processemotework at T of the capacity Whenlooking at the proof in more detail, onenoticethatthe
boundontheamountof work lostis dependanbnthevalueof d;, thesmallesiheighborhoodizefor anode
in thetopology In practicewherer > 5, d; is atmost%. Thus,thetotal remotework lostis at most2%.

To put Theoremsl4 and 16 into perspectie, we rana simulationon a 1787-nodeGnutellacran! from
Saroiu[10] with different choicesof p valueand TTL of 7. We thentallied the total amountof remote
work in the network, normalizedby the capacityof the nodes(i.e., eachnodecancontritute at most1 to
the total remotework). Theresultsareshavn in Figure6. The x-axis shavs the choiceof p in log scale.
The y-axis shawvs the amountof remotework. As Theorem14 claimed,thereis a single optimal point,
p= % = 0.0133 for thistopology Also noticethatthereis a“reasonablylarge” stretchof p valueswhere
thetotal amountof work is closeto the optimal. This stretchcorresponds$o choosinga larger p valuethan
theoptimal. As Thereoml6 claims,the amountof remotework lostis not significantfor ary “reasonable”
guessesf p, suchasp = = = 0.02.
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Figure6: Total remotework asafunctionof p for Gnutellacrawl.

8 Different p for Each Node

If we have all nodesnjectthesamenumberof queriesnto thenetwork, somenodeswill notoperateattheir
maximumcapacitiesThusit is possibleto achieze moreremotework by allowing nodesto inject different
amountof work, i.e., usea differentp for eachnode. To illustratethe differencein the amountof remote
work, we reusethe examplesin Figure5. In (b), by settingthe p for the centerof thestarto 1 and0 for the
othernodeswe cansaturatesvery nodeandgetatotal remotework of 6C'. In contrasttheidenticalp case
only yieldstotal remotework of %C. Similarly, we get4C and2C for examples(c) and(d) respectiely by
settingthe p of the nodeswith the highestdegreesto 1 and0 for the othernodes.Usingidentical p, we get
TC and2C respectiely for examples(c) and(d).

In this generalcasewherenodescan have different p values,thereare mary possibleoptimal solu-
tions. In particular thereis onesubseDf the optimal solutionsthat correspondso the minimum fractional
dominating-set (MFDS) of distancer for the network topologygraphG = (V, E). In MFDS, eachnode
v is assignedh weightw, where0 < w, < 1. Thedominatingsetconditionis thatfor every nodew, the
sumof theweightsfrom nodeswithin 7 hopsof v is atleastl. Thegoalis to comeup with a setof weights
w, that satisfiesghe dominatingconditionwhile minimizing the sumof the weights. The MFDS is a well
understoogroblem.Reducingour problemto the MFDS exposessomeunderlyingstructurein finding the
optimalp,’s andallows usto leveragemary existingtechniquedgor solvingit. Fortunatelythereis asimple
mappingfrom anoptimalsolutionof MFDS to our problem.Specifically

Theorem 17. For any optimal solution {w, } to the minimum fractional dominating set of G with distance
T, the solution g where p,, = w,, maximizes the total remote work in the network G.

Before we prove the above claim, we obsere that when all nodesare saturatedmaximizing remote
work is equivalentto minimizing new-queryinjection(i.e., MFDS). Thereforewe simply needto shav that
thereexistsan optimal p whereall nodesaresaturatedIntuitively, for any optimal 5 wheresomenodew is
not saturatedye can“boost” p, until v is saturatedvithout changinghe amountof remotework. We now
give thedetalils.

First, the minimum fractional dominating-se{MFDS) problemfor graphG with distancer canbe
rephrasedsalinearprogram.Let w, betheweightassignedo nodev. ThentheLP is

min : Z Wy 9)

Z wy >1 VveV (10)
weD(v,7)
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FromtheLP above, noticethatwhenusingp, = w, where{w, } is asolutionof MFDS, every nodev is
saturated;ecaus@weD(v’T) Puw = (Zweﬁ(vﬂ-) wv) —wy > 1—w, = 1— p,. Relyingonthisobsenation,
we shaw {w, } is anoptimalsolutionfor our problemin two steps:(1) givenanoptimalsolutionp whereall
nodesarenot saturatedye cantransformp into anotheroptimalsolutionp’ suchthattheamountof remote
work is still thesamebut all nodesarenow saturatedand(2) whennodesareall saturatedminimizing total
weightin MFDS is equivalentto maximizingremotework.

To prove thefirst step,we obsere thatif we increasep, for a singlenodew, thenthe remotework for
nodesw # v canonly increaseFormally;

Lemma 18. Given p = {p1, p2,...,pn}, Create p’ = {pi,ph, ..., pl,} where p} = p; + € for some i and
€ > 0,and p; = p; for all j # i. Then |R(vj, p')| > |R(vj, p)| for all v; # v;.

