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Abstract

Peer-to-peer (P2P) systems enable queries over a large
database horizontally partitioned across a dynamic set of
nodes. We devise a self-tuning index for such systems that
can trade off index maintenance cost against query effi-
ciency, in order to optimize the overall system cost. The
index, Adlib, dynamically adapts itself to operate at the
optimal trade-off point, even as the optimal configuration
changes with nodes joining and leaving the system. We
use experiments on realistic workloads to demonstrate that
Adlib can reduce the overall system cost by a factor of four.

1 Introduction

A peer-to-peer (P2P) system consists of a large, dynamic
set of computers (nodes) spread over a wide-area network.
The scale and dynamism of the system precludes a node
communicating directly with all other nodes. Instead, nodes
are interconnected in anoverlay networkwith each node al-
lowed to communicate directly only with its neighbors on
the overlay network. We focus on systems where nodes con-
tain “related” data, i.e., we can view each node as “owning”
some tuples in a global, horizontally partitioned relationR.

A fundamental operation in such a P2P system is a selec-
tion query that requires all, or some, tuples that have a “key”
attributeA equal to a given value. Such a query may be an-
swered efficiently using a distributed index that maps each
possible value of attributeA to the set of nodes that con-
tain tuples with that value. There are many different ways
of constructing such a distributed index, each of which of-
fers a different trade-off between the cost of constructing
and maintaining the index, and the cost of using the index
to answer queries.

To illustrate, consider two common indexing structures
that have been proposed in past literature. In the Gnutella-
style [1] approach, each node constructs a local “index”
over the tuples that it owns itself. Therefore, a query for
all tuples with a given attribute value needs to be sent to all

nodes in the system, resulting in a high query cost. On the
other hand, index maintenance is free. When a new node
joins the system, or an existing node leaves, the indexes of
other nodes are completely unaffected.

A second approach is to construct a distributed global
index, partitioned across nodes by attribute values; for each
value, some one node in the system is designated to manage
and store the entire index entry – a list of all nodes with tu-
ples containing that value. The assignment of which nodes
manage which values may be done in different ways, for
example, by hash partitioning [18] or by range partition-
ing [6]. Such a global index offers efficient querying; a
query for a given value is answered simply by contacting
the node managing the index entry for that value. On the
flip side, every time a nodeN joins or leaves the system,
all nodes that manage index entries for values owned byN
need to be notified, in order to update the index appropri-
ately.

Many P2P systems are characterized by query rates
that are comparable to the rates at which nodes join and
leave [17, 19]. In such systems, the index-maintenance cost
of the global-index approach can be very high, and dwarf
the benefit obtained for queries. Worse still, as the systems
scale up in terms of the amount of data owned by each node,
the index maintenance cost grows much faster than the cost
of queries, rendering the global index expensive.

Our objective is to devise a self-tuning index that can
dynamically trade off index-maintenance cost against the
benefits obtained for queries, in order to minimize the total
cost of index maintenance and query execution. In addition,
we require the scheme to scale well with the amount of data
owned by each node, since we expect the data volume per
node to grow rapidly over time, even more so than the num-
ber of participant nodes in the system.

We now illustrate the intuition behind our solution,
Adlib, which offers the above desiderata. At its heart, Adlib
can be viewed as a two-tier structure. Nodes are partitioned
into independentdomains; nodes within a domain build a
distributed “global” indexover the content stored in that
domain. Thus, all query answers within a domain may be
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obtained by contacting just one node in that domain. Find-
ing all answers to a query entails contacting one node in
each domain, which is fairly efficient if the number of do-
mains is small. When a node joins or leaves the system,
only other nodes within its domain need to be notified, thus
limiting the index maintenance cost. In Section 2, we pro-
vide a high-level overview of data storage, index construc-
tion and query routing in this basic architecture.

The first issue arising from the above architecture is to
identify the right number of domains to use. In Section 3,
we develop a cost model to analyze the costs of queries and
index maintenance, and characterize the optimal number of
domains needed to minimize the total cost of queries and
index maintenance. We validate our model by means of ex-
periments with realistic data, and show that our architecture
offers the opportunity to reduce the overall system cost by
a factor of four, compared to earlier solutions.

From our analysis and experimental results, we show
that the optimal number of domains is a function of the
number of nodes in the system. Consequently, the num-
ber of domains has to change dynamically with the net-
work size. In Section 4, we introduce practical indexing
algorithms and overlay networks that enable dynamic, self-
tuning splitting and merging of domains . A key challenge
we address is to ensure that the algorithms are fully dis-
tributed, require no centralized locking and synchroniza-
tion, and allow index reorganization while simultaneously
supporting queries in the system. We show experimentally
that our algorithms operate well and provide good perfor-
mance even as the size of the network changes over time.

The Adlib index also addresses challenges arising from
the heterogeneity of the underlying physical network. Since
the latency of communication between different nodes in
the system may be different, we need to optimize query and
index-maintenance traffic for such a physical network. We
discuss such network optimizations in Section 5.

2 The Adlib Architecture

We now describe the high-level architecture of the Adlib
index. For now, assume that there is a fixed number of do-
mainsk. Each node is assigned to one of thesek domains
when it joins the system, for example, at random. Queries
may be issued by any node in the system and are of two
types. Atotal-lookupquery requires all tuples that have a
specified value for the search key. Apartial-lookupquery
requires anyP tuples that have the specified value for the
search key, for some constantP . If the number of tuples
with that value is less thanP , the partial-lookup query is
equivalent to a total lookup.

Adlib uses a two-tier structure – intra-domain and inter-
domain – to index content and execute both total- and
partial-lookup queries. We now discuss the basic design

of each of these structures in turn. In Section 4, we will see
how these structures are constructed and made self-tuning.

2.1 The Intra-domain Structure

Nodes within each domain construct a distributed index
over the content in that domain, partitioning the index us-
ing hash or range partitioning [6]. For concreteness, we
describe a hash-partitioning scheme called consistent hash-
ing [12]. Each node in a domain chooses a unique intra-
domain ID, at random, from a large, circular space of IDs.
Values for the search-key attributeA are also hashed to the
same space using a hash function; a node stores index en-
tries for all values that hash to a number between the node’s
ID and the next larger node ID in the domain. Recall that
the index entry for a value is a list of all nodes in the domain
that have a tuple with that value.

Nodes within a domain are interconnected in anover-
lay networkthat enables any node toroutea queryq to the
manager of the relevant index entry forq. We may use an
overlay network such as Chord [18], that allows a query to
be routed to its destination using onlyO(log d) inter-node
messages, whered is the number of nodes in the domain.
Thus, a node may initiate a queryq and find all answers
within the domain using this structure.

When a new node joins the domain or an existing node
leaves, three operations need to take place: (a) the overlay
network structure needs to be modified suitably, (b) index
entries need to be re-distributed across nodes to allow the
new node to hold some entries, or to make up for the entries
lost by the leaving node, and (c) the index needs to be up-
dated so that the new node’scontentis indexed, or that the
old node’scontentis removed from the index.

Operation (a) is well-understood, and it is well-
known [18, 16] that the overlay network can be updated
efficiently as nodes join and leave, using justO(log d) mes-
sages per join or leave. (In contrast, if each node knows
every other node in the domain using a replicated directory,
updates for node joins and leaves would have to be sent to
every node in the domain, which is very expensive.)

