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Abstract nodes in the system, resulting in a high query cost. On the
other hand, index maintenance is free. When a new node
Peer-to-peer (P2P) systems enable queries over a largejoins the system, or an existing node leaves, the indexes of
database horizontally partitioned across a dynamic set of other nodes are completely unaffected.
nodes. We devise a self-tuning index for such systems that A second approach is to construct a distributed global
can trade off index maintenance cost against query effi-index, partitioned across nodes by attribute values; for each
ciency, in order to optimize the overall system cost. The value, some one node in the system is designated to manage
index, Adlib, dynamically adapts itself to operate at the and store the entire index entry — a list of all nodes with tu-
optimal trade-off point, even as the optimal configuration ples containing that value. The assignment of which nodes
changes with nodes joining and leaving the system. Wemanage which values may be done in different ways, for
use experiments on realistic workloads to demonstrate thatexample, by hash partitioning [18] or by range partition-
Adlib can reduce the overall system cost by a factor of four. ing [6]. Such a global index offers efficient querying; a
qguery for a given value is answered simply by contacting
the node managing the index entry for that value. On the
1 Introduction flip side, every time a nod#&’ joins or leaves the system,
all nodes that manage index entries for values owned by

A peer-to-peer (P2P) system consists of a large, dynamicneed to be notified, in order to update the index appropri-
set of computersnode$ spread over a wide-area network. tely. _
The scale and dynamism of the system precludes a node Many P2P systems are characterized by query rates
communicating directly with all other nodes. Instead, nodesthat are comparable to the rates at which nodes join and
are interconnected in averlay networkwith each node al-  l€ave [17, 19]. In such systems, the index-maintenance cost
lowed to communicate directly only with its neighbors on Of the global-index approach can be very high, and dwarf

the overlay network. We focus on systems where nodes conthe benefit obtained for queries. Worse still, as the systems
tain “related” data, i.e., we can view each node as “owning” scale up in terms of the amount of data owned by each node,

some tuples in a global, horizontally partitioned relation ~ the index maintenance cost grows much faster than the cost

A fundamental operation in such a P2P system is a selecOf queries, rendering the global index expensive.
tion query that requires all, or some, tuples that have a “key”  Our objective is to devise a self-tuning index that can
attribute A equal to a given value. Such a query may be an- dynamically trade off index-maintenance cost against the
swered efficiently using a distributed index that maps eachbenefits obtained for queries, in order to minimize the total
possible value of attributel to the set of nodes that con- cost of index maintenance and query execution. In addition,
tain tuples with that value. There are many different ways We require the scheme to scale well with the amount of data
of constructing such a distributed index, each of which of- owned by each node, since we expect the data volume per
fers a different trade-off between the cost of constructing node to grow rapidly over time, even more so than the num-
and maintaining the index, and the cost of using the index ber of participant nodes in the system.
to answer queries. We now illustrate the intuition behind our solution,

To illustrate, consider two common indexing structures Adlib, which offers the above desiderata. At its heart, Adlib
that have been proposed in past literature. In the Gnutella-can be viewed as a two-tier structure. Nodes are partitioned
style [1] approach, each node constructs a local “index” into independentiomains nodes within a domain build a
over the tuples that it owns itself. Therefore, a query for distributed “global” indexover the content stored in that
all tuples with a given attribute value needs to be sent to alldomain Thus, all query answers within a domain may be



obtained by contacting just one node in that domain. Find- of each of these structures in turn. In Section 4, we will see
ing all answers to a query entails contacting one node inhow these structures are constructed and made self-tuning.
each domain, which is fairly efficient if the number of do-
mains is small. When a node joins or leaves the system,2.1 The Intra-domain Structure
only other nodes within its domain need to be notified, thus
limiting the index maintenance cost. In Section 2, we pro-  Nodes within each domain construct a distributed index
vide a high-level overview of data storage, index construc- gyer the content in that domain, partitioning the index us-
tion and query routing in this basic architecture. ing hash or range partitioning [6]. For concreteness, we
The first issue arising from the above architecture is 10 gescribe a hash-partitioning scheme called consistent hash-
identify the right number of domains to use. In Section 3, jng [12]. Each node in a domain chooses a unique intra-
we develop a cost model to analyze the costs of queries angjomain ID, at random, from a large, circular space of IDs.
index maintenance, and characterize the optimal number ofy51yes for the search-key attributeare also hashed to the
domains needed to minimize the total cost of queries andsame space using a hash function; a node stores index en-
index maintenance. We validate our model by means of ex-tries for all values that hash to a number between the node’s
periments with realistic data, and show that our architecture|p and the next larger node ID in the domain. Recall that

offers the opportunity to reduce the overall system cost by the index entry for a value is a list of all nodes in the domain
a factor of four, compared to earlier solutions. that have a tuple with that value.

From our analysis and experimental results, we show Ngdes within a domain are interconnected iner-
that the optimal number of domains is a function of the |ay networkthat enables any node toute a queryg to the
number of nodes in the system. Consequently, the nUM-manager of the relevant index entry far We may use an
ber of domains has to change dynamically with the net- gyerlay network such as Chord [18], that allows a query to
work size. In Section 4, we introduce practical indexing pe routed to its destination using orty(log d) inter-node
algorithms and overlay networks that enable dynamic, self- essages, whergis the number of nodes in the domain.
tuning splitting and merging of domains . A key challenge Thys, a node may initiate a quegyand find all answers
we address is to ensure that the algorithms are fully dis-\yithin the domain using this structure.
tributed, require no centralized locking and synchroniza-  \when a new node joins the domain or an existing node
tion, and allow index reorganization while simultaneously |eaves, three operations need to take place: (a) the overlay
supporting queries in the system. We show experimentally network structure needs to be modified suitably, (b) index
that our algorithms operate well and provide good perfor- entries need to be re-distributed across nodes to allow the
mance even as the size of the network changes over time. new node to hold some entries, or to make up for the entries

The Adlib index also addresses challenges arising fromost py the leaving node, and (c) the index needs to be up-
the heterogeneity of the underlying physical network. Since gated so that the new nod&ententis indexed, or that the
the latency of communication between different nodes in g|d node’scontentis removed from the index.
the system may be different, we need to optimize query and  operation (a) is well-understood, and it is well-
index-maintenance traffic for such a physical network. We ynown [18, 16] that the overlay network can be updated

discuss such network optimizations in Section 5. efficiently as nodes join and leave, using j§log d) mes-
sages per join or leave. (In contrast, if each node knows
2 The Adlib Architecture every other node in the domain using a replicated directory,

updates for node joins and leaves would have to be sent to

We now describe the high-level architecture of the Adlib €Very node in the domain, which is very expensive.)
index. For now, assume that there is a fixed number of do-  OPerations (b) and (c) have received less attention in past
mainsk. Each node is assigned to one of thésgomains  lltérature, and we focus on them. When a new nedeins
when it joins the system, for example, at random. Queriesthe domain, (i) it takes over some index entries from an ad-

may be issued by any node in the system and are of twolacent n_ode, and (ii) for each tuple thatowr_ws, it hashes the
types. Atotal-lookupquery requires all tuples that have a key attribute of the tuple, and sends the index entry for the

