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Abstract: We study Structured Coupon Collection, a problem introduced by Adler et al [AHKV03]

in STOC 2003, over n/b disjoint cliques with b nodes per clique. Nodes are initially uncovered. At each

step, we choose d nodes independently and uniformly at random. If all the nodes in the corresponding

cliques are covered, we do nothing. Otherwise, from among the chosen cliques with at least one uncovered

node, we select one at random and cover an uncovered node within that clique. We show that as long as

bd ≥ c log n, O(n) steps are sufficient to cover all nodes w.h.p. and each of the first Ω(n) steps succeed

in covering a node w.h.p.. These results are then utilized to analyze a stochastic process for growing

binary trees that are highly balanced – the leaves of the tree belong to at most four different levels w.h.p.

The stochastic process constitutes the core idea underlying a practical P2P load balancing scheme that

beats earlier proposals for the same, in terms of message complexity.

1 Introduction

In the standard coupon collector process, there are n types of coupons and in each trial, a coupon is
chosen independently and uniformly at random. It is well known that the number of trials needed to
collect at least one copy of each type is sharply concentrated around n log n (see [MR95], for example).
One generalization is to have multiple choices: in each trial, pick d coupons at random and if any of
them is not collected, collect a random uncollected coupon. Another generalization is to introduce a
graph structure: coupon collection is carried out on a graph whose nodes correspond to coupons and are
initially uncovered. In each trial, pick a node at random and if any of its neighbors is uncovered, cover a
random uncovered neighbor. Adler et al [AHKV03] call this process Structured Coupon Collection over
graphs. They establish that with high probability1, O(n) steps suffice to cover all nodes of hypercubes on
n nodes, ∆-regular graphs with ∆ = Ω(log n log log n) and random ∆-regular graphs with ∆ = Ω(log n).

In Section 2, we analyze Structured Coupon Collection over n/b disjoint cliques, each of size b. In each
trial, we choose d ≥ 1 nodes independently and uniformly at random. If all the nodes in the corresponding
cliques are covered, we do nothing. Otherwise, from among the chosen cliques containing an uncovered
node, we select one at random and cover an uncovered node in it. We show that w.h.p., all the nodes are
covered in O(n) trials and each of the first Ω(n) trials covers an uncovered node, for any choice of b and
d satisfying bd ≥ c log2 n for a suitably large constant c.

In Section 3, we use the results proved in Section 2 to analyze a stochastic process for growing binary
trees, thereby extending the suite of results known in this space. Adler et al [AHKV03] showed that if we
repeatedly perform a random walk down the tree and split the shallowest of the “hypercubic neighbors”
of the leaf node encountered, the resulting tree has leaves in Θ(1) levels. Abraham et al [AAA+03] and
Naor and Wieder [NW03] showed that the same property holds for trees resulting from the following
process: at each step, we perform c log n random walks down the tree and split the shallowest leaf node

1By “with high probability” (w.h.p.), we mean “with probability at least 1 − O(n−λ) for an arbitrary constant λ > 1.
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encountered. Manku [M04] showed that if we perform one random walk, and split the shallowest leaf
in the “vicinity” of the leaf node, where the vicinity has size c log n, the resulting tree has leaves in at
most three different levels, w.h.p. The process we analyze is a generalization of these two extremes (and
includes both as special cases): we perform r random walks, inspect vicinities of size v for each of the r
leaf nodes and then identify the shallowest leaf. We show that as long as rv ≥ c log n, the tree has leaves
in at most four different levels, w.h.p. Analysis of the generalized process requires a new proof technique,
for which we borrow ideas from [AHKV03] – the proof is different from the approaches taken by authors
who analyze the extreme cases [AAA+03,NW03,M04].

In Section 4, we show how balanced binary trees are useful for addressing the load balancing problem in
Distributed Hash Tables (DHTs). The tradeoff between r, the number of random walks and v, the vicinity-
size, is exploited to arrive at the optimal number of random walks required. We show that with r =√

log log n random walks, O(log n/
√

log log n) messages are sufficient w.h.p., when a new member joins the
DHT. In comparison, existing schemes require O(log n) messages [AHKV03,M04] or O(log2 n/ log log n)
messages [AAA+03,NW03,KR04].