Operations (b) and (c) have received less attention in past
literature, and we focus on them. When a new nodem joins
the domain, (i) it takes over some index entries from an ad-
jacent node, and (ii) for each tuple thatm owns, it hashes the
key attribute of the tuple, and sends the index entry for the
tuple to the appropriate node by routing it using the overlay
structure. Both these operations are straightforward. Up-
dating the index when a node leaves is more interesting. We
now describe two approaches to this problem.

The Time-Out MechanismThe traditional approach to in-
dex updates is the time-out mechanism [11]. Each inserted
index entry has a time period, sayTo seconds, for which it
stays alive. After this period, it “times out” and is deleted by
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the node storing the entry. Nodes that are alive for long peri-
ods of time will “refresh” the index entries for their content
everyTo seconds. (We assume that refresh messages can be
sent directly to the destination node instead of having to be
routed along the overlay network.) When a nodem leaves,
index entries for its content will not be refreshed, and will
therefore be deleted withinTo seconds. Nodes that attempt
to contactm to refresh entries managed bym will realize
thatm has left, and may reinsert the index entries into the
system.

The size of the time periodTo offers a trade-off between
the cost of maintaining the index andquery accuracy. If To
is small, the maintenance cost is high since nodes have to
refresh index entries frequently, but there are very few query
results that refer to data no longer in the system (few false
positives) and nearly all available results are returned by the
query (few false negatives). IfTo is large, the maintenance
cost is low, but query results may be less accurate due to
false positives stemming from stale index entries to non-
existent data, and false negatives due to the loss of index
entries for data available in the system.

Observe that the maintenance cost for a node increases
linearly with the number of tuples stored by that node, when
the number of tuples is small compared to the domain size.
This means that the maintenance cost does not scale well as
the amount of data per node increases.

The Update-Broadcast MechanismThe relatively small
number of nodes in an Adlib domain offers an alternative
approach for index maintenance that has not been studied in
the P2P literature. Whenever a nodeN leaves the domain,
its successor – the node with the next larger ID – broad-
casts the information aboutN ’s departure to all the nodes
in the domain. This broadcast may be achieved efficiently
on the overlay network, and requires onlyd�1 messages in
ad-node domain. We present details in Appendix A. Each
node receiving the broadcast then eliminates index entries
for N ’s tuples. (If some of its own content is indexed atN ,
the node also re-inserts index entries for that content subse-
quently.) We call this theupdate-broadcastmechanism.

One may wonder howN ’s successor learns of the depar-
ture ofN in the first place. This is achieved by the exchange
of periodic “heartbeat” messages between adjacent nodes.
Overlay networks already require such message exchange
between successive nodes for their maintenance [18, 5, 11];
therefore, the heartbeats do not create an additional over-
head. The periodicity of heartbeats governs the delay in up-
dating the index to eliminate stale entries and, consequently,
the query precision. Typically, heartbeats are very frequent
(we assume at least one a minute), and we will see that the
query precision is consequently very close to 100%.

Update broadcast offers two potential advantages over
the time-out mechanism. First, the cost of broadcasting the
failure of a node iscompletely independent of the number of

tuples owned by each node– being only a linear function of
domain size – and allows the system to scale up well as the
number of tuples per node increases. Moreover, even when
nodes have a skewed distribution of tuples, the maintenance
cost for the different nodes still remains relatively uniform.
Second, there is little additional overhead for index update,
when index entries are replicated across multiple nodes to
deal with node failures [18, 5]. We will compare and con-
trast time-outs with update broadcast in Section 3.2.

2.2 The Inter-domain Structure

So far, we have seen how a node may find all query an-
swers within its own domain using the intra-domain index
and overlay network. Executing a partial- or total-lookup
query requires nodes to be able to gather results from some
or all domains in the system respectively. We now describe
the intuition behind the construction of an inter-domain
overlay network, and a query propagation algorithm, that
enables such queries.

Our solution relies on iterative broadcast, and has a sim-
ple intuition. A node first finds all answers to a partial-
lookup query within its own domain. If the number of an-
swers proves insufficient, it attempts to find answers from
one additional domain (bringing the total number of do-
mains searched to two). While the number of answers found
proves insufficient, the node keeps doubling the number of
domains it searches until either a sufficient number of an-
swers are found, or all the domains have been searched.
When a node desires a total lookup, the query is simply sent
to all the domains.

In order for the above approach to work, nodes need to
maintain links to other nodes outside their own domain. We
defer a detailed discussion of this inter-domain interconnec-
tion structure to Section 4. Here, we simply note that, if the
total number of domains isk, each node maintains links to
O(log k) nodes inotherdomains in order to support query
routing. A query may be sent tof domains using less than
2f inter-domain messages.

We summarize the intra- and inter-domain overlay struc-
ture with the following theorem describing the number of
links established by each node, and the cost of queries.
Proofs are in Appendix B.

Theorem 1. If there aren nodes in the system distributed
uniformly acrossk domains, the following statements hold
with high probability:

(a) the total out-degree of each node isO(logn),
(b) the number of messages exchanged to handle a node

join or leave isO(logn),
(c) a total-lookup query initiated by any node takes

O(k + log(n=k)) messages to obtain all answers,
(d) a partial-lookup query that contactsf domains takes

O(f + log(n=k) messages to obtain answers,
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(e) if the latency of a message transmission is one time
unit, a total-lookup query is answered inO(log n) time
units, and a partial-lookup query inO(log2 k + log(n=k))
time units.

3 Optimizing Costs in Adlib and Validation

Having seen the basic Adlib architecture, we now devise
a simple model of the costs of indexing and queries in this
architecture. From this model, we identify the optimal num-
ber of domains to use in order to minimize the total system
cost. We then validate our model and analysis with an ex-
perimental evaluation of the architecture on realistic data.

3.1 Modeling and Optimizing Costs in Adlib

Say nodes havet tuples each on average, have an aver-
age lifetime ofL seconds, and an average query rate ofQ
queries per second. We assume nodes are uniformly dis-
tributed acrossk domains, i.e., each domain hasn=k nodes.
Throughout our analysis, we will ignore integer round-off
errors: we assumen=k is an integer, thatL is a perfect mul-
tiple of the time-out period, and so on.
Update CostRecall that there were two alternatives for up-
dating indexes: the time-out mechanism and update broad-
cast. We now characterize the costs of both these mecha-
nisms.

Theorem 2. (a) The cost of index creation and maintenance
with update broadcast is(3t=L)(1� k=n) + n=(Lk) mes-
sages per node per second.

(b) For a time-out periodTo, the cost of index cre-
ation and maintenance with time-outs is(3t=L)(1�k=n)+
n
kTo

(1� (1� k=n)t) messages per node per second.

Corollary 1. For a time-out periodTo, the time-out mech-
anism is more efficient than update broadcast if and only if
(1� k=n)t > 1� To=L.

We see that the cost of the time-out mechanism is de-
pendent on the time-out periodTo. If To is very large, the
time-out mechanism is more efficient than update broad-
cast. However, a largeTo also implies that query accuracy
is extremely low, whereas update broadcast always offers
high accuracy. For reasonable values ofTo (as we will de-
rive from our experiments), we can see from the formula
that the time-out mechanism will be more efficient only if
t is very small, orn=k, the size of a domain, is very large.
Experimentally, we will see that update broadcast is more
efficient upto a domain size of5000 even when each node
has as few as 300 tuples. Consequently, we focus the rest of
our analysis on update broadcast.
Query Cost Modeling the cost of total-lookup queries is
straightforward. However, coming up with an analytical

formula to estimate the cost of partial-lookup queries re-
quires a model of how content is distributed in the network.
For the purposes of analysis, we postulate the following
model of content distribution: The set of tuples owned by
each node is drawn from a fixed universe of tuples, and is
independent of the total number of nodes in the system.