specified value for the search key. partial-lookupquery ~ {UPle to the appropriate node by routing it using the overlay
requires anyP tuples that have the specified value for the Structure. Both these operations are straightforward. Up-
search key, for some constaRt If the number of tuples dating the _mdex when a node Ieave_s is more interesting. We
with that value is less tha, the partial-lookup query is ~ NOW describe two approaches to this problem.
equivalent to a total lookup. The Time-Out MechanismThe traditional approach to in-
Adlib uses a two-tier structure — intra-domain and inter- dex updates is the time-out mechanism [11]. Each inserted
domain — to index content and execute both total- andindex entry has a time period, sdy seconds, for which it
partial-lookup queries. We now discuss the basic designstays alive. After this period, it “times out” and is deleted by



the node storing the entry. Nodes that are alive for long peri-tuples owned by each nodédeing only a linear function of
ods of time will “refresh” the index entries for their content domain size — and allows the system to scale up well as the
everyT, seconds. (We assume that refresh messages can beumber of tuples per node increases. Moreover, even when
sent directly to the destination node instead of having to be nodes have a skewed distribution of tuples, the maintenance
routed along the overlay network.) When a noeddeaves, cost for the different nodes still remains relatively uniform.
index entries for its content will not be refreshed, and will Second, there is little additional overhead for index update,
therefore be deleted withifi, seconds. Nodes that attempt when index entries are replicated across multiple nodes to
to contactm to refresh entries managed by will realize deal with node failures [18, 5]. We will compare and con-
thatm has left, and may reinsert the index entries into the trast time-outs with update broadcast in Section 3.2.
system.

The size of the time periof, offers a trade-off between 2.2 The Inter-domain Structure
the cost of maintaining the index andery accuracylf T,
is small, the maintenance cost is high since nodes have to So far, we have seen how a node may find all query an-
refresh index entries frequently, but there are very few queryswers within its own domain using the intra-domain index
results that refer to data no longer in the system (few falseand overlay network. Executing a partial- or total-lookup
positives) and nearly all available results are returned by thequery requires nodes to be able to gather results from some
qguery (few false negatives). T, is large, the maintenance or all domains in the system respectively. We now describe
cost is low, but query results may be less accurate due tothe intuition behind the construction of an inter-domain
false positives stemming from stale index entries to non- overlay network, and a query propagation algorithm, that
existent data, and false negatives due to the loss of indexenables such queries.
entries for data available in the system. Our solution relies on iterative broadcast, and has a sim-

Observe that the maintenance cost for a node increasegle intuition. A node first finds all answers to a partial-
linearly with the number of tuples stored by that node, when lookup query within its own domain. If the number of an-
the number of tuples is small compared to the domain size.swers proves insufficient, it attempts to find answers from
This means that the maintenance cost does not scale well agne additional domain (bringing the total number of do-
the amount of data per node increases. mains searched to two). While the number of answers found
proves insufficient, the node keeps doubling the number of

number of nodes in an Adlib domain offers an alternative domains it searches until either a.sufficient number of an-

approach for index maintenance that has not been studied i vers are found,_ or all the domains have bgen_searched.
the P2P literature. Whenever a naNdeaves the domain, ~ "WHen anode desires a total lookup, the query is simply sent
its successor — the node with the next larger ID — broad—to all the domains.

casts the information abow{’s departure to all the nodes I_n tor_d?_r Lortthetﬁbove;pproztic_z t?{hwqu' no(;jes n_eet\tho
in the domain. This broadcast may be achieved efficiently maintain inks 1o other nodes outside théir own domain. Yve
defer a detailed discussion of this inter-domain interconnec-

on the overlay network, and requires odly 1 messagesin . . . .
Y g y g tion structure to Section 4. Here, we simply note that, if the

ad-node domain. We present details in Appendix A. Eacht tal ber of d ins ik h nod intains links t
node receiving the broadcast then eliminates index entriesg? n]l:m edr ot O;Eamds' » €ach no de rr:am ains ;n sto
for N's tuples. (If some of its own content is indexed\at (log k) nodes inotherdomains in order to support query

the node also re-inserts index entries for that content subsefou“ng' A query may be sent tbdomains using less than

quently.) We call this thepdate-broadcashechanism. 2f mter-domam messages. . .
i We summarize the intra- and inter-domain overlay struc-
One may wonder how'’s successor learns of the depar- ; . o
. . o : ture with the following theorem describing the number of
ture of N in the first place. This is achieved by the exchange . : :
N N . links established by each node, and the cost of queries.
of periodic “heartbeat” messages between adjacent nodes . .
) Proofs are in Appendix B.
Overlay networks already require such message exchange
between successive nodes for their maintenance [18, 5, 11]Theorem 1. If there aren nodes in the system distributed
therefore, the heartbeats do not create an additional overuniformly acrossc domains, the following statements hold
head. The periodicity of heartbeats governs the delay in up-with high probability:
dating the index to eliminate stale entries and, consequently, (a) the total out-degree of each nodei$log n),
the query precision. Typically, heartbeats are very frequent (b) the number of messages exchanged to handle a node
(we assume at least one a minute), and we will see that thgoin or leave isO(log n),
query precision is consequently very close to 100%. (c) a total-lookup query initiated by any node takes
Update broadcast offers two potential advantages overO(k + log(n/k)) messages to obtain all answers,
the time-out mechanism. First, the cost of broadcasting the (d) a partial-lookup query that contacfsdomains takes

failure of a node isompletely independent of the number of O(f + log(n/k) messages to obtain answers,

The Update-Broadcast MechanismThe relatively small



(e) if the latency of a message transmission is one timeformula to estimate the cost of partial-lookup queries re-
unit, a total-lookup query is answered ifl(logn) time guires a model of how content is distributed in the network.

units, and a partial-lookup query i@ (log” k + log(n/k)) For the purposes of analysis, we postulate the following
time units. model of content distribution: The set of tuples owned by

each node is drawn from a fixed universe of tuples, and is
3 Optimizing Costs in Adlib and Validation independent of the total number of nodes in the system.

The above postulate is reasonable, since it merely says
Having seen the basic Adlib architecture, we now devise that the content of a node is independent of the system size.
a simple model of the costs of indexing and queries in this A partial-lookup query requires a fixed number of answers
architecture. From this model, we identify the optimal num- and needs to examine some number of nodes)gaybe-
ber of domains to use in order to minimize the total system fore it is satisfied. We model the execution of the partial
cost. We then validate our model and analysis with an ex-lookup as examining nodes one by one in random order un-
perimental evaluation of the architecture on realistic data. til the query is satisfied.

By our assumptions, it follows that the random variable
N, is dependent only on the value being queried for and the
distribution of content, and is completely independent of

Say nodes havetuples each on average, have an aver- ihe number of nodes in the system. Therefore, the number
age lifetime ofL seconds, and an average query rat€of ¢ nodes to be examined by a partial-lookup query, aver-

queries per second. We assume nodes are uniformly disygeq over all queries, is a constant. We denote this constant
tributed acrosg domains, i.e., each domain hagk nodes.  ,umber of nodes ag.

Throughout our analysis, we will ignore integer round-off ) )

errors: we assume/k is an integer, thak is a perfect mul- The costs of partial- and total-lookup queries can then be
tiple of the time-out period, and so on. modeled as follows:

Update CostRecall that there were two alternatives for up- A total-lookup query requirek.5k+0.5 log(n/k) messages
dating indexes: the time-.out mechanism and update broadyg fing all answers, while the average partial-lookup query
cast. We now characterize the costs of both these mecharequires3Ck/n + 0.5log(n/k) messages to find sufficient
niSms. answers.