2 Structured Coupon Collection over Cliques

Consider the problem of collecting b copies each of n/b coupons. In each trial, exactly one of the n/b
coupons is chosen independently and uniformly at random. If b is a constant, the number of trials needed
to collect all copies is sharply concentrated around n

b (ln n
b + (b − 1) ln ln n

b ) [MR95]. In this section, we
study the following variant: we have to collect b copies each of n/b coupons. In each trial, d coupons are
chosen independently and uniformly at random but at most one of them can be retained to augment our
collection: if we have already collected b copies of each of these d coupons, we do nothing; otherwise, from
among the chosen coupons having less than b copies, we randomly select one to include in our collection.
This process is equivalent to the process on cliques defined in Section 1. In this Section, our main results
are that if bd ≥ c log n for some suitably large constant c, then with high probability, (a) O(n) trials
suffice to collect b copies of all the coupons, and (b) each of the first Ω(n) trials increases the size of our
collection.

2.1 Analysis

In terms of bins and balls, we have n/b bins, each with capacity b. In each trial, we choose d bins
independently and uniformly at random. If all the d bins are full, we do nothing (the trial fails). Else,
we select one of the non-full bins (from among the d choices) at random and place a ball into it. The first
lemma below contains two useful forms of inequalities by Chernoff [C52] and Hoeffding [H63]. The second
lemma helps us derive tail bounds for dependent binary random variables under certain conditions.

Lemma 2.1 Let Z denote a random variable with a binomial distribution Z ∼ B(n, p).
For every λ > 1, Pr[Z > λnp] < (eλ−1λ−λ)np.
For every a > 0, Pr[Z < np − a] < e−a2/(2np).

Lemma 2.2 Let ω1, ω2, . . . , ωn be a sequence of random variables. Let Z1, Z2, . . . , Zn be a sequence of
binary random variables, with the property that Zi = Zi(ω1, . . . , ωi−1). Let Z =

∑n
i=1 Zi. Then

Pr[Zi = 1 |ω1, . . . , ωi−1] ≤ p ⇒ Pr[Z ≥ k] ≤ Pr[B(n, p) ≥ k].
Pr[Zi = 1 |ω1, . . . , ωi−1] ≥ p ⇒ Pr[Z ≤ k] ≤ Pr[B(n, p) ≤ k].

Theorem 2.1 There exists a constant α such that, with high probability, all bins are full in αn trials,
for any choice of b and d satisfying bd ≥ c log2 n for a sufficiently large constant c.
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Proof: We will use the fact that (1 − 1
x)x < e−1 < (1 − 1

x)x−1 for all x > 1.

Let f denote the fraction of non-full bins at any time. Fraction f is non-increasing over time, and
we divide the process into two phases: In Phase I, f ≥ 1/d. In Phase II, 0 < f < 1/d. The intuition
underlying our analysis is as follows. In Phase I, many bins are non-full. Hence we make rapid progress
in populating the bins, terminating the phase in O(n) steps. In Phase II, progress is slow. However, from
the perspective of an individual non-full bin, progress is fast enough to fill it in O(n) steps.

Claim: Phase I terminates within t1 = ( e
e−1 + ε1)n trials, w.h.p., where ε1 is a small constant.

Proof: At any time-step, the success probability, i.e., the probability that the ball gets placed into
some non-full bin is at least 1 − (1 − f)d > 1 − 1/e. Let ns denote the number of balls lying in
various bins when Phase I terminates. Clearly ns ≤ n. Let T be the total number of trials in this
phase and Yt be the number of successes in the first t trials. Yt =

∑t
i=1 Zi where Zi is the indicator

random variable corresponding to success in the ith trial. Let ωi denote the random choices available
to the ith ball. Then, Pr[Zi = 1|ω1, . . . , ωi−1] ≥ 1 − 1/e. Using Lemma 2.2 , we can conclude that

Pr[T > n(1+δ)
1−1/e ] = Pr[Yn(1+δ)

1−1/e

< ns] ≤ Pr[B(n(1+δ)
1−1/e , e−1

e ) < ns] ≤ Pr[B(n(1+δ)
1−1/e , e−1

e ) < n]

Using Lemma 2.1, the probability is less than e−nδ2/2(1+δ), which is o(1/n2) when δ = ε1(1 − 1/e). Thus
Phase I terminates within t1 steps w.h.p.