The above postulate is reasonable, since it merely says
that the content of a node is independent of the system size.
A partial-lookup query requires a fixed number of answers
and needs to examine some number of nodes, sayNp, be-
fore it is satisfied. We model the execution of the partial
lookup as examining nodes one by one in random order un-
til the query is satisfied.

By our assumptions, it follows that the random variable
Np is dependent only on the value being queried for and the
distribution of content, and is completely independent of
the number of nodes in the system. Therefore, the number
of nodes to be examined by a partial-lookup query, aver-
aged over all queries, is a constant. We denote this constant
number of nodes asC.

The costs of partial- and total-lookup queries can then be
modeled as follows:

A total-lookup query requires1:5k+0:5 log(n=k) messages
to find all answers, while the average partial-lookup query
requires3Ck=n + 0:5 log(n=k) messages to find sufficient
answers.

Optimizing Costs Having modeled both update and query
costs, we can now identify the optimal domain size in or-
der to minimize the cumulative cost of queries and up-
dates. If all queries are total lookups, we see that the total
cost per node per second is(3t=L)(1� k=n) + n=(Lk) +
Q(1:5k + 0:5 log(n=k)), which is minimized whenk 'p
2n=(3QL). Thus, both the number of domains and

the domain size should be�(
p
n), when queries are total

lookups. (If the query rate is extremely high,n
QL

may be-
come less than1, in which case the optimal solution is to
just use a single domain.)

If all queries are partial lookups, the total cost is mini-
mized whenn=k ' p3CQL� 3t. In other words, the opti-
mal domain size is independent ofn, and dependent primar-
ily on the number of nodes desired to be reached by a partial
lookup, the query rates and lifetimes (CQL >> t typically,
so the dependence ont is very weak); consequently, the op-
timal number of domains is directly proportional ton. If
queries are a mix of partial and total lookups, we may once
again derive the optimal number of domains to be roughly
linear in

p
n, but slightly less than in the total-lookup case.

In summary, the optimal number of domains is propor-
tional to

p
n for total-lookup queries, and proportional ton

for partial-lookup queries.
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3.2 Validation

We now evaluate the Adlib architecture, and our analy-
sis of the optimal domain size, using real data gathered by
Saroiu et al. [17] in a study of the Gnutella file-sharing net-
work. The study provides information about a set of 3791
hosts (nodes) participating in the Gnutella network, together
owning more than 400,000 files. The data includes the list
of all files being shared by each node, and the lifetime of
each node. We treat each keyword in a file name as a tuple
owned by the node, after eliminating stop words like “the”
which are ubiquitous.

On cleaning the data in the above fashion, each node
owns t = 307 tuples on average. Node lifetimes follow
a skewed distribution, with a mean lifetime of 3 hours, and
a median lifetime of 54 minutes. We extrapolate this data
to simulate larger systems withn nodes, for arbitraryn, as-
suming that each node’s lifetime characteristics, and set of
tuples, follows the same distribution as that of the measured
data. Note that our extrapolation is limited by the fact that
we cannot create “new” tuples when increasing the number
of nodes beyond4000; we only end up replicating content
already present in the system, which helps increase the suc-
cess rate of partial-lookups. However, this limitation does
not affect our evaluation of total-lookup queries.

Our query workload is obtained from a study of the
Gnutella network by Yang et al. [20] which gathered a trace
of 100,000 queries being executed on the network; we treat
each keyword as a separate query issued in the system. We
obtain the query rate from a different study by Yang et
al. [19] on the OpenNap system, which suggests that the
rate is0:00083 queries per node per second (one query per
node per 20 minutes).
Simulation SetupWe simulate ann-node Adlib withk do-
mains, assigning each node to a random domain. Nodes
join and leave the network, with the lifetime of nodes being
drawn from the measured distribution of lifetimes. Each
node leave is accompanied by a new node join, to ensure
that the total number of nodes is always aroundn. Nodes
issue queries at a uniform rate (of one query every 20 min-
utes). When a node joins or leaves, we allow the overlay
network to adapt “instantly” to set up the appropriate links.
We thus do not simulate the effects of inconsistencies in the
overlay network on query performance; we believe this is
acceptable, and even desirable, since our focus is on eval-
uatingdata-centriceffects and costs, rather than on the ro-
bustness of the routing network structure. We assume no
messages are lost in communication; again, we believe such
an assumption is appropriate in this context.

A. Update Costs
Our first undertaking is to evaluate the relative costs of

index maintenance with time-outs and update broadcast.
We first quantify the trade-off offered by the time-out mech-

anism between query accuracy and the cost of periodic re-
fresh messages, for different values of the time-out period
To. This trade-off is independent of the number of nodes in
the system. Figure 1 depicts the fraction of stale answers,
i.e., the fraction of false positives in the query results, as a
function ofTo. We see that ifTo is one hour, more than 40%
of the answers are stale. In order to achieve a staleness of
under 10%,To needs to be smaller than 10 minutes. (Since
lifetime measurements are made at coarse granularity in our
data set, it is hard to accurately determine the time-out pe-
riod necessary to achieve lower values of staleness.) We do
not show the effect ofTo on false negatives, as it is similar.

Figure 2 shows the cost of update broadcast, as well
as time-outs (withTo = 10 minutes), for different do-
main sizes. (We do not depict the costs of inserting and
re-inserting index entries, since they are the same for both
schemes.) We see that the cost of the broadcast increases
linearly with the size of the domain, and exceeds the cost of
the time-out mechanism for domain sizes larger than 5000.
This is in agreement with the estimate obtained from the
formula in Section 2.1, plugging in the appropriate values
for the relevant parameters. For domain sizes smaller than
1000, we see that update broadcast uses only one-fourth as
many messages as the time-out mechanismfor the same do-
main size.

Note that the fraction of false positives using update
broadcast (not shown in figure) is less than 1%, compared to
the 10% of the time-out mechanism. Also note that the cost
depicted for the time-out mechanism is theaveragecost per
node; the maximum cost for a node is a factor16 higher.
Finally, if the system content scales up tot = 3000 tu-
ples per node, the update cost with timeouts increases nearly
ten-fold, while the cost of update broadcast remains almost
the same. We conclude, therefore, that update broadcast is
better than time-outs for reasonably sized domains, and is
likely to become more desirable as the data per node in-
creases.

B. Query Cost
Figure 3 depicts the cost of queries, in terms of the num-

ber of messages processed per node per second, on a 32K-
node network for different domain sizes. The figure depicts
the cost of both total lookups, and partial lookups which are
terminated after finding the first20 query answers. Not sur-
prisingly, we see that the cost of queries decreases as the
domain size increases.

When the domain size is very small (128 nodes), the cost
of total lookup is fairly high (0.22 messages/second). As
the domain size increases, the cost of total lookup falls off
drastically, and is less than0:05 messages/second for do-
main sizes larger than 1000 nodes. Even more interestingly,
the cost of partial lookup is extremely “flat”, suggesting that
there are enough answers available for many queries, so that
it is sufficient to use small domain sizes and query only a
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small number of domains.