3.1 Modeling and Optimizing Costs in Adlib

Theorem 2.(a)The cos.t of index creation and maintenance Optimizing Costs Having modeled both update and query
with update broadcast i3/ L)(1 — k/n) +n/(Lk) mes-  coqts e can now identify the optimal domain size in or-
sages per node per second. _ der to minimize the cumulative cost of queries and up-
((b) For a time-out periodl,, the cost of index cre-  yatag |f all queries are total lookups, we see that the total
ation and maintenance with time-outg#/L)(1—k/n) + cost per node per second(®& /L)(1 — k/n) + n/(Lk) +
w1, (1= (1 = k/n)") messages per node per second. Q(1.5k + 0.5log(n/k)), which is minimized wherk ~

Corollary 1. For a time-out periodl},, the time-out mech-  V/27/(3QL). Thus, both the number of domains and
anism is more efficient than update broadcast if and only if the domain size should b@(y/n), when queries are total
(1-k/n)t>1-T,/L. lookups. (If the query rate is extremely hlgglf may b.e—
come less than, in which case the optimal solution is to
We see that the cost of the time-out mechanism is de-just use a single domain.)
pendent on the time-out peridd,. If T, is very large, the

time-out mechanism is more efficient than update broad—mized whem /I ~ 3COL = 3%. In other words, the opti-

cast. However, a largg, also implies that query accuracy S Y )
is extremely low, whereas update broadcast always of“fersmal domain size is independentefand dependent primar-

high accuracy. For reasonable valuesTpf(as we will de- ily on the number of nodes desired to be reached by a partial
rive from our experiments), we can see from the formula lookup, the query rates and lifetimeS@Q L >>  typically,

that the time-out mechanism will be more efficient only if zfng:eni?ﬁf:ﬂsp Zir?gr:/seré Vgﬁ:g; Coposegrl:iizg’mg]?fp'
t is very small, om/k, the size of a domain, is very large. y prop

Experimentally, we will see that update broadcast is more queries are a mix of_partlal and total Iooku_ps, We may once
efficient upto a domain size &000 even when each node again _derlve the o_pt|mal number .Of domains to be roughly
has as few as 300 tuples. Consequently, we focus the rest OI]Jnear in+/n, but slightly less than in the total-lookup case.
our analysis on update broadcast. In summary, the optimal number of domains is propor-
Query Cost Modeling the cost of total-lookup queries is tional to+/n for total-lookup queries, and proportionalio
straightforward. However, coming up with an analytical for partial-lookup queries.

If all queries are partial lookups, the total cost is mini-



3.2 Validation anism between query accuracy and the cost of periodic re-
fresh messages, for different values of the time-out period

We now evaluate the Adlib architecture, and our analy- 0. This trade-off is independent of the number of nodes in
sis of the optimal domain size, using real data gathered bythe system. Figure 1 depicts the fraction of stale answers,
Saroiu etal. [17]in a study of the Gnutella file-sharing net- 1-€., the fraction of false positives in the query results, as a
work. The study provides information about a set of 3791 function ofT;,. We see thatif’, is one hour, more than 40%
hosts (nodes) participating in the Gnutella network, togetherof the answers are stale. In order to achieve a staleness of
owning more than 400,000 files. The data includes the list under 10%7’, needs to be smaller than 10 minutes. (Since
of all files being shared by each node, and the lifetime of lifetime measurements are made at coarse granularity in our
each node. We treat each keyword in a file name as a tupledata set, it is hard to accurately determine the time-out pe-
owned by the node, after eliminating stop words like “the” riod necessary to achieve lower values of staleness.) We do
which are ubiquitous. not show the effect of, on false negatives, as it is similar.

On cleaning the data in the above fashion, each node Figure 2 shows the cost of update broadcast, as well
ownst = 307 tuples on average. Node lifetimes follow as time-outs (with7, = 10 minutes), for different do-
a skewed distribution, with a mean lifetime of 3 hours, and main sizes. (We do not depict the costs of inserting and
a median lifetime of 54 minutes. We extrapolate this data re-inserting index entries, since they are the same for both
to simulate larger systems withnodes, for arbitrary, as- schemes.) We see that the cost of the broadcast increases
suming that each node’s lifetime characteristics, and set oflinearly with the size of the domain, and exceeds the cost of
tuples, follows the same distribution as that of the measuredthe time-out mechanism for domain sizes larger than 5000.
data. Note that our extrapolation is limited by the fact that This is in agreement with the estimate obtained from the
we cannot create “new” tuples when increasing the numberformula in Section 2.1, plugging in the appropriate values
of nodes beyond000; we only end up replicating content  for the relevant parameters. For domain sizes smaller than
already present in the system, which helps increase the suc1000, we see that update broadcast uses only one-fourth as
cess rate of partial-lookups. However, this limitation does many messages as the time-out mechafusithe same do-
not affect our evaluation of total-lookup queries. main size

Our query workload is obtained from a study of the Note that the fraction of false positives using update
Gnutella network by Yang et al. [20] which gathered a trace broadcast (not shown in figure) is less than 1%, compared to
of 100,000 queries being executed on the network; we treatthe 10% of the time-out mechanism. Also note that the cost
each keyword as a separate query issued in the system. Weepicted for the time-out mechanism is theeragecost per
obtain the query rate from a different study by Yang et node; the maximum cost for a node is a factérhigher.
al. [19] on the OpenNap system, which suggests that theFinally, if the system content scales up#o= 3000 tu-
rate is0.00083 queries per node per second (one query per ples per node, the update cost with timeouts increases nearly
node per 20 minutes). ten-fold, while the cost of update broadcast remains almost
Simulation SetupWe simulate am-node Adlib withk do- the same. We conclude, therefore, that update broadcast is
mains, assigning each node to a random domain. Nodedeétter than time-outs for reasonably sized domains, and is
join and leave the network, with the lifetime of nodes being likely to become more desirable as the data per node in-
drawn from the measured distribution of lifetimes. Each Creases.
node leave is accompanied by a new node join, to ensureg, Query Cost
that the total number of nodes is always aroundNodes — Figyre 3 depicts the cost of queries, in terms of the num-
issue queries at a uniform rate (of one query every 20 min-per of messages processed per node per second, on a 32K-
utes). When a node joins or leaves, we allow the overlay noge network for different domain sizes. The figure depicts
network to adapt “instantly” to set up the appropriate links. e cost of both total lookups, and partial lookups which are
We thus do not simulate the effects of inconsistencies in theierminated after finding the fir&0 query answers. Not sur-

overlay network on query performance; we believe this is yisingly, we see that the cost of queries decreases as the
acceptable, and even desirable, since our focus is on evalgomain size increases.

uatingdata-centriceffects and costs, rather than on the ro- When the domain size is very small (128 nodes), the cost

bustness of the routing network structure. \We assume N0y o1 |ookup is fairly high (0.22 messages/second). As
messages are lostin communication; again, we believe suchy, o jomain size increases, the cost of total lookup falls off
an assumption is appropriate in this context. drastically, and is less thah05 messages/second for do-

A. Update Costs main sizes larger than 1000 nodes. Even more interestingly,
Our first undertaking is to evaluate the relative costs of the cost of partial lookup is extremely “flat”, suggesting that
index maintenance with time-outs and update broadcastthere are enough answers available for many queries, so that

We first quantify the trade-off offered by the time-out mech- it is sufficient to use small domain sizes and query only a
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C. Overall Cost

Having seen that update costs increase with domain size
while query costs decrease, we now showdkerall cost
of queries and index maintenance in order to understand the

total system overhead in maintaining the index and execut-
ing queries. We define the overall cost as the sum of the total
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query cost, the index-maintenance cost (including insertion,
re-insertion and movement of index entries), and the cost of

maintaining the interconnection structure as nodes join and
leave the system, with all costs measured in terms of the

size

number of messages per node per second. Note that this cal-
culation leaves out the cost of periodic keep-alive messages

between adjacent nodes (recall that we assume a periodic-
ity of one message per minute), which is the same for all
domain sizes, and has very little cost, as discussed earlier.