Claim: Phase II terminates within t2 = (2e + ε2)n trials, w.h.p., where ε2 is a small constant.
Proof: Let C denote a bin that is non-full at the end of Phase I. The probability that C is one of

the d bins selected is 1 − (1 − b/n)d > db/2n. Given that one of the bins is C, the probability that each
of the other d − 1 bins is full is (1 − f)d−1 > 1/e. Overall, the probability that C gets the ball in any
time-step in Phase II is at least db/2en. As before, it follows from Lemma 2.2 that the number of balls
in C stochastically dominates2 the random variable B(t2, db/2en). Using bd ≥ c log2 n, Lemma 2.1 yields
that, in t2 trials, C becomes full with probability 1− o(1/n2). By taking the union bound over all the n
bins, Phase II terminates within t2 steps w.h.p.

Choosing α = ( e
e−1 + 2e + ε1 + ε2), we find that αn trials are sufficient to fill all bins w.h.p., where ε1

can be made arbitrarily small, and ε2 can be made small by choosing a large c. �

Note that Theorem 2.1 holds even if at any step, we choose a non-full bin (from among the d choices)
arbitrarily (for example, in an adversarial fashion).

Theorem 2.2 With high probability, each of the first βn trials succeeds in placing a ball, for any β < 1
2

and any choice of b and d satisfying bd ≥ c log2 n, for a sufficiently large constant c.

Proof: The proof follows from a series of four claims:
Claim: In any of the first βn trials, for any β, the probability that a specific bin receives a new ball

is at most b
n(1−β) .

Proof: At any time-step, for a specific bin C,
Pr[C is chosen] = 1 − (1 − b/n)d < db/n

Let f denote the fraction of non-full bins at any time-step. Then Pr[Ball is placed in C | C is chosen]

=
∑d

i=1(
1
i )

(

d−1
i−1

)

f i−1(1 − f)d−i = ( 1
df )

∑d
i=1

(

d
i

)

f i(1 − f)d−i = 1−(1−f)d

df < 1
df . At the end of the first βn

trials, the fraction of full-bins is at most β. Therefore, at any earlier time-step, f > 1−β. By conditioning
on the number of non-full bins found in the d bins, we get

Pr[Ball is placed in C | C is chosen] < 1
d(1−β)

Therefore, the probability that C receives a new ball is at most db
n · 1

d(1−β) = b
n(1−β) .

2A random variable X stochastically dominates random variable Y iff Pr[X ≥ r] ≥ Pr[Y ≥ r]∀r ∈ <.
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Claim: For any β < 1
2 , there exists a constant µ > 1 such that the probability that a specific bin

becomes full at the end of βn trials, is at most 1/µβ .
Proof: From Lemma 2.2 and the previous claim, the random variable B(βn, b

n(1−β)) stochastically

dominates the number of balls received by a specific bin C in βn trials. Using the Chernoff/Hoeffding

inequalities in Lemma 2.1, the probability that C becomes full is at most 1/µb where µ = ( β
1−β )e

( 1−2β
1−β

)
,

and µ > 1 iff β < 1
2 .

Claim: With high probability, the fraction of full bins at the end of βn trials is at most 1/νb, for some
constant ν > 1.

Proof: Let ν =
√

µ > 1. There are two cases:

a) b < logν n − logν logν n: Let Ii for i = 1, . . . , n/b, denote a set of indicator variables, one per bin.
The variable is 1 if the bin becomes full within βn trials. The set of variables are dependent but
negatively correlated [DR98]. Therefore, for tail bounds on their sum, it suffices to replace them by
a set of independent variables. The sum is dominated by the random variable B(n/b, 1/µb). Using
the Chernoff/Hoeffding inequalities in Lemma 2.1, the number of full bins is at most n

bνb (where
ν =

√
µ > 1) w.h.p., provided b < logν n − logν logν n.

b) b ≥ logν n− logν logν n: Any process with b ≥ logν n− logν logν n dominates the corresponding process
with d = 1. A simple application of Chernoff/Hoeffding inequalities in Lemma 2.1 shows that the
first βn trials succeed w.h.p., for sufficiently large c.