C. Overall Cost
Having seen that update costs increase with domain size

while query costs decrease, we now show theoverall cost
of queries and index maintenance in order to understand the
total system overhead in maintaining the index and execut-
ing queries. We define the overall cost as the sum of the total
query cost, the index-maintenance cost (including insertion,
re-insertion and movement of index entries), and the cost of
maintaining the interconnection structure as nodes join and
leave the system, with all costs measured in terms of the
number of messages per node per second. Note that this cal-
culation leaves out the cost of periodic keep-alive messages
between adjacent nodes (recall that we assume a periodic-
ity of one message per minute), which is the same for all
domain sizes, and has very little cost, as discussed earlier.

Figure 4 plots the overall cost of the Adlib structure as
a function of domain size, for a 32K-node system. For do-
main sizes larger than5000, we use the time-out mechanism
for index maintenance to present the best possible overall
cost for each domain size. Note that the right extreme, with
the domain size being 32768, corresponds to using a global
index. On this extreme, nodes process an average of 0.6
messages per second. On the other hand, with a domain size
of 256, the average number of messages for partial-lookup
queries and updates is only0:15 per second, thus being four
times as efficient as the use of a global index. Even with all
queries being total-lookup queries, a domain size of 512 is
seen to require only about0:2 messages per node per sec-
ond, which is only one-third the cost of a global index.

D. Varying the Number of Nodes
Next, we attempt to identify theoptimaldomain size as

a function of the number of nodesn. For each value ofn
we consider, we run multiple experiments, each with a dif-
ferent value of domain size, in order to identify the optimal
domain size for both total and partial lookups. We then plot
this domain size as a function ofn in Figure 5.

For total lookups, we observe that the optimal domain
size is almost exactly proportional to

p
n, as predicted by

our model. (Observe that the optimal size is nearly 500 for
n = 32768 and increases to 1000 whenn quadruples.) For
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partial lookups, the optimal domain size initially creeps up
slowly with n, but flattens out as the number of nodes in-
creases. This result is fairly consistent with our model in
Section 3, which suggests that the ideal domain size is a
fixed constant. However, our model assumed that the num-
ber of nodes in the system is larger thanC, the average num-
ber of nodes to be contacted for a partial lookup. Whenn
is smaller thanC, this assumption is not true, and partial
lookups with few results behave more like total lookups.
Consequently, it is possible to get away with a smaller do-
main size whenn is very small.

E. Scalability w.r.t. data

To illustrate scalability with respect to the number of tu-
ples per node, we consider a 32K node system with nodes
having to index an average of 3000 keywords each, which
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is a factor 10 higher than that in our prior experiments.
The overall cost of a global index goes up from0:6 mes-
sages/second to5:5 messages/second (a near-linear cost in-
crease); on the other hand, the overall cost for Adlib, with a
domain size of256, rises only to0:86 messages/second.

3.3 Summary

We have seen that the use of Adlib can lead to a large
improvement in overall system cost, compared to the use of
a global index. In addition, Adlib scales well with respect
to the number of tuples per node. We have observed that the
optimal domain size, when optimizing for partial-lookup
queries, is roughly constant and between 200 and 300 for
a wide range of network sizes (for the query rates and node
lifetimes observed in Gnutella). All the above conclusions
are consistent with our model of Adlib which suggested that
the optimal domain size is constant for partial lookups, and
proportional to

p
n for total lookups.

4 Designing a Self-tuning Adlib

Having seen that the ideal Adlib structure should have a
number of domains that varies with network size, we now
discuss how to develop intra- and inter-domain overlay net-
works, as well as mechanisms for data indexing and queries,
to enable a dynamic, self-tuning index that approaches the
optimal index configuration even as the number of nodes in
the system varies over time.

A natural way of varying the number of domains used
in Adlib is to split a domain into two whenever the number
of domains is too few, and to merge two domains when-
ever there are too many domains. Performing such domain
splitting (and merging) introduces multiple challenges:
The Overlay Problem:Nodes should not be required to
abandon their existing overlay links and set up new links
on a domain split, since such re-linking can prove very ex-
pensive. Query routing and broadcast must still operate ef-
ficiently under splits.
The Re-indexing Problem:The splitting or merging of do-
mains requires a corresponding splitting and merging of in-
dexes. Such re-indexing can prove expensive and must be
made as efficient as possible.
The Atomic-Split Problem:Domain splits and merges must
not require synchronization of all nodes in the domain, since
such synchronization may prove impossible in a dynamic
P2P system. Queries must continue to succeed even when
only a fraction of the nodes have split, while others have
not.

We will presently show how each of the above challenges
may be handled.

Domains as a Binary TreeWe can visualize the set of do-
mains at any point of time as being at the leafs of a binary
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tree, as shown in Figure 6(a). Initially, all nodes are in a sin-
gle “root” domainD. As the domain grows larger, it splits
into two domainsD0 andD1. DomainD0 may itself grow
larger over time, and split intoD00 andD01 and so on, thus
ensuring that the leafs of the binary tree correspond to the
set of domains. Similarly, two sibling domains may merge
into a single domain, which corresponds to deleting two sib-
ling leaves in the tree. TheID of each domain is defined as
the label along the path to the domain from the root; thus,
D00 has ID00,D1 has ID1, and so on.

Assigning Nodes to DomainsWhen a domain, sayD,
splits intoD0 andD1, we need a mechanism to decide
which nodes go toD0 and which go toD1. We assume that
each nodem chooses a randomN -bit hierarchy IDH(m)
when it joins the system (for some large value ofN ). We
can then identify what domain the nodem belongs to: the
leaf domain whose ID is a prefix ofH(m). Thus, in our
example, all nodes with a prefix0 go toD0, and nodes with
prefix 1 go toD1. Note thatH(m) is completelyindepen-
dentof the intra-domain ID of nodem that may determine
its intra-domain links and index allocation.

4.1 The Overlay Problem

Let us first consider the challenges in constructing the
intra-domain overlay network. Imagine all nodes are ini-
tially in domainD and have constructed an overlay net-
work among themselves. As before, we assume the index is
hash-partitioned across nodes, and Chord [18] is used as the
overlay network. Figure 6(b) shows the set of links made by
node0 in a Chord [18] network. (The labels of nodes stand
for their intra-domain ID.) At some point, domainD may
split intoD0 andD1, with each node going toD0 orD1 on
the basis of its hierarchy ID. The figure depictsD0 nodes
by solid circles, and theD1 nodes by hollow squares.

After the split, theD0 nodes form an overlay network all
by themselves (shown in Figure 6(c)), as do theD1 nodes.
In standard overlay networks such as Chord, the set of links
for theD0 andD1 Chord networks is very different from
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the set of links in the original network forD.1 For example,
node0 is particularly unlucky, as it needs to establish three
new links to nodes3; 7 and11 in theD0 network. Thus, the
split can prove to be very expensive.

Thus, our problem is the following:Devise an overlay
network that allows domains to split and merge without re-
quiring any links to change at all, while still enabling rout-
ing in O(log n) hops withO(log n) links per node. Our
solution is to avoid using Chord and build a different over-
lay network instead. The key observation here is that the
link structure forD should be set upin anticipationof the
possibility thatD may split intoD0 andD1. If we could
ensure that the network of nodes inD alreadycontainsthe
D0 andD1 networks as subgraphs, there would be no need
to create new links when the domain splits. Of course, this
process needs to happen recursively; sinceD0 may itself
split later on, theD0 network should contain theD00 and
D01 networks as subgraphs, and so on.