Figure 4 plots the overall cost of the Adlib structure as
a function of domain size, for a 32K-node system. For do-
main sizes larger thad000, we use the time-out mechanism
for index maintenance to present the best possible overall 0
cost for each domain size. Note that the right extreme, with
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the domain size being 32768, corresponds to using a global

index. On this extreme, nodes process an average of 0.6

messages per second. On the other hand, with a domain size of 5,
of 256, the average number of messages for partial-lookup

queries and updates is ortlyl 5 per second, thus being four i . L
times as efficient as the use of a global index. Even with all Partial lookups, the optimal domain size initially creeps up
queries being total-lookup queries, a domain size of 512 isSIOWly with n, but flattens out as the number of nodes in-

seen to require only aboQt2 messages per node per sec- Créases. This result is fairly consistent with our model in
Section 3, which suggests that the ideal domain size is a

fixed constant. However, our model assumed that the num-
ber of nodes in the system is larger thiiarthe average num-

ond, which is only one-third the cost of a global index.
D. Varying the Number of Nodes

Next, we attempt to identify theptimaldomain size as
a function of the number of nodes For each value of
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Figure 5. Optimal Domain size as a function

ber of nodes to be contacted for a partial lookup. When
: . ) - _is smaller thanC', this assumption is not true, and partial
we consider, we run multiple experiments, each with a dif- |5okups with few results behave more like total lookups.

ferent value of domain size, in order to identify the optimal Consequently, it is possible to get away with a smaller do-
domain size for both total and partial lookups. We then plot 1 ain size whem is very small.

this domain size as a function ofin Figure 5. __
For total lookups, we observe that the optimal domain E- Scalability w.r.t. data
size is almost exactly proportional {gn, as predicted by

To illustrate scalability with respect to the number of tu-

our model. (Observe that the optimal size is nearly 500 for ples per node, we consider a 32K node system with nodes

n = 32768 and increases to 1000 whemguadruples.) For

having to index an average of 3000 keywords each, which



is a factor 10 higher than that in our prior experiments. D

3 5 3
The overall cost of a global index goes up fréné mes- /\ 2 7 7
sages/second 5 messages/second (a near-linear costin-  p, D, 0 0
crease); on the other hand, the overall cost for Adlib, witha "\ 9
domain size oR56, rises only ta0.86 messages/second. Dy Do 13 7 1
a) (b) (©)

3.3 Summary (

We have seen that the use of Adlib can lead to a large  Figure 6. () A Hierarchy of Domains (b) Stan-
improvement in overall system cost, compared to the use of ~dard Chord links (c) Altering Chord to make it
a global index. In addition, Adlib scales well with respect ~ hierarchical
to the number of tuples per node. We have observed that the
optimal domain size, when optimizing for partial-lookup yee, as shown in Figure 6(a). Initially, all nodes are in a sin-
gueries, is roughly constant and between 200 and 300 forg|e “root” domainD. As the domain grows larger, it splits
a wide range of network sizes (for the query rates and nodejnto two domainsD, andD;. DomainD, may itself grow
lifetimes observed in Gnutella). All the above conclusions larger over time, and split intBy, andDy; and so on, thus
are consistent with our model of Adlib which suggested that ensuring that the leafs of the binary tree correspond to the
the optimal domain size is constant for partial lookups, and get of domains. Similarly, two sibling domains may merge

proportional to,/n for total lookups. into a single domain, which corresponds to deleting two sib-
o ) ) ling leaves in the tree. TH® of each domain is defined as
4 Designing a Self-tuning Adlib the label along the path to the domain from the root; thus,

Dy has ID00, D, has ID1, and so on.
Having seen that the ideal Adlib structure should have a
number of domains that varies with network size, we now

e o s I e g0 s S ich g0 .. We sz
' g 9 each noden chooses a randotV-bit hierarchy 1D H (m)

to enable a dynamic, self-tuning index that approaches the L
X . ' . . when it joins the system (for some large valueNof. We
optimal index configuration even as the number of nodes in . . . )
. . can then identify what domain the nodebelongs to: the
the system varies over time.

. . leaf domain whose ID is a prefix df (m). Thus, in our
A natural way of varying the number of domains used example. all nodes with a prefixao to Do and nodes with
in Adlib is to split a domain into two whenever the number Pl b 9 0

of domains is too few, and to merge two domains when- prefix1 go to Dy. Note thatt (im) is completelyindepen-

. X . dentof the intra-domain ID of node: that may determine
ever there are too many domains. Performing such domain.

" L . ) its intra-domain links and index allocation.

splitting (and merging) introduces multiple challenges:

The Overlay Problem:Nodes should not be required to

abandon their existing overlay links and set up new links 4 1 The Overlay Problem

on a domain split, since such re-linking can prove very ex-

pensive. Query routing and broadcast must still operate ef-

ficiently under splits. Let us first consider the challenges in constructing the
The Re-indexing Problenithe splitting or merging of do-  intra-domain overlay network. Imagine all nodes are ini-
mains requires a corresponding splitting and merging of in- tially in domain D and have constructed an overlay net-
dexes. Such re-indexing can prove expensive and must b&vork among themselves. As before, we assume the index is
made as efficient as possible. hash-partitioned across nodes, and Chord [18] is used as the
The Atomic-Split ProblemDomain splits and merges must overlay network. Figure 6(b) shows the set of links made by
not require synchronization of all nodes in the domain, since node0 in a Chord [18] network. (The labels of nodes stand
such synchronization may prove impossible in a dynamic for their intra-domain I1D.) At some point, domain may

P2P system. Queries must continue to succeed even whesplit into D, and.D,, with each node going t®, or D; on

only a fraction of the nodes have split, while others have the basis of its hierarchy ID. The figure depiddg nodes

not. by solid circles, and th®; nodes by hollow squares.

We will presently show how each of the above challenges  afier the split, theD, nodes form an overlay network all
may be handled. by themselves (shown in Figure 6(c)), as do fenodes.
Domains as a Binary TreeWe can visualize the set of do- In standard overlay networks such as Chord, the set of links
mains at any point of time as being at the leafs of a binary for the Dy and D; Chord networks is very different from

Assigning Nodes to DomainsWhen a domain, say,
splits into Dy and D,, we need a mechanism to decide



the set of links in the original network fdp.* For example,  Algorithm 1 CrescendoJoin(Node)

node0 is particularly unlucky, as it needs to establish three 1: LetPre(a,b) = length of common prefix oH (a) and H (b).

new links to node8, 7 and11 in the Dy network. Thus, the 2: for 1 = length(H(m)) downto0 do

split can prove to be very expensive. 3. dmin = min,, {Dist(m,m')|Pre(m,m') =1+ 1}
Thus, our problem is the followingDevise an overlay 4 Di = {m/|Pre(m,m’) =l andDist(m,m') < dmin}

network that allows domains to split and merge without re- 5 Seétup links to (a subset of) nodesin, as dictated by the

quiring any links to change at all, while still enabling rout- ~__ ¢hordrule

ing in O(logn) hops withO(logn) links per node. Our 6: end for

solution is to avoid using Chord and build a different over-

lay network instead. The key observation here is that the

link structure forD should be set up anticipationof the

possibility thatD may split intoDy andD;. If we could

ensure that the network of nodeslihalreadycontainsthe

Dy and D, networks as subgraphs, there would be no need , o

to create new links when the domain splits. Of course, this |NTER-DOMAIN LINKks: Consider a noden with hierar-

process needs to happen recursively; sifigemay itself chy ID b1 bobs . .. by, Where eachb; is either zero or one.