Claim: Each of the first βn trials succeeds in placing a ball w.h.p., where β < 1
2 .

Proof: The fraction of full bins at the beginning of ith trial, for any i ≤ βn, is also at most 1/νb.
Therefore, the ith trial fails with probability at most (1/νb)d = o(1/n2), if c is sufficiently large. By
taking the union bound over the first βn trials, we obtain that w.h.p., all of them succeed. �

The constant α in Theorem 2.1 can be improved (see Theorem 3.2 in Section 3). We suspect that
further improvement is possible – a sharp threshold result should hold. Further, we speculate that
Theorem 2.2 should hold for any β < 1, not just β < 1

2 . In Section 3, we use Theorems 2.1 and 2.2 to
prove that binary trees resulting from a certain stochastic process are highly balanced.

2.2 Related Work

The classic balls-and-bins problem involves bins with infinite capacity and d = 1 (see Johnson and
Kotz [JK77] or the book by Kolchin et al [KSC78]). Recently, there has been interest in the computer
science community in analyzing the height of the fullest bin. With n bins and n balls, the height of the
fullest bin is Θ(log n/ log log n) (see Gonnet [G81], Mitzenmacher [M96] and Raab and Steger [RS98]).
For the case d ≥ 2, a breakthrough was achieved by Azar et al [ABKU99] who showed that the height
of the fullest bin is log log n/ log d+ Θ(1), if the least-loaded bin among the d bins is chosen at each trial.
For further results and a survey of proof techniques for d ≥ 2, see Mitzenmacher et al [MRS01]. Our
focus is on cliques, which are equivalent to bins with finite capacity. Moreover, we wish to bound the
height of the bin with the fewest balls.

Structured Coupon Collection over graphs was defined by Adler et al [AHKV03] who proved that
O(n) steps suffice for covering all nodes of hypercubes, ∆-regular graphs with ∆ = Ω(log n log log n) and
random ∆-regular graphs with ∆ = Ω(log n). Alon [A04] has shown that at least n − n

∆ + n
∆ loge

n
∆

steps are necessary to cover all nodes for any ∆-regular graph. The processes analyzed in [A04,AHKV03]
choose exactly one random node per trial. Our focus is on cliques but with multiple nodes chosen in each
trial. In fact, we allow a tradeoff between the number of random choices and clique sizes by allowing any
〈b, d〉 satisfying bd ≥ c log n for an n-node graph. In Section 4, this tradeoff is exploited to derive the
optimal number of random messages to be sent for load balancing in Distributed Hash Tables.
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3 Balanced Binary Trees

In this Section, we study a variety of stochastic processes over binary trees which result in highly balanced
trees. Balance is measured in terms of the number of different levels to which leaf nodes belong. We
begin with some definitions:

Level and vicinity: In a binary tree, the level of a node is the length of the path from the root to that
node. The root has level 0. There are at most 2` nodes at level `. The vicinity of a node at level ` is the
set of v(`) nodes at level ` that have a common ancestor at level ` − log2 v(`).

Functions VxW, r and v: Let VxW ≡ 2k where integer k satisfies 2k−1 < x ≤ 2k. Let r : N → N be
a monotonically non-decreasing function, i.e., r(` + 1) ≥ r(`). Let v : N → N be a function satisfying
v(0) = 1 and v(`) ≤ 2`. Moreover, either v(` + 1) = v(`) or v(` + 1) = 2v(`). Thus v(`) always equals
some power of two.

To motivate the stochastic process that we analyze, we summarize related results established in earlier
papers. Each paper studies a different stochastic process for growing the tree:

1. At each step, we carry out one random walk and split the leaf node encountered. Adler et al [AHKV03]
and Naor and Wieder [NW03] show that leaf nodes belong to Θ(log log n) different levels w.h.p.

2. At each step, we carry out c log n random walks down the tree and split the shallowest leaf node
encountered. Abraham et al [AAA+03] showed that after n steps, the tree has leaves in Θ(1) different
levels. Naor and Wieder [NW03] analyze a similar stochastic process in which we first estimate log n
and then carry out c log n random walks.