Exploiting this observation, we construct a network
called Crescendo [7] with such recursive structure, while
still ensuring O(logn) links per node and routing in
O(logn) hops2.
Summary of CrescendoWe present a high-level summary
of Crescendo, which is necessary to explain the rest of our
algorithms. For more details, see [7]. The way a new node
joins the system and sets up links is shown in Algorithm 1.
The intuition behind the algorithm is simple: a node first
joins and sets up links to other nodes at the lowest level in
the hierarchy, and progressively adds a few more links at
each higher level.

To illustrate, consider the set of nodes in Figure 6(b),
and imagine node0 is the last node being inserted. Let us
suppose that there are only two levels in the hierarchy. Node
0 first joins at the “lowest level” domainD0 and sets up
links with someD0 nodes, choosing links just as in Chord;
the links it sets up are as in Figure 6(c). It then “goes up” a
level to form additional links with other nodes in domainD.
However, the only additional links it creates are to (some)
D1 nodes between itself and its successor inD0 (node3) –
in this case, to node2.

Crescendo, with its recursive structure, solves our prob-
lems since no new links need to be created on domain splits
and merges, and still offers us all the desired intra-domain
routing properties.

The Inter-Domain Structure Having fixed the intra-
domain overlay problem, we now turn our attention to con-
structing aninter-domainnetwork to enable iterative propa-
gation of a query to any number of domains. Our solution is

1In expectation, half the links inD will exist in D0 or D1, while the
other half are new links.

2Another network with such recursive structure is the skip graph [4].
We use Crescendo as it is more general than the skip graph, as we discuss
in Section 5.

Algorithm 1 CrescendoJoin(Nodem)
1: Let Pre(a; b) = length of common prefix ofH(a) andH(b).
2: for l = length(H(m)) downto0 do
3: dmin = minm0fDist(m;m0)jPre(m;m0) = l+ 1g
4: Dl = fm0jPre(m;m0) = l andDist(m;m0) < dming
5: Set up links to (a subset of) nodes inDl, as dictated by the

Chord rule.
6: end for

inspired by the hierarchical structuring of domains as a bi-
nary tree, and bears some resemblance to overlay networks
such as Pastry [16]. Each node establishes a set ofinter-
domainlinks, one link at each level of the domain hierarchy,
as defined below.
INTER-DOMAIN LINKS: Consider a nodem with hierar-
chy ID b1b2b3 : : : bN , where eachbi is either zero or one.
Let Si denote the set of nodes with hierarchy ID prefix
b1b2 : : : bi�1bi. Nodem establishes a set ofN inter-domain
links, with theith link being to the closest predecessor ofm
in the setSi. (Here, predecessor is defined on the value
of nodes’ intra-domain IDs.) Note that the setSi will be
empty for large values ofi, thus limiting the number of ac-
tual links established.

To explain the above definition, a nodem forms inter-
domain links to some node in the sibling subtree at each
level of the hierarchy. The link is not just to any node in the
subtree, but to the node whose intra-domain ID is closest in
value tom’s intra-domain ID while being less than or equal
to it. To illustrate, node0 in our example forms a level-1
link to its closest predecessor in domainD1, i.e., node13.
It forms a level-2 link to its closest predecessor inD01, and
so on.

The total number of inter-domain links per node is at
most the number of non-empty levels in the domain hierar-
chy; when hierarchy IDs are chosen randomly, the num-
ber of such levels isO(logn), ensuring that each node
maintains onlyO(logn) inter-domain links. The details of
how to maintain this structure as nodes join and leave are
straightforward. Since links are set up at all levels of the
hierarchy ahead of time, the splitting of a domain into two
does not necessitate the formation of any additional links to
maintain the structure.

Queries and Iterative BroadcastFor now, imagine that
domain splits and data re-indexing occur instantaneously,
so that each domain indexes its local content at all times.
We describe query routing under this assumption, and relax
this assumption in Section 4.3.
Partial LookupsLet us first consider partial-lookup queries.
A query is first evaluated in its own domain, by routing it
to the relevant index node using the links defined in Al-
gorithm 1. If the answers within the domain are insuffi-
cient, the query isiteratively broadcast to more and more
domains, roughly doubling the number of domain in each
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step. We may visualize this process in terms of the domain
hierarchy: a query is first sent to the sibling domain in the
hierarchy at level, say,l, then to all domains in the sibling
subtree at levell�1, then to the sibling subtree at levell�2,
and so on, until all domains are reached. (See pseudocode
in Algorithm 2.)

To illustrate, consider a query initiated in domainD00

whose relevant index is stored at node0. If answers at0 are
insufficient, node0 sends the query to domainD01, using
its level-2 inter-domain link to its predecessor inD01, say
p. Once the query reaches nodep, it is routed withinD01

using intra-domain links to reach the relevant node in that
domain. Note, however, that sincep is the immediate pre-
decessor of0, it is very likely thatp, or one of its immediate
successors, stores the relevant index entry for domainD01.
Therefore, the query can be answered in domainD01 using
just a constant number of messages in expectation.

If the answers from domainD01 are still insufficient,
node0 sends the query up to the next level in the hierarchy:
all leaf domains underD1. Node0 uses its level-1 inter-
domain link, i.e., to node13, in order to propagate the query
toD1. If D1 is a leaf domain, node13 would simply route
the query within that domain to obtain results. ButD1 may
not be a leaf domain itself, and may have many leaf domains
in its sub-tree. In this case, node13 recursively broadcasts
the query to all domains in theD1 subtree, with all answers
being sent to node0. The algorithm for this recursive broad-
cast is almost identical to the total-lookup algorithm that we
describe next. (See pseudocode in Algorithm 3.)
Total LookupsWhen a query requires all answers in the sys-
tem, it needs to be broadcast to all domains. The first step in
a total lookup is the same as the partial lookup: the query is
first routed within the original domain to get to the respon-
sible node, node0 in our example. Node0 then sends the
query usingall “inter-domain” links that connect to nodes
outside its current domain. In our example, node0 sends
the query to node13 in D1, designating node13 responsi-
ble for broadcasting the query to all domains in the entire
D1 subtree. Node0 also sends the query to its predecessor
in D01 designating it responsible for broadcasting to all do-
mains in theD01 subtree. (Of course, in our example,D01

is a domain itself.) Although node0 may also have more
“inter-domain” links to other nodes inD00, it does not use
them for broadcast, since it realizesD00 is a domain by it-
self. (See pseudocode in Algorithm 4.)

The primary difference of this approach from the partial-
lookup algorithm is that node0 uses all its inter-domain
links simultaneously, instead of using them one at a time
and waiting for results. Note that the broadcast algorithm
requires the ability to broadcast within a subtree as a sub-
routine. This is easy to do: a node required to broadcast in
a subtree at leveli uses all its inter-domain links except the
links for levels1 to i� 1.

Algorithm 2 PartialLookupQuery(StartNodes, Queryq)
1: Answers=FindIntraDomainAnswers(s; q)
2: Let the query reach nodem within the domain. Let the

current domain level bel.
3: Letm’s inter-domain link at levelx be to nodenx.
4: for x = l downto0 do
5: If sufficient answers,break.
6: Answers=Answers+PropagateQuery(nx, x+1, q,m)
7: end for
8: return Answers to nodes;

Algorithm 3 PropagateQuery(CurrentNodem, LevelOf-
Propagationh, Queryq, SourceNodes)

1: Let the current domain level for nodem=l
2: Letm’s inter-domain link at levelx be to nodenx.
3: for x = h to l� 1 do
4: PropagateQuery(nx; x+ 1; q; s)
5: end for
6: FindIntraDomainAnswers(n; q) and return them tos

Algorithm 4 TotalLookupQuery(StartNodes, Queryq)
1: Route the query within the domain; let it reach nodem.
2: PropagateQuery(m,0,q,s)

We present analysis of the partial- and total-lookup algo-
rithms in Appendix B. We simply note here that the mes-
sage complexity and the latency experienced by queries are
as described in Theorem 1 (Sec. 2.2).