Proof. From Theorem8, we get|R(v;,p')| = C - <min(1 — Pjs XpeD(vj,7) p;c)) wherethe min distin-
guishesbetweenwhethemodew; is saturatedr not. Thusfor eachnodev; # v;, we needto checkthatour
claim holdsfor bothcases.

Case 1. v; is saturatedunderp. Sincethe p valuesonly increasedyy; is still saturated.Moreover,
pj = p}. Therefore{R(v;, p)| = C - (1 — pj) = C - (1 — p}) = |R(v;, 9.

Case 2: vj is notsaturatedinderp. Then|R(v;,p)| < C - (1 — p;) = C - (1 - p};) and|R(vj, p)| =
C-Yveenv;,r) Pk < C- Xy en(v; r) Pi- SiNCe|R(vj, p)| islessthanbothC-(1-p}) andC-3-,, c pw; ) £

/
k?
we geth(Uj7ﬁ)| <C- <m1n(1 - p‘lja EvkED(vj,T) p;c)) = |R(Uj’ﬁl)|' O

Notethatthe claim doesnot hold for nodewv; becauséf v; is alreadysaturatedinderp, thenincreasing
p; will reducethe remotework at nodewv; underp’. Intuitively, usingLemmal8, we can“boost” the p,
valuesof non-saturatethodes,oneby one,in the optimal solutionwhile maintainingthe samenumberof
total remotequeriesprocessedSpecifically

Lemma 19. For every optimal p = {p1, p2, - .., pn} Where some nodes are not saturated, there exists a
corresponding optimal §' = {p!, ph,...,ph} such that RW (p) = RW (p') and all nodes are saturated
using p'.

Proof. Givenp = {p1, p2,--.,pn}, SUupposaodev; € V isnotsaturatedi.e., R(v;, p) < 1— p;. Construct
fsl = {p17 R api—lapga Pit1y--- 7p'll} Wherepg =1- R(U,,ﬁ)

By constructiong; > p; anddoesnotreducethe remotework atnodev;. By Lemmal8, usingp; does
not reducethe remotework for all nodesv; # v;. Therefore,RW (p') > RW (p). Because is optimal,
RW (p') < RW (p). Hence,RW (p') = RW (p).

Using p’ resultsin at leastone more saturatechodethan p. By repeatingthe above stepof boosting
onenodes p, we canconstrucianoptimalwhereall nodesaresaturated(Note thatmultiple boostingsteps
cannotbe appliedsimultaneouslyOnemustapply eachboostin sequencandidentify a new nodeto boost
eachtime.) O

Lemmal9 completesour first stepfor shaving thatthereexists an optimal 5 whereall the nodesare
saturatedWe now shawv our secondstep,the proof of Theoreml7, whereminimizingtotalweightin MFDS
is the sameasmaximizingremotework.

Proof. FromLemmal9, we canassumesvery rJodev is saturatedyvhich by Theorem8 occursprecisely
whenthe sumof the work injectedby nodesin D(v, 1) is atleastC. Scalingdown by afactorof C yields
the constrainfor MFDSin Eq. 10.

16



Sinceevery nodein the network is saturatedthe total work in the entire network (i.e., the sum of
local andremotework) is equalto the numberof nodesin G, a constant. Thus maximizingremotework
is equivalentto minimizing local work. Sincelocal work is 3, p;, we getthe sameobjectve function as
MFDSin Eq. 9. Thereforeary optimalsolutionof the MFDS maximizeghetotalremotework in G. [

Although using different p’s leadsto more remotework, note that we are settingp to 0 for a large
numberof nodeswhich meanghesenodescannotinjectary queries.In practice,anodethatcannotinject
ary querieds notuseful. Thereforea combinationof usinga smallfixed p (e.g.,usingd,, from the previous
section)to guaranteesomefairnesswhile allocatingthe remainingcapacitythroughthe dominatingsetis
morepractical.

9 OpenProblems

We now outlinetwo openproblemshatarepracticalvariationsof the maximizingremotework problemwe
studiedin this paper

9.1 Distributed Algorithm

In Sections7 and8, we describectentralizedsolutionsfor finding the optimal p for eachnodethat maxi-
mizesthetotal remotework in the network. Our solutionsrequireknowing the entire network topologyin
advance. However in a P2Pervironment,with nodesconstantlyjoining andleaving, it is impracticalfor
ary nodeto gatherthe entirenetwork topologyinformation. Evenif we couldefficiently gathersuchinfor-
mation,therapidly changingiopologywill quickly rendera solutionbasedon the currenttopologyobsolete
andsub-optimal.Neverthelessthe resultsaboutthe centralizedsolutionsareimportantbecausehey form
thebasisof comparisorfor distributedsolutions.