3. Let v(`) = Vc`W, where c is a suitably-large constant. First, we carry out a random walk to reach a
leaf node r. If all nodes in the vicinity of r’s parent are split, we split r itself. Otherwise, we split one
of the leaf nodes in the vicinity of r’s parent. Manku [M04] showed that the leaf nodes in a tree with
n leaves belong to at most three different levels.

4. First, we carry out a random walk to reach a leaf node r. We then identify the shallowest hypercubic
neighbor3 of r, splitting it into two. Adler et al [AHKV03] established that the resulting tree has leaf
nodes in Θ(1) different levels.

3.1 A Stochastic Process for Growing Binary Trees

In this paper, we study a generalization of processes 2 and 3 above. We grow the binary tree in a
randomized fashion by splitting some leaf node at each step, as follows:

We first carry out a random walk down the tree. Let ` denote the level of the leaf node
encountered. We then carry out r(`)−1 additional random walks, to obtain a set of leaf nodes
X. For leaf node x ∈ X, if all nodes in the vicinity of its parent are already split, we retain
x in the set. Otherwise, we replace x by its parent. Let X ′ denote the new set thus obtained.
Let `′ denote the level of the shallowest node in X ′. We shrink X ′ to arrive at set X ′′ ⊆ X ′,
limited to nodes at level `′. We then choose some x′′ ∈ X ′′ uniformly at random, and split an
un-split node belonging to the vicinity of x′′.

Different combinations of functions r and v result in different processes: Process 1 corresponds to
r(`) = v(`) = 1. Process 2 is equivalent to r(`) = c log n and v(`) = 1. A variation of this process is
r(`) = c` and v(`) = 1. Process 3 amounts to r(`) = 1 and v(`) = Vc`W. Process 4 amounts to r(`) = 1

3Label the left and right branches of the tree with 0’s and 1’s respectively. Let the sequence of bits along the path from
the root to r denote the ID of r. A hypercubic neighbor of a leaf node is obtained by flipping a bit in the ID string, and
identifying the leaf node with the longest matching prefix of the new string. Please see [AHKV03] for a pictorial definition
and more details.
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and v(`) = ` where the vicinity is defined to be the hypercubic neighbors of a node (see [AHKV03] for
more details). Our interest in this paper lies in the following general condition: ∀` : r(`)v(`) ≥ c`. This
includes Processes 2 and 3 as special cases. Our main result is the following theorem:

Theorem 3.1 For any combination of r and v satisfying ∀` : r(`)v(`) ≥ c`, where c is a suitably large
constant, the tree is highly balanced – leaf nodes belong to at most four different levels.

The motivation for devising and analyzing the generalized stochastic process are three-folds:

1. We are able to demonstrate that the binary tree is balanced for all combinations of 〈r(`), v(`)〉 ranging
from 〈1, c`〉 to 〈c`, 1〉. In other words, randomness can be traded off for vicinity-size smoothly.

2. The generalized process requires a new proof technique, for which we borrow ideas from [AHKV03].
The proof involves the analysis of an interesting balls-and-bins problem as a sub-problem (Section 2).

3. In Section 4, we design a simple load-balancing scheme for Distributed Hash Tables in peer-to-peer
systems. The scheme is based upon the generalized stochastic process. The smooth tradeoff between
r and v allows us to identify the optimal number of messages necessary for load balance. We show
that O(

√
log log n) random walks are sufficient, resulting in a total of O(log n/

√
log log n) messages.

The message complexity improves upon all previous schemes [AAA+03,AHKV03,NW03,M04,KR04]
for comparable load balance. See Section 4 for more details.

3.2 Proof of Theorem 3.1

Throughout this section, we will assume that ∀` : r(`)v(`) ≥ c` for a suitably large constant c.

Lemma 3.1 Assume that the following three claims hold for some constants µ1 and µ2:
1. When n > µ12

L, no leaf is at level L or less, w.h.p., where 2a < µ1 < 2a+1 for some a ≥ 1.
2. When n < µ22

L, no leaf is at level L or more, w.h.p., where 2b < 1/µ2 < 2b+1 for some b ≥ 1.
3. µ1/µ2 < 2a+b+1.