split later on, theD, network should contain th®y, and L&t Si denote the set of nodes with hierarchy 1D prefix
Do, networks as subgraphs, and so on. b1by...b;_1b;. Nodem establishes a set @f inter-domain

K links, with thei** link being to the closest predecessonof

called Crescendo [7] with such recursive structure, while I (€ SetS;. (Here, predecessor is defined on the value

still_ensuring O(logn) links per node and routing in of nodes’ intra-domain I.Ds.) the't.hat the sef; will be

O(log n) hopg. empty for large values aof, thus limiting the number of ac-
tual links established.

inspired by the hierarchical structuring of domains as a bi-
nary tree, and bears some resemblance to overlay networks
such as Pastry [16]. Each node establishes a seitef
domainlinks, one link at each level of the domain hierarchy,
as defined below.

Exploiting this observation, we construct a networ

Summary of CrescenddWe present a high-level summary : o _
of Crescendo, which is necessary to explain the rest of our 10 €xplain the above definition, a node forms inter-
algorithms. For more details, see [7]. The way a new nodedomain links to some node in the sibling subtree at each
joins the system and sets up links is shown in Algorithm 1. level of the hierarchy. The link is not just to any node in the
The intuition behind the algorithm is simple: a node first subtree, but to the node whose intra-domain ID is closest in
joins and sets up links to other nodes at the lowest level inValue tom’s intra-domain ID while being less than or equal

the hierarchy, and progressively adds a few more links att0 it To illustrate, nodé) in our example forms a level-
each higher level. link to its closest predecessor in domd, i.e., hodel 3.

To illustrate, consider the set of nodes in Figure 6(b), It forms a level2 link to its closest predecessor iky;, and

and imagine nod8 is the last node being inserted. Let us S° 0N

suppose that there are only two levels in the hierarchy. Node ~ The total number of inter-domain links per node is at
0 first joins at the “lowest level” domaiD, and sets up ~ MOst the number of non-empty levels in the domain hierar-
links with someD,, nodes, choosing links just as in Chord; Cchy; when hierarchy IDs are chosen randomly, the num-
the links it sets up are as in Figure 6(c). It then “goes up” a ber of such levels i€)(logn), ensuring that each node
level to form additional links with other nodes in domadn ~ Maintains onlyO(log n) inter-domain links. The details of
However, the only additional links it creates are to (some) how to maintain this structure as nodes join and leave are

in this case, to nod2. hierarchy ahead of time, the splitting of a domain into two

Crescendo. with its recursive structure. solves our IOrOb_does not necessitate the formation of any additional links to

lems since no new links need to be created on domain splitgMaintain the structure.

and merges, and still offers us all the desired intra-domainQueries and Iterative BroadcastFor now, imagine that
routing properties. domain splits and data re-indexing occur instantaneously,
The Inter-Domain Structure Having fixed the intra- SO that each domain indexes its local content at all times.
domain overlay problem, we now turn our attention to con- We describe query routing under this assumption, and relax
structing arinter-domaimetwork to enable iterative propa- this assumption in Section 4.3.

gation of a query to any number of domains. Our solution is Partial Lookupd_et us first consider partial-lookup queries.
A query is first evaluated in its own domain, by routing it
LIn expectation, half the links i will exist in Dy or D1, while the to the relevant index node using the links defined in Al-

other half are new links. . s . . .
2Another network with such recursive structure is the skip graph [4]. gorlthm 1. If the answers within the domain are insuffi

We use Crescendo as it is more general than the skip graph, as we discus§1€Nt, _the query istterativ_ely broadcast to more a_nd_ more
in Section 5. domains, roughly doubling the number of domain in each




step. We may visualize this process in terms of the domainAlgorithm 2 PartialLookupQuery(StartNode Queryq)
hierarchy: a query is first sent to the sibling domain in the 1: Answers=indintraDomainAnswels, q)
hierarchy at level, say, then to all domains in the sibling 2: Let the query reach node within the domain. Let the

subtree at levdl—1, then to the sibling subtree at level 2, current domain level be
and so on, until all domains are reached. (See pseudocodes: Letm’s inter-domain link at levek be to noder,,.
in Algorithm 2.) 4: for x = [ downto0 do

If sufficient answershreak.
Answers=Answers+PropagateQuery(x + 1, ¢,m)
end for
: return Answers to node

To illustrate, consider a query initiated in domdiy
whose relevant index is stored at nadéf answers ab are
insufficient, node) sends the query to domaiby;, using
its level2 inter-domain link to its predecessor iy, say
p. Once the query reaches noglet is routed withinDg;
using intra-domain links to reach the relevant node in that Ajgorithm 3 PropagateQuery(CurrentNode, LevelOf-
domain. Note, however, that sinpds the immediate pre-  propagatiorh, Queryq, SourceNode)
decessor ob), it is very likely thatp, or one of its immediate
successors, stores the relevant index entry for dobgin
Therefore, the query can be answered in donfajn using
just a constant number of messages in expectation.

If the answers from domai®,; are still insufficient,
node0 sends the query up to the next level in the hierarchy:
all leaf domains undeb;. NodeO uses its levelt inter-
domainlink, i.e., to nodé3, in order to propagate the query
to D,. If D, is a leaf domain, nodé&3 would simply route
the query within that domain to obtain results. But may
not be a leaf domainitself, and may have many leaf domains
in its sub-tree. In this case, nod® recursively broadcasts
the query to all domains in th®, subtree, with all answers We present analysis of the partial- and total-lookup algo-
being sent to nod@ The algorithm for this recursive broad- fithms in Appendix B. We simply note here that the mes-
cast is almost identical to the total-lookup algorithm that we sage complexity and the latency experienced by queries are
describe next. (See pseudocode in Algorithm 3.) as described in Theorem 1 (Sec. 2.2).

Total LookupsVhen a query requires all answers in the sys- Summary We have now described intra-domain and inter-
tem, it needs to be broadcast to all domains. The first step indomain overlay networks in which all nodes havfogn)

a total lookup is the same as the partial lookup: the query islinks each, which allows efficient routing and broadcast of
first routed within the original domain to get to the respon- queries within and across domains respectively. Domains
sible node, nodé in our example. Nodé then sends the  may split and merge at will, and do not require changes to
query usingall “inter-domain” links that connect to nodes the link structure.

outside its current domain. In our example, nddsends

the query to nodé3 in D, designating nodé3 responsi- 4.2 The Re-indexing Problem

ble for broadcasting the query to all domains in the entire

D, subtree. Nodé also sends the query to its predecessor  Having taken care of the overlay problem, we now turn
in Do designating it responsible for broadcasting to all do- to the re-indexing problem. When domadihsplits into D,
mains in theDy; subtree. (Of course, in our examplgg, andD;, index entries need to be moved since ihgnodes

is a domain itself.) Although nodeé may also have more  should now index only content iRy, while D; nodes need
“inter-domain” links to other nodes iy, it does not use  to indexD; content. It turns out that such re-indexing is not
them for broadcast, since it realiz€, is a domain by it-  too expensive, since only pairs of nodes need to communi-
self. (See pseudocode in Algorithm 4.) cate to exchange index entries.