Summary We have now described intra-domain and inter-
domain overlay networks in which all nodes haveO(logn)
links each, which allows efficient routing and broadcast of
queries within and across domains respectively. Domains
may split and merge at will, and do not require changes to
the link structure.

4.2 The Re-indexing Problem

Having taken care of the overlay problem, we now turn
to the re-indexing problem. When domainD splits intoD0

andD1, index entries need to be moved since theD0 nodes
should now index only content inD0, whileD1 nodes need
to indexD1 content. It turns out that such re-indexing is not
too expensive, since only pairs of nodes need to communi-
cate to exchange index entries.

Consider the example network in Figure 6(b). Initially,
all nodes are in the same domain, so that node0 indexes
all content hashing to the range[0; 2), while node2 indexes
all content in range[2; 3). When the domain splits, node0
should index onlyD0 content in range[0; 3), while node2
indexesD1 content in[2; 5). In order for this transformation
to occur, node0 needs to obtain index entries forD0 content
in [2; 3), which it may receive by communicating with node

9



2. (Recall that the two nodes already have a link between
them in the network.) Similarly, node2 communicates with
node3 to obtain all its index entries. In general, eachD0

(resp.,D1) node only needs to receive data from oneD1

(resp.,D0) successor (in expectation) in order for the re-
indexing to complete. Such data exchange is made easier
by the fact that these pairs of nodes also have a link to each
other in the interconnection network.

4.3 The Atomic-Split Problem

Two questions remain. (1) When should a domain be
split into two, and when should two domains merge? (2)
How can the split be performed without requiring all nodes
to act simultaneously? How do we handle queries that are
issued while a split is going on?
When to Split To answer the first question, we observe that
the optimal domain size is a function of the number of nodes
in the network when optimizing for total lookups, and is a
fixed constant when optimizing for partial lookups (assum-
ing that other system characteristics such as average node
lifetime are stable). If a node can estimate the total size of
the network, as well as the current size of its domain, it can
decide whether the current domain size is too large or too
small. If the domain size is too large (say, greater than twice
the optimal size), the node may initiate a domain split oper-
ation. If the size is too small (say, less than half the optimal
size), the node initiates a merge operation.

Network-size estimation is a well-studied problem and
standard techniques, e.g., [13], can be used to estimate both
the network size and the domain size. Since domain sizes
are fairly small, one may even obtain more accurate esti-
mates using a broadcast message to count the number of
nodes in the domain. Hereonin, we simply assume that it
is possible to obtain reasonable estimates of domain size
and network size. (Note that when optimizing for partial
lookups, we do not need an estimate of the network size.
We merely have to check if the domain size is much greater
than or much less than a constant.)
Splitting without synchronization For the second problem
of how all nodes in a domain split at the same time, we sim-
ply allow each node to figure out for itself when the domain
ought to split, and then act upon that decision. Its actions
consist of contacting nodes in the new sibling domain and
obtaining index entries from them for content in its own new
domain, and are described in Algorithm 5.

Observe that the algorithm is completely independent of
whether other nodes have chosen to split or not. Therefore,
it is entirely possible, and indeed inevitable, that a situation
arises where some nodes in the domain have chosen to split,
and have modified their index content appropriately, while
other nodes are yet to split. We note, however, that such a
situation will not last forever, since all nodes will eventu-

Algorithm 5 DomainSplit(Nodem)
1: loop
2: l=Current domain level ofm
3: n̂=Estimate of current domain size
4: if n̂ > Split Thresholdthen
5: s = Successor ofm at levell+ 1
6: for all m0 betweenm ands s.t.Pre(m;m0) = l do
7: fThere is only onem0 in expectationg
8: Get index entries for level-(l+ 1) domain fromm0

9: end for
10: end if
11: end loop

ally come to the same conclusion on whether to split or not,
based on the domain size estimate.

But what happens to queries that are executed in the sys-
tem during this intermediate stage where some nodes have
split and others have not? The careful establishment of the
intra-domain and inter-domain links ensures that queries are
completely unaffected by the asynchronous splitting of do-
mains. Thanks to an intra-domain routing property called
path convergence[7], we can prove that all queries will con-
tinue to retrieve all the relevant answers. We now explain
this path convergence property, and show why it solves the
atomic-split problem.
Path ConvergenceLetS be a set of nodes with a common
l-bit prefix in their hierarchy ID. Consider a nodem not
in S that shares a prefix of lengthl0 < l with all nodes in
S. Then, the routing path from every node in S to nodem,
using intra-domain links, must go through some common
nodec in S. This common nodec is the closest predecessor
of nodem in S.

To illustrate path convergence, consider some nodem in
D0 attempting to route a message to node2 (treating the
entire system as a single domain). Path convergence states
that, no matter whatm is, the routing path fromm to node
2 must go through node0. (Note that0 is the closest prede-
cessor of2 in domainD0.)

To understand why path convergence helps in ensuring
correct queries, let us consider a query for a keyK that
hashes to the value2. Index entries forK could potentially
be stored at a number of nodes. If node2 believes that its
domain consists of the entire systemD, 2 would hold all
entries forK. If node2 believes its domain isD1, it would
have only the index entries available inD1, and would have
handed off the entries forD0 data to node0. Of course,
node0 might itself believe its domain to beD00, in which
case node0 would have handed off some entries to the rel-
evant node inD01, and so on. In any case, the relevant
index entries for keyK is stored overa set of nodes dis-
tributed across all branches of the domain hierarchy. (Also
observe that the nodes in this set are connected by inter-
domain links.)

Now consider a nodem, say inD00, that initiates a query
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for keyK. Since nodes don’t synchronize when performing
splits, nodem doesnot have any idea which set of nodes
contain the index entries forK. In order to answer the
query, nodem uses its intra-domain links and routes the
query towardsK ’s hash value, i.e.,2, treating the entire
system as a single domain.

By the path convergence property, this query message
must reach node0 along the way. If node0 already has per-
formed domain splits and is responsible for storing some
entries for keyK, node0 intercepts the query message,
terminates intra-domain routing, and returns the answers it
contains tom; more answers, if necessary, can be discov-
ered by node0 using its inter-domain links to reach domains
D01, D1, etc. If node0 still believes that its domain is the
entire systemD (i.e., node2 still contains all entries for key
K), it does not intercept the query message, and continues
to route it using intra-domain links. The query would even-
tually reach node2, which contains all the answers forK
in this case and can return these answers tom. By a similar
argument, it is easy to show that (a) all queries are able to
retrieve all the data in the system in an appropriate fashion,
and (b) update broadcast messages can also be transmitted
to ensure that the relevant nodes will receive a broadcast
message informing them of node departures.

4.4 Discussion

Domain MergesSo far, we have discussed only the split-
ting of domains. Domain merges are the exact inverse of a
domain split. Since no links were ever deleted when a do-
main split, no new links need to be created when a domain
that split earlier becomes a single domain again. Query
routing during a domain merge is identical to that during
a split, and is automatically taken care of, as discussed ear-
lier. Note that there ishysteresisto ensure that domains
don’t split and merge all the time. A domain splits when
its size becomes a constant factor larger than the optimal,
while two domains merge if their cumulative size is a con-
stant factor less than the optimal.