Then with high probability, the leaves of the tree belong to most a + b + 1 different levels.

Proof: Let 2k ≤ n < 2k+1 for some integer k. There are three cases to consider:
a) 2k ≤ n ≤ µ12

k+1: Leaves belong to levels [k − a, k + b] w.h.p.
b) µ12

k+1 < n < µ−1
2 2k+1: Leaves belong to levels [k − a + 1, k + b] w.h.p.

c) µ−1
2 2k+1 ≤ n < 2k+1: Leaves belong to levels [k − a + 1, k + b + 1] w.h.p.

In any case, the leaves are in at most a + b + 1 different levels. �

Consider the structured coupon collection process over a graph with 2i/v(i) cliques, each of size v(i).
At each step, r(i) random choices are made. Let Ai denote the process that terminates when all nodes
in the graph have been covered. Let Bi denote the process that terminates when the first failure occurs,
i.e., no new node could be covered. Let A(`) and B(`) denote series of processes 〈A0,A1, . . . ,A`〉 and
〈B0,B1, . . . ,B`〉, respectively.

In the remainder of the section, we will use four constants: α, β, γ and δ. The first two are defined as
follows: Let α2i denote an upper bound on the number of steps taken by Ai to terminate, with probability
at least 1− 1/poly(2i) (see Theorem 2.1). Let β2i denote a lower bound on the number of steps taken by
Bi to terminate, with probability at least 1−1/poly(2i). From Theorem 2.2, β can be set to any constant
less than half. Constants γ and δ emerge in Lemmas 3.2 and 3.3 respectively. The interplay of all four
constants will appear towards the end of this section, when we prove Theorem 3.1.

Lemma 3.2 A(k) terminates in at most α(2+γ)2k steps, w.h.p., where γ is an arbitrarily small constant.
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Proof: Let j = dlog2 1/γe, a constant depending upon γ. For process Ai where 0 ≤ i < k− log2 k− j, we
allocate αk2i steps. The probability that Ai does not terminate in α2i steps is at most 1/poly(2i). There-
fore, the probability that Ai does not terminates in αk2i steps is at most (1/poly(2i))k = O(1/poly(2k)).

The total number of steps we have allocated so far is
∑i=k−log2 k−j−1

i=0 αk2i < α2−j2k ≤ αγ2k.
We now allocate α2i time-steps to each process Ai where k − log2 k − j ≤ i ≤ k. With probability at

least 1 − 1/poly(2i) = 1 − O(1/poly(2k)), process Ai terminates within α2i steps. The total number of
steps is

∑i=k
i=k−log2 k−j α2i <

∑i=k
i=0 α2i < α2k+1.

The total number of steps is at most α(2 + γ)2k. �

Lemma 3.3 B(k) takes at least β(2 − δ)2k steps to terminate, w.h.p., where δ is an arbitrarily small
constant.

Proof: Let j = dlog2 1/δe, a constant depending upon δ. For k − j − 1 ≤ i ≤ k, the probability that
process Bi runs for less than β2i steps is at most O(1/poly(2i)) = O(1/poly(2k)). Therefore, the series
of processes 〈Bk−j−1,Bk−j, . . . ,Bk〉 runs for at least

∑i=k
i=k−j−1 β2i ≥ β(2 − δ)2k steps w.h.p. Thus B(k)

takes at least β(2 − δ)2k steps to terminate, w.h.p. �

Lemma 3.4 When n > α(2 + γ)2L, no leaf is at level L or less, with high probability, where γ is an
arbitrarily small constant.

Proof: We divide the growth of the tree into phases. Phase i is over (and phase i + 1 starts) when no
node at level i is a leaf node. Let Ti denote the time-step at which phase i terminates. To prove that no
leaf is at level L or less, we will show that TL is stochastically dominated by the time taken for A(L) to
terminate. The claim then follows from Lemma 3.2.

Let ` denote the level of the leaf node encountered in the first random walk down the tree. In phase
i, all leaves are in level i or more. Therefore, ` ≥ i. Since function r is monotonically non-decreasing,
r(`) ≥ r(i). Moreover, each vicinity that permits splitting of a leaf at level i, has size exactly v(i),
corresponding to a clique in process Ai. Thus it follows that TL is dominated by the time taken for A(L)

to terminate. �

Lemma 3.5 When n < 1
4β(2 − δ)2L, no leaf is at level L or more, with high probability, where δ is an

arbitrarily small constant.