For the instanceof using a different p for eachnode, distributed solutionsare possibleby adapting
fractionaldominatingsetalgorithms[2], [6]. However, thesealgorithmshave long runningtimesfor our
problem, cannothandledifferent capacitiesat eachnode, and must be re-run eachtime as the network
topology changes.Here,we proposea simple heuristicfor estimatinghow mary nev querieseachnode
shouldinject (i.e., the valueof p,C for eachnodev) in a distributed fashion. Figure 7 outlinesthe steps
in our distributed approach.Every nodeonly makeslocal decisions.Whena nodedoesnot have enough
gueriesto saturatats processingcapacity it tells all of its neighborsto inject one more local query per
round. If anodehastoo muchremotework, it tells all the nodesthathave sentremotework to it to inject
onelesslocal queryperround. We have performedsomeinitial simulationso compareour heuristicagainst
the optimal solution. The heuristicperformsvery well whenthe capacityC, in numberof queriesjs large
comparedo thenumberof nodeswithin 7 hops.

The randomizatiorfor inc(p) anddec(p) is necessaryo avoid oscillationandto stabilizethe system.
However, theresultingstablesettingmay not be optimal. Hence a bettersolutionis neededHowever, note
thatthe proposedeuristicis estimatinghe numberof new queriesoC ratherthanthefractionof capacityp
asin thefractiondominatingsetapproach.Thusthis heuristicdoesnot assumaall the nodeshave thesame
capacityC'.

9.2 Nodeswith Different Capacities

In reality, supernodesmay have differentprocessingapacities.The resultsfrom the previous sectionsno
longerhold becauseave cannotdetermine jndependenof the network topology whena nodeis saturated.
Recallthatif nodeshave the samecapacity thenLemma? guaranteethata nodew is saturatedvhenv’s
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Distributed pC' Estimation
For every 27 rounds(sayattime t), eachnodev € V doesthefollowing:

1. If |[Wy(v, py)| < C (i.e.,notenoughremotework),

2. broadcastninc(l — M) messagevith TTL 7.
3. If [Wi(v, py)| > C (i.e.,too muchremotework),

4. for everynodew suchthat3(w, ttl, mid) € Wi(v, py)

(Wi (v,00)|
C

5. sendadec( — 1) messagéo nodew.

Uponreceving aninc(p) or dec(p) messagegachnodeadjuststs pC by 1 with probability p.

Figure7: An informal descriptionof a distributed pC estimationheuristic.

neighborsareinjectingmorequerieshanv’s capacity However, whennodeshave differentcapacitiesthere
is asimplecountergample.

Considemodesu, z, andv connectedn aline in thatorder Now assigncapacity2C' to nodesu andv
andcapacityC to z. Sinceall thework from » musttravel throughz to reachw, theamountof remotework
atv is limited by the capacityatz. Evenif nodeuw is injecting2C' queries,at mostC of themwill reachw
eachround,which invalidatesLemma? for the caseof differentcapacities.In this particularexample,the
extra capacitiesat nodesu andv areirrelevant.

Evenfor the simple casewhereonly onenodex hasmore capacitythanthe rest, the solutionis non-
obvious andtopology dependent.For example,if z is in anareaof the network wherenodesare under
saturatedthenit shoulduseits extra capacityto inject morequeries.On the otherhand,if z isin anarea
wherenodesare alreadysaturatedthenthe extra capacityshouldonly be usedto increase¢he amountof
remotework atnodez.

Our currentapproachs an incrementaheuristicthat combinesmultiple optimal solutions. The basic
ideais asfollows: Supposenodeshave oneof two possiblecapacitiesC; andCy whereCy < Cs. Then
our heuristicis to find the optimal g settingfor the entirenetwork assumingall the nodeshave capacityC; .
We thencreatea subgraplof the original network thatincludesonly nodeswith capacityC». Notethatthe
subgraphmay be disconnectedWe thencomputeanotheroptimal o’ settingon the subgraphassumingall
the nodeshave the capacityCy — C;. For nodeswith capacityC', their corresponding’ valueis 0. To get
thefinal solution,we let eachnodeinject p,C; + pl,(C2 — C1) queries.

10 Concluding Remarks

Thispapemsesasimplemodelto studyremotework in aflooding-basegeerto-peemetwork. In particular
we shaved

1. For ary settingp, protocol#™ processethe mostremotework.

2. Under protocol #® with all nodesusing the samep, if we order the nodes{v1,...,v;} where
|D(v;, 7)| < |D(viy1,7)], thenthe optimal p = —-L— wherek is the smallestinteger suchthat

N | D(vg,T)|
Sy [D(i, )| > n.

3. Whennodesusedifferent p, ary optimal solutionto the minimum fractionaldominating-seof the
network graphG is anoptimal p solution.
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We believe that our resultscan sene as a benchmarkior more complex systems. For example,the
proposedheuristicload managemenschemeof Section9.1 canbe comparedagainsta systemwhere g
is selectedusing our optimal and centralizedsolutions. In addition, our solutionscanform the basisfor
heuristicsasillustratedin Section9.2.

Acknowledgment WethankKameshMviunagalaor valuablediscussiongn approximatioralgorithmsfor
fractionalbin-packing.
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