The Cost of Split/MergeThe primary cost associated with
a domain split/merge is that of transferring index entries be-
tween neighboring nodes. Although this cost is dependent
on the size of the indexes stored at each node, we observe
that the cost isn’t too high because splits and merges hap-
pen infrequently: a domain split occurs only when the total
number of nodes in the system doubles, while a merge oc-
curs only when the total number of nodes halves. Although
P2P systems are dynamic in terms of node arrivals and de-
partures, thesizeof the P2P system changes more slowly3.

A secondary cost is that of nodes estimating domain
sizes in order to determine when to split or merge. This cost

3Typically, system size changes by a large factor about once a day [17],
corresponding to nodes joining during the day and leaving late at night

is typically very small and the estimation can often be done
by piggybacking on other traffic in the P2P system [13].

4.5 Evaluation

We now evaluate how Adlib, with dynamic variations in
the number of domains, scales as the number of nodes in the
system increases continuously. Our objective is to measure
two things: (a) the overall system cost, measured as the sum
of the query and index-maintenance costs, for different net-
work sizes, as the network evolves, and (b) the cost of the
adaptation itself, i.e., the overhead involved in performing
splits and merges themselves.

Our experiment begins withn = 4096 nodes in the sys-
tem, and the size of the system increases as nodes progres-
sively join. As the number of nodes increases, domain splits
may occur as dictated by the splitting algorithm. We op-
timize for partial-lookup queries and, in keeping with the
evaluation in Section 3.2, require that the maximum do-
main size be512, i.e., a domain is expected to split when
it becomes any larger. We assume that nodes have an accu-
rate estimate of domain size; relaxing this assumption only
serves to stagger a domain split over a slightly larger period
of time, and has little impact on costs.

The continuous growth in system size is interspersed
with periods of “stability”; during these periods of stabil-
ity, nodes join and leave at an equal rate (ensuring that the
system size remains stable) and issue queries. Node life-
times as well as query rates are drawn from Gnutella mea-
surements, just as in Section 3.2. Once enough time passes
in the stable state to obtain a good estimate of query and
update costs at that network size, the system once again
switches into a “growth” phase with nodes joining the sys-
tem continuously until the next “stable” phase. Note that
no domain splits and merges occur in the stable phases as
the balancing of node joins and leaves ensures that domain
sizes do not change much.

Figure 7 plots the overall system cost, measured dur-
ing the stable phases at the different system sizes observed
during the evolution of the system. The solid curve shows
the cost incurred in the system, with each marked point on
the curve reflecting measurements during a stable phase at
which the cost is measured. The cost shows a step-like be-
haviour, dropping every time domain splits occur at network
sizes close to a power of2. The dashed curve underneath
in the figure shows theoptimalachievable cost for the cor-
responding network sizes, using thebestchoice of domain
sizes that we described in Section 3.2. (Note that the y-axis
does not start at zero.) We see that our dynamic adaptation
of domain size is fairly close in performance to the optimal
achievable cost for all network sizes.

Split OverheadTo quantify the overhead ofperforming do-
main splitsthemselves, we need to know the rate at which
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the network grows in size. Say the network doubles in size
everyD seconds. The overhead of performingonedomain
split is simply the cost of re-indexing data. For re-indexing,
pairs of nodes exchange portions of the index; if each node
hast tuples on average, the number of index entries trans-
ferred out per node ist=2. Since all the entries need to be
sent to only one other node in expectation, and assuming
each index entry isi bytes long, the bandwidth cost of per-
forming such a split, averaged over the time for the system
to double in size, isit=2D bytes/sec.

In our simulation,t = 307, and we assume an index
entry is10 bytes long; A typical Gnutella system doubles
or halves in size about once a day [17]. Even assum-
ing conservatively that our system doubles in size every
hour, the bandwidth overhead of splits per node is under
1 byte/second and is thus very small. Even whent is much
larger, sayt = 106, the overhead is under100 bytes/second
when the system doubles/halves in size daily.

5 Adapting to the Physical Network

So far, we have ignored the fact that different nodes may
be in physically disparate locations, spread across a wide-
area network. Ideally, we would like to ensure all com-
munication on the overlay-network actually occurs between
physically nearby nodes, to ensure low query latency and
reduce bandwidth usage. Adlib allows adaptation to such
physical-network proximity in a natural fashion.

The Adlib structure continues to operate efficiently even
when nodes do not choose their hierarchy ID at random.
Thus, nodes could select their hierarchy ID in such a fash-
ion that physically close nodes also possess hierarchy IDs
with a common prefix. (Note that, after a certain fixed-
length prefix, the remaining bits of the hierarchy IDs should
continue to be chosen at random, in order to avoid extreme
cases of all nodes choosing exactly the same ID.)

We do not discuss exactly how nodes assign themselves
such a hierarchy ID, except to point out that there are several
known techniques for identifying the location of nodes on
a physical network. For example, one solution is to estab-

lish “beacons” spread around the network; each node could
measure its physical-network distance to these beacons, and
chooses a hierarchical ID based on its proximity to each of
the beacons, in a fashion similar to that described in [15].

Such an arrangement has the effect of ensuring that
nodes within a domain are physically close to each other.
Consequently, index construction within a domain becomes
optimized for the physical network, as content is indexed
only at physically nearby nodes. Query routing within
the domain is also efficient. Moreover, for partial-lookup
queries that desire only a limited number of results, the
query routing algorithms first provide results that are physi-
cally nearby in the network, and slowly identify results that
are further and further away, until enough answers are ob-
tained.

Such a query execution strategy is not only efficient in
terms of network bandwidth usage and query latency, but
also offers somenearest-ksemantics, i.e., results that are re-
turned are that obtained from physically close nodes which
can be useful from the application perspective.

6 Related Work

Distributed Hash Tables [14, 18, 16, 10], such as Chord,
have been proposed as a substrate for a variety of distributed
applications. The PIER project [11] uses DHTs specif-
ically for the problem of building distributed indexes over
relational data to enable single and multi-table queries. This
work is complementary to ours in that it enables more com-
plex queries on top of basic index structures, while our work
focuses on the most efficient way to construct the basic in-
dex.

P-Grid [3] uses indexes to support queries over ordered
and unordered data. P-Grid also investigates the issue of
index updates, but its focus is on the update of individual
tuple values, rather than on the insertion and removal of tu-
ples themselves, with dynamic node joins and leaves.

In file-sharing systems such as Gnutella [1], each node
indexed its own content, and queries were flooded across
nodes. KaZaa [2] extended the Gnutella approach with the
use ofsupernodeswhich serve as a proxy for nodes with
lower bandwidth. Adlib also extends to supporting the use
of such supernodes. Both Gnutella and KaZaa suffer from
high query-execution cost and poor query recall. In com-
parison, the Adlib index reduces the overall system cost by
more than an order of magnitude.