The primary difference of this approach from the partial- ~ Consider the example network in Figure 6(b). Initially,
lookup algorithm is that nodé uses all its inter-domain  all nodes are in the same domain, so that nodedexes
links simultaneously, instead of using them one at a time all content hashing to the ran{fe 2), while node2 indexes
and waiting for results. Note that the broadcast algorithm all content in rangé€2, 3). When the domain splits, node
requires the ability to broadcast within a subtree as a sub-should index onlyD, content in rang¢0, 3), while node2
routine. This is easy to do: a node required to broadcast inindexesD; contentinf2, 5). In order for this transformation
a subtree at levéluses all its inter-domain links except the to occur, nod® needs to obtain index entries by content
links for levelsl toi — 1. in [2, 3), which it may receive by communicating with node

© N o g

1: Let the current domain level for node=[
: Letm/’s inter-domain link at levek be to node,.
:for x =htol—1 do
PropagateQueny(., z + 1, q, s)
end for
. FindIntraDomainAnswel, ¢) and return them te

Algorithm 4 TotalLookupQuery(StartNode Queryg)
1: Route the query within the domain; let it reach nede
2: PropagateQueryt,0,q,s)




2. (Recall that the two nodes already have a link betweenAlgorithm 5 DomainSplit(Noden)
them in the network.) Similarly, nodecommunicates with 1: loop

node3 to obtain all its index entries. In general, eabb 2:  [=Current domain level ofn
(resp.,D;) node only needs to receive data from abe 3.  n=Estimate of current domain size
(resp.,Dg) successor (in expectation) in order for the re- 4 if 72 > Split Thresholdhen
indexing to complete. Such data exchange is made easier>: s = Successor oin at levell + 1

for all m' betweenm ands s.t. Pre(m, m’) = [ do

by the fact that these pairs of nodes also have a link to each & . . .
7: {There is only onen’ in expectatiof

other in the interconnection network.

8: Get index entries for levelt + 1) domain fromm/
9: end for
4.3 The Atomic-Split Problem 10:  end if
11: end loop

Two questions remain. (1) When should a domain be
split into two, and when should two domains merge? (2) ally come to the same conclusion on whether to split or not,
How can the split be performed without requiring all nodes based on the domain size estimate.
to act simultaneously? How do we handle queries that are But what happens to queries that are executed in the sys-
issued while a split is going on? tem during this intermediate stage where some nodes have
When to Split To answer the first question, we observe that split and others have not? The careful establishment of the
the optimal domain size is a function of the number of nodes intra-domain and inter-domain links ensures that queries are
in the network when optimizing for total lookups, and is a completely unaffected by the asynchronous splitting of do-
fixed constant when optimizing for partial lookups (assum- mains. Thanks to an intra-domain routing property called
ing that other system characteristics such as average nodpath convergendg], we can prove that all queries will con-
lifetime are stable). If a node can estimate the total size oftinue to retrieve all the relevant answers. We now explain
the network, as well as the current size of its domain, it can this path convergence property, and show why it solves the
decide whether the current domain size is too large or tooatomic-split problem.
small. If the domain size is too large (say, greater than twice Path Convergence_.et S be a set of nodes with a common
the optimal size), the node may initiate a domain split oper- {-bit prefix in their hierarchy ID. Consider a node not
ation. If the size is too small (say, less than half the optimal in S that shares a prefix of lengt < [ with all nodes in
size), the node initiates a merge operation. S. Then, the routing path from every node in S to node
Network-size estimation is a well-studied problem and using intra-domain links, must go through some common
standard techniques, e.g., [13], can be used to estimate bothodec in S. This common nodeis the closest predecessor
the network size and the domain size. Since domain sizef nodem in S.
are fairly small, one may even obtain more accurate esti- To illustrate path convergence, consider some node
mates using a broadcast message to count the number ab, attempting to route a message to n@dléreating the
nodes in the domain. Hereonin, we simply assume that itentire system as a single domain). Path convergence states
is possible to obtain reasonable estimates of domain sizehat, no matter what is, the routing path fronm to node
and network size. (Note that when optimizing for partial 2 must go through nod@ (Note that) is the closest prede-
lookups, we do not need an estimate of the network size.cessor of in domainD,.)
We merely have to check if the domain size is much greater  To understand why path convergence helps in ensuring
than or much less than a constant.) correct queries, let us consider a query for a Eéythat
Splitting without synchronization For the second problem hashes to the valuz Index entries fo#< could potentially
of how all nodes in a domain split at the same time, we sim- be stored at a number of nodes. If ndtbelieves that its
ply allow each node to figure out for itself when the domain domain consists of the entire systdm 2 would hold all
ought to split, and then act upon that decision. Its actionsentries forK. If node2 believes its domain i®1, it would
consist of contacting nodes in the new sibling domain and have only the index entries availablelin , and would have
obtaining index entries from them for contentin its own new handed off the entries fab, data to nodd). Of course,
domain, and are described in Algorithm 5. node0 might itself believe its domain to bBg, in which
Observe that the algorithm is completely independent of case nod® would have handed off some entries to the rel-
whether other nodes have chosen to split or not. Thereforegvant node inDy;, and so on. In any case, the relevant
it is entirely possible, and indeed inevitable, that a situation index entries for key is stored overl set of nodes dis-
arises where some nodes in the domain have chosen to splitributed across all branches of the domain hierarciiso
and have modified their index content appropriately, while observe that the nodes in this set are connected by inter-
other nodes are yet to split. We note, however, that such adomain links.)
situation will not last forever, since all nodes will eventu- Now consider a node:, say inDy, that initiates a query
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for key K. Since nodes don't synchronize when performing is typically very small and the estimation can often be done
splits, nodem doesnot have any idea which set of nodes by piggybacking on other traffic in the P2P system [13].
contain the index entries foK. In order to answer the

query, nodem uses its intra-domain links and routes the 45 Evaluation

query towardsK'’s hash value, i.e.2, treating the entire

system as a single domain _ We now evaluate how Adlib, with dynamic variations in
By the path convergence property, this query messagethe number of domains, scales as the number of nodes in the
must reach node along the way If node0 already has per-  system increases continuously. Our objective is to measure
formed domain splits and is responsible for storing some tyq things: (a) the overall system cost, measured as the sum
entries for keyX’, node0 intercepts the query message, of the query and index-maintenance costs, for different net-
terminates intra-domain routing, and returns the answers ityqrk sizes, as the network evolves, and (b) the cost of the

contains tom; more answers, if necessary, can be discov- aqaptation itself, i.e., the overhead involved in performing
ered by nod@ using its inter-domain links to reach domains - gpjits and merges themselves.