Hybrid solutions such as YAPPERS [8] have been pro-
posed to introduce a middle ground between DHTs and
Gnutella, and enable efficient partial-lookup queries while
reducing index-update costs. Our solution extends the de-
sign philosophy of YAPPERS, but improves on it by design-
ing much larger, non-overlapping indexes, while providing
stronger guarantees on query and update costs.
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7 Conclusions

We have introduced a self-tuning index structure that
trades off index-maintenance cost against the benefit for
queries. We have shown that Adlib can reduce the system
overhead by a factor of four, compared to a global index.
We have shown how to devise overlay networks, as well as
indexing and querying mechanisms to support the dynamic
and self-tuning index without the need for any global syn-
chronization for index re-organization. The performance
advantages of Adlib are amplified when the system is opti-
mized for the underlying physical network, as Adlib enables
natural support for reducing update costs of the index, and
finds partial-lookup results in a network-efficient fashion.
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Figure 8. An Example Chord Network

A Chord and Broadcast on Chord

Chord is a structured overlay network defined as follows.
Say there aren nodes in the system. Each node is assigned
a uniqueID drawn at random from a circular N-bit iden-
tifier space[0; 2N). (Identifiers on the circle are imagined
as being arranged in increasing order clockwise.) Figure 8
depicts an example of nodes in a 5-bit space. Thedistance
from nodem to nodem0,Dist(m;m0) is the clockwise dis-
tance on the circle fromm’s ID tom0’s. Each nodemmain-
tains a link to the closest nodem0 that is at least distance2i

away, for each0 � i < N . We call this theChord rule. For
example, node0 establishes a link to the closest nodes that
are a clockwise distance1; 2; 4; 8 and16 away, resulting in
links to nodes2; 4; 8 and17.

Chord enables efficient routing of a message between
any two nodes by greedy, clockwise routing. For exam-
ple, node0 would route to node15, by sending the message
to node8, which forwards it to node13, and from there to
node15. This mechanism requires onlyO(log n) messages
for routing between any arbitrary pair of nodes. Moreover,
when nodes join or leave the system, onlyO(log n) mes-
sages to restructure the overlay network appropriately for
the new set of nodes.

Chord was proposed as a means of maintaining a dis-
tributed hash table. Data keys are hashed into the N-bit
identifier space, and we let each node store data falling in
the hash bucket ranging from its ID to the next higher ID.
A query for a specific key can then be routed to the node
responsible for the key’s bucket, thus allowing efficient key
lookup.
Broadcast on ChordAlthough the Chord overlay network
was proposed for routing, an obvious extension also allows
efficientbroadcastof messages from one node to all other
nodes. A node initiating the broadcast sends the message to
all its neighbors, and requires each neighbor to recursively
broadcast the message to a smaller fragment of the ring.

For example, node0 broadcasts a message by sending it
to all its neighbors: nodes 2, 4, 8 and 17. Node2 would be
responsible for sending the message to nodes in the range
[2; 4), node4 for the range[4; 8), node8 for the range
[8; 17) and node17 for the range[17; 32). Each of these
nodes recursively forwards the message to all its neighbors
falling within its specified range. For example, node8, be-

ing responsible for the range[8; 17), would send the mes-
sage to nodes10 and13, appointing them responsible for
the ranges[10; 13) and [13; 17) respectively. It is easy to
show that the above mechanism results in each node re-
ceiving the message exactly once. Moreover, if each node
transmits one message per time unit, every node receives
the broadcast message withinO(logn) time units.

It is equally straightforward to achieve broadcast on
other overlay networks besides Chord. In fact, the
same broadcast algorithm may be used for broadcast on
Crescendo, the overlay network used by Adlib in its intra-
domain structure.

B Proofs

Theorem 1. If there aren nodes in the system distributed
uniformly acrossk domains, the following statements hold
with high probability:

(a) the total out-degree of each node isO(logn),
(b) the number of messages exchanged to handle a node

join or leave isO(logn),
(c) a total-lookup query initiated by any node takes

O(k + log(n=k)) messages to obtain all answers,
(d) a partial-lookup query that contactsf domains takes

O(f + log(n=k) messages to obtain answers,
(e) if the latency of a message transmission is one time

unit, a total-lookup query is answered inO(logn) time
units, and a partial-lookup query inO(log2 k + log(n=k))
time units.

Proof. (a) The number of intra-domain links per node is
O(logn) as shown in [7]. Now, consider the number of
inter-domain links set up by a nodem according to the defi-
nition in Section 4.1. Nodem sets up one inter-domain link
for each value ofi, 0 < i � N , that the setSi is non-empty.
Since the setSi consists of all nodes with a specifici-bit
prefix in their hierarchy ID, and nodes choose their hierar-
chy ID independently and at random, it is easy to see that,
with high probability,Si is empty for alli > i0 for some
i0 = O(logn). Consequently, the total number of links per
node isO(logn) with high probability.

(b) The number of messages to fix the intra-domain net-
work after a node join/leave isO(logn) [7]. For the inter-
domain network, observe that onlyO(logn) other nodes
are affected by a node join/leave, by part (a). Each of the
affected nodes can re-connect to the appropriate node using
only a constant number of messages with high probability,
just as in the case of the intra-domain network.

(c) The number of intra-domain messages to find query
answers in the source domain isO(log(n=k)) [18, 7]. The
number of additional messages necessary to forward the
query to all the domains isk�1, by the use of inter-domain
broadcast. Within each domain, the number of nodes be-
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tween the first recipient of the query, and the query destina-
tion is a constant with high probability, thus requiring only
O(1) messages within each domain.

(d) The argument is identical to (c) above, noting that the
iterative broadcast terminates after the query reaches only
O(f) domains with high probability.

(e) The latency of an intra-domain lookup is
O(log(n=k)) [18, 7]. The latency of broadcasting the
query to allk domains isO(log k), since it is bounded
by the depth of the lowest-level domain in the domain
hierarchy. The latency of query routing within each domain
is O(1), by the argument in part (c). Thus, the latency of
a total-lookup query isO(log n). For partial lookups, the
latency of broadcast is at mostO(log2 k), since broadcast
is iterative with both the number of iterations and the length
of each iteration beingO(log k), leading to the desired
bound on overall latency.

Theorem 2. (a) The cost of index creation and maintenance
with update broadcast is(3t=L)(1� k=n) + n=(Lk) mes-
sages per node per second.

(b) For a time-out periodTo, the cost of index cre-
ation and maintenance with time-outs is(3t=L)(1�k=n)+
n
kTo

(1� (1� k=n)t) messages per node per second.

Proof. (a) Consider the costs of index creation and mainte-
nance associated with a particular nodem. Whenm joins
the system, its content needs to be inserted into the index.
The probability that nodem itself is responsible for a partic-
ular tuple isk=n. Additionally, index entries need to be mi-
grated from the neighbor ofm to itself; when all nodes have
t tuples each, the number of migrated tuples ist(1� k=n).
Whenm leaves, the index tuples thatm stored have to be
re-inserted into the system; there aret(1 � k=n) such tu-
ples. Finally, the information aboutm’s departure has to be
broadcast to the rest of the nodes in the system, which re-
quiresn=k messages. The above costs are incurred over the
lifetime L of nodem, leading to the desired expression for
costs4

(b) With the time-out mechanism, the costs of index in-
sertion on node join, index migration on node join, and in-
dex re-insertion on a node leave are the same as in part (a).
However, there is the additional cost of periodic keep-alive
messages. If a node hast tuples, the expected number of
distinct nodes that have an index entry for at least one of
thoset tuples is(1� (1� k=n)t)n=k. We assume that one
keepalive message needs to be sent to each of these distinct
nodes everyTo time units, leading to the desired result.

4We have used an approximation to simplify the expression here; the
initial insertion of content requires nearly0:5 log(n=k)) messages per tu-
ple, while subsequent index modifications require only one message per
tuple. We ignore this minor difference, both for time-outs and update
broadcast.
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