Dy, Dy, etc. If node0 still believes that its domain is the Our experiment begins with = 4096 nodes in the sys-
entir_e systenD (_i.e., node2 still contains all entries for ke_y tem, and the size of the system increases as nodes progres-
K), it does not intercept the query message, and continues;yely join. As the number of nodes increases, domain splits
to route it using intra-domain links. The query would even- may occur as dictated by the splitting algorithm. We op-
tually reach node, which contains all the answers f6f  {imize for partial-lookup queries and, in keeping with the

in this case and can return these answers.t®8y a similar evaluation in Section 3.2, require that the maximum do-
argument, it is easy to show that (a) all queries are able toain size bes12, i.e., a domain is expected to split when
retrieve all the data in the system in an appropriate fashio_n,it becomes any larger. We assume that nodes have an accu-
and (b) update broadcast messages can also be transmittggte estimate of domain size; relaxing this assumption only
to ensure that the relevant nodes will receive a broadcaskeyyes to stagger a domain split over a slightly larger period

message informing them of node departures. of time, and has little impact on costs.
) ) The continuous growth in system size is interspersed
4.4 Discussion with periods of “stability”; during these periods of stabil-

ity, nodes join and leave at an equal rate (ensuring that the

Domain MergesSo far, we have discussed only the split- system size remains stable) and issue queries. Node life-
ting of domains. Domain merges are the exact inverse of atjmes as well as query rates are drawn from Gnutella mea-
domain split. Since no links were ever deleted when a do-syrements, just as in Section 3.2. Once enough time passes
main split, no new links need to be created when a domainjp, the stable state to obtain a good estimate of query and
that split earlier becomes a single domain again. Queryypdate costs at that network size, the system once again
routing during a domain merge is identical to that during switches into a “growth” phase with nodes joining the sys-
a split, and is automatically taken care of, as discussed earigm continuously until the next “stable” phase. Note that
lier. Note that there idysteresigo ensure that domains g domain splits and merges occur in the stable phases as
don’t split and merge all the time. A domain splits when the palancing of node joins and leaves ensures that domain
its size becomes a constant factor larger than the optimal sjzes do not change much.
while two domains merge if their cumulative size is a con- Figure 7 plots the overall system cost, measured dur-
stant factor less than the optimal. ing the stable phases at the different system sizes observed
The Cost of Split/Merge The primary cost associated with  during the evolution of the system. The solid curve shows
a domain split/merge is that of transferring index entries be- the cost incurred in the system, with each marked point on
tween neighboring nodes. Although this cost is dependentthe curve reflecting measurements during a stable phase at
on the size of the indexes stored at each node, we observevhich the cost is measured. The cost shows a step-like be-
that the cost isn’t too high because splits and merges haphaviour, dropping every time domain splits occur at network
pen infrequently: a domain split occurs only when the total sizes close to a power @ The dashed curve underneath
number of nodes in the system doubles, while a merge oc-n the figure shows theptimalachievable cost for the cor-
curs only when the total number of nodes halves. Although responding network sizes, using thestchoice of domain
P2P systems are dynamic in terms of node arrivals and desizes that we described in Section 3.2. (Note that the y-axis
partures, theizeof the P2P system changes more sldwly ~ does not start at zero.) We see that our dynamic adaptation

A secondary cost is that of nodes estimating domain of domain size is fairly close in performance to the optimal
sizes in order to determine when to split or merge. This costachievable cost for all network sizes.

3Typically, system size changes by a large factor about once a day [17], Spl.it Ove_rhead To quantify the overhead gierforming do- _
corresponding to nodes joining during the day and leaving late at night ~ main splitsthemselves, we need to know the rate at which
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0.18 . lish “beacons” spread around the network; each node could

é measure its physical-network distance to these beacons, and

g 016 chooses a hierarchical ID based on its proximity to each of

? 0.14 the beacons, in a fashion similar to that described in [15].

IS oap L Such an arrangement has the effect of ensuring that

7 Dynamic —— nodes within a domain are physically close to each other.

o Optimal ------- . . e .

o o1 : Consequently, index construction within a domain becomes
4096 16384 65536 optimized for the physical network, as content is indexed

Number of Nodes only at physically nearby nodes. Query routing within
Figure 7. Overall System Size as a function of the domain is also efficient. Moreover, for partial-lookup
system size gueries that desire only a limited number of results, the

query routing algorithms first provide results that are physi-
cally nearby in the network, and slowly identify results that
the network grows in size. Say the network doubles in size gre further and further away, until enough answers are ob-
everyD seconds. The overhead of performimgedomain tained.
splitis simply the cost of re-indexing data. For re-indexing,  sych a query execution strategy is not only efficient in
pairs of nodes exchange portions of the index; if each nodeterms of network bandwidth usage and query latency, but
hast tuples on average, the number of index entries trans-a|so offers somaearest-ksemantics, i.e., results that are re-
ferred out per node it/2. Since all the entries need to be tyrned are that obtained from physically close nodes which
sent to only one other node in expectation, and assumingcan be useful from the application perspective.
each index entry i$ bytes long, the bandwidth cost of per-
forming such a split, averaged over the time for the system
to double in size, i$t/2D bytes/sec.

In our simulation,t = 307, and we assume an index o
entry is 10 bytes long; A typical Gnutella system doubles  Distributed Hash Tables [14, 18, 16, 10], such as Chord,
or halves in size about once a day [17]. Even assum-haV? begn proposed asasubs.trate for a variety ofdlstrlbgted
ing conservatively that our system doubles in size every@pplications. — The PIER project [11] uses DHTs specif-
hour, the bandwidth overhead of splits per node is under'Ca")_’ for the problem of b_undlng dlstrlb_uted mdexe_s over
1 byte/second and is thus very small. Even whé&much reIauqnaI datato enable single :_and mgltl—table queries. This
larger, sayt = 106, the overhead is und&n0 bytes/second work is cqmplementary tq oursin that it enables.more com-
when the system doubles/halves in size daily. plex queries on top of basic index structures, while our work

focuses on the most efficient way to construct the basic in-
. . dex.
5 Adapting to the Physical Network P-Grid [3] uses indexes to support queries over ordered
and unordered data. P-Grid also investigates the issue of

So far, we have ignored the fact that different nodes may index updates, but its focus is on the update of individual
be in physically disparate locations, spread across a wide-tuple values, rather than on the insertion and removal of tu-
area network. Ideally, we would like to ensure all com- ples themselves, with dynamic node joins and leaves.
munication on the overlay-network actually occurs between  In file-sharing systems such as Gnutella [1], each node
physically nearby nodes, to ensure low query latency andindexed its own content, and queries were flooded across
reduce bandwidth usage. Adlib allows adaptation to suchnodes. KaZaa [2] extended the Gnutella approach with the
physical-network proximity in a natural fashion. use ofsupernodesvhich serve as a proxy for nodes with

The Adlib structure continues to operate efficiently even lower bandwidth. Adlib also extends to supporting the use
when nodes do not choose their hierarchy ID at random. of such supernodes. Both Gnutella and KaZaa suffer from
Thus, nodes could select their hierarchy ID in such a fash-high query-execution cost and poor query recall. In com-
ion that physically close nodes also possess hierarchy IDsparison, the Adlib index reduces the overall system cost by
with a common prefix. (Note that, after a certain fixed- more than an order of magnitude.
length prefix, the remaining bits of the hierarchy IDs should  Hybrid solutions such as YAPPERS [8] have been pro-
continue to be chosen at random, in order to avoid extremeposed to introduce a middle ground between DHTs and
cases of all nodes choosing exactly the same ID.) Gnutella, and enable efficient partial-lookup queries while

We do not discuss exactly how nodes assign themselvegeducing index-update costs. Our solution extends the de-
such a hierarchy ID, except to point out that there are severakign philosophy of YAPPERS, but improves on it by design-
known techniques for identifying the location of nhodes on ing much larger, non-overlapping indexes, while providing
a physical network. For example, one solution is to estab- stronger guarantees on query and update costs.

6 Related Work
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7 Conclusions

We have introduced a self-tuning index structure that

trades off index-maintenance cost against the benefit for
gueries. We have shown that Adlib can reduce the system
overhead by a factor of four, compared to a global index. [18
We have shown how to devise overlay networks, as well as
indexing and querying mechanisms to support the dynamic

and self-tuning index without the need for any global syn-
chronization for index re-organization. The performance [19]
advantages of Adlib are amplified when the system is opti-
mized for the underlying physical network, as Adlib enables [20]

natural support for reducing update costs of the index, and

finds partial-lookup results in a network-efficient fashion.
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! 10 ing responsible for the rang8, 17), would send the mes-
) 13 sage to node30 and13, appointing them responsible for
15 the rangeg10, 13) and[13,17) respectively. It is easy to
17 show that the above mechanism results in each node re-
ceiving the message exactly once. Moreover, if each node
. transmits one message per time unit, every node receives
the broadcast message witlfflog n) time units.
Figure 8. An Example Chord Network It is equally straightforward to achieve broadcast on
other overlay networks besides Chord. In fact, the
A Chord and Broadcast on Chord same broadcast algorithm may be used for broadcast on
Crescendo, the overlay network used by Adlib in its intra-

Chord is a structured overlay network defined as follows. domain structure.
Say there are nodes in the system. Each node is assigned

a uniguelD drawn at random from a circular N-bit iden- B Proofs
tifier spacef0,2”). (Identifiers on the circle are imagined
as being arranged in increasing order clockwise.) Figure 8
depicts an example of nodes in a 5-bit space. distance
from nodem to nodem/’, Dist(m,m’) is the clockwise dis-
tance on the circle fromn’s ID to m'’s. Each noden main-
tains a link to the closest node’ that is at least distan&
away, for eact) < i < N. We call this theChord rule For
example, nodé establishes a link to the closest nodes that
are a clockwise distande 2, 4, 8 and16 away, resulting in
links to node<, 4, 8 and17.

Chord enables efficient routing of a message betweenO
any two nodes by greedy, clockwise routing. For exam-
ple, noded would route to nodé5, by sending the message
to node8, which forwards it to nodé3, and from there to
nodel5. This mechanism requires onfy(log n) messages
for routing between any arbitrary pair of nodes. Moreover,

Theorem 1. If there aren nodes in the system distributed
uniformly acrosst domains, the following statements hold
with high probability:

(a) the total out-degree of each node&lslog n),

(b) the number of messages exchanged to handle a node
join or leave isO(log n),

(c) a total-lookup query initiated by any node takes
O(k + log(n/k)) messages to obtain all answers,
(d) a partial-lookup query that contacfsdomains takes
(f + log(n/k) messages to obtain answers,
(e) if the latency of a message transmission is one time
unit, a total-lookup query is answered ifi(logn) time
units, and a partial-lookup query i@ (log* k + log(n/k))
time units.

when nodes join or leave the system, ofilogn) mes-  Proof. (a) The number of intra-domain links per node is
sages to restructure the overlay network appropriately for ) (1ogn) as shown in [7]. Now, consider the number of
the new set of nodes. inter-domain links set up by a node according to the defi-

Chord was proposed as a means of maintaining a dis-nition in Section 4.1. Node: sets up one inter-domain link
tributed hash table. Data keys are hashed into the N-bitfor each value of, 0 < i < N, that the seB; is non-empty.
identifier space, and we let each node store data falling inSince the sef; consists of all nodes with a specifiebit
the hash bucket ranging from its ID to the next higher ID. prefix in their hierarchy ID, and nodes choose their hierar-
A query for a specific key can then be routed to the node chy ID independently and at random, it is easy to see that,
responsible for the key’s bucket, thus allowing efficient key with high probability,S; is empty for alli > i’ for some
lookup. i’ = O(logn). Consequently, the total number of links per
Broadcast on ChordAlthough the Chord overlay network  node isO(log n) with high probability.
was proposed for routing, an obvious extension also allows  (b) The number of messages to fix the intra-domain net-
efficientbroadcastof messages from one node to all other work after a node join/leave ©(logn) [7]. For the inter-
nodes. A node initiating the broadcast sends the message tdomain network, observe that onfy(logn) other nodes
all its neighbors, and requires each neighbor to recursivelyare affected by a node join/leave, by part (a). Each of the
broadcast the message to a smaller fragment of the ring.  affected nodes can re-connect to the appropriate node using

For example, node broadcasts a message by sending it only a constant number of messages with high probability,
to all its neighbors: nodes 2, 4, 8 and 17. N@deould be just as in the case of the intra-domain network.
responsible for sending the message to nodes in the range (c) The number of intra-domain messages to find query
[2,4), node4 for the range[4,8), node8 for the range  answers in the source domain(glog(n/k)) [18, 7]. The
[8,17) and nodel7 for the rang€17,32). Each of these  number of additional messages necessary to forward the
nodes recursively forwards the message to all its neighborsguery to all the domains is— 1, by the use of inter-domain
falling within its specified range. For example, ndjde- broadcast. Within each domain, the number of nodes be-
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tween the first recipient of the query, and the query destina-
tion is a constant with high probability, thus requiring only
O(1) messages within each domain.

(d) The argument is identical to (c) above, noting that the
iterative broadcast terminates after the query reaches only
O(f) domains with high probability.

(e) The latency of an intra-domain lookup is
O(log(n/k)) [18, 7]. The latency of broadcasting the
query to allk domains isO(log k), since it is bounded
by the depth of the lowest-level domain in the domain
hierarchy. The latency of query routing within each domain
is O(1), by the argument in part (c). Thus, the latency of
a total-lookup query i€)(logn). For partial lookups, the
latency of broadcast is at mo&(log” k), since broadcast
is iterative with both the number of iterations and the length
of each iteration being)(log k), leading to the desired
bound on overall latency.

O

Theorem 2. (a) The cost of index creation and maintenance
with update broadcast i€3t/L)(1 — k/n) + n/(Lk) mes-
sages per node per second.

(b) For a time-out periodT,, the cost of index cre-
ation and maintenance with time-out{%/L)(1—k/n) +
wr- (1= (1 — k/n)*) messages per node per second.

Proof. (a) Consider the costs of index creation and mainte-
nance associated with a particular nade Whenm joins
the system, its content needs to be inserted into the index.
The probability that node: itself is responsible for a partic-
ular tuple isk /n. Additionally, index entries need to be mi-
grated from the neighbor af, to itself; when all nodes have
t tuples each, the number of migrated tupleis— k/n).
Whenm leaves, the index tuples that stored have to be
re-inserted into the system; there a(¢ — k/n) such tu-
ples. Finally, the information about’s departure has to be
broadcast to the rest of the nodes in the system, which re-
quiresn/k messages. The above costs are incurred over the
lifetime L of nodem, leading to the desired expression for
costd

(b) With the time-out mechanism, the costs of index in-
sertion on node join, index migration on node join, and in-
dex re-insertion on a node leave are the same as in part (a).
However, there is the additional cost of periodic keep-alive
messages. If a node hasuples, the expected number of
distinct nodes that have an index entry for at least one of
thoset tuplesis(1 — (1 — k/n)*)n/k. We assume that one
keepalive message needs to be sent to each of these distinct
nodes every{, time units, leading to the desired result.

O

4We have used an approximation to simplify the expression here; the
initial insertion of content requires nearly5 log(n/k)) messages per tu-
ple, while subsequent index modifications require only one message per
tuple. We ignore this minor difference, both for time-outs and update
broadcast.
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