Proof: Consider the following variant of our algorithm: As soon as the first leaf at some level ` is created,
we instantly create all leaf nodes at level `−1 as well. This variant grows the tree faster than our original
algorithm. Clearly, the variant is dominated by the original algorithm, in terms of the number of steps
taken before creating the first leaf at level L. The variant is equivalent to process β(L−2), which runs for
at least 1

4β(2 − δ)2L steps (from Lemma 3.3). �

We are now ready to prove a claim slightly weaker than Theorem 3.1: we will establish that leaf
nodes of the tree belong to at most five different levels. Let µ1 = α(2 + γ) and µ2 = 1

4β(2 − δ). From
Theorem 2.1, α = e

e−1 + 2e + ε1 + ε2, where ε1 and ε2 are arbitrarily small constants. It is possible to fix

these constants so that µ1 satisfies 22 < µ1 < 23. Moreover, with a suitable choice of β < 1/2 (allowed
by Theorem 2.2), and sufficiently small δ, we can arrive at a value for µ2 that satisfies 22 < 1/µ2 < 23,
and µ1/µ2 < 25. From Lemma 3.1, it then follows that leaf nodes belong to at most five different levels.

To prove that leaf nodes belong to at most four different levels, as claimed in Theorem 3.1, we need
a tighter version of Theorem 2.1, which we now prove.
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Theorem 3.2 With high probability, all bins are full in 9
5n trials, for any choice of d and b satisfying

db ≥ c log2 n for a sufficiently large constant c.

Proof: We treat d ≤ d0 (where d0 is a constant to be defined later) as a special case. For a fixed value of b,
the process with d > 1 choices dominates the process with a single choice (d = 1). A simple application of
Chernoff/Hoeffding inequalities in Lemma 2.1 shows that if 9

5n balls were placed into n/b ≤ d0n/(c log2 n)
bins (of unlimited capacity), each ball choosing a bin uniformly at random (i.e., d = 1), then every bin
would get at least b balls w.h.p. for a suitably large value of c.

For the rest of the proof, we assume d > d0. We divide the process into two phases as in the proof of
Theorem 2.1. The analysis for Phase I is the same as before.

Claim: Phase II terminates within t2 = (1
5 + ε2)n trials, w.h.p., where ε2 is a small constant.

Proof: As before, for a specific bin C that is non-full at the end of Phase I, the number of balls in C
stochastically dominates the random variable B(t2, db/2en). Choosing d0 = 28 and using db ≥ c log2 n,
application of Chernoff/Hoeffding inequalities in Lemma 2.1 yields that, in t2 trials, C becomes full with
probability 1 − o(1/n2). Taking the union bound over all the n bins yields the claim.

We need ( e
e−1 + 1

5 + ε1 + ε2)n trials w.h.p., where ε1 can be made arbitrarily small, and ε2 can be

made small by choosing a large c. The total is less than 9
5n. �

4 Load Balance in Peer-to-Peer (P2P) Networks

In this Section, we bring out the connection between the stochastic process for growing binary trees
(Section 3) and the load-balancing problem in Distributed Hash Tables (DHTs) in P2P networks.

4.1 Distributed Hash Tables: A Brief Summary

DHTs in peer-to-peer networks have witnessed a flurry of research activity since 2001. A DHT is main-
tained cooperatively, but in a decentralized fashion, by a large number of distributed hosts as follows.
Imagine [0, 1) as a circle with unit perimeter. Hosts are allowed to dynamically join the system (the
set of participants is not fixed a priori). Upon joining, a host is assigned an ID in [0, 1). At any in-
stant, the current set of IDs partitions [0, 1) into disjoint sub-intervals – each host is the manager of
one such sub-interval. A host is connected with its successor and its predecessor along the circle with
TCP connections, thereby forming a “ring” of hosts. The ring connections constitute the short-distance
connections. Each host also makes long-distance TCP links with a few other hosts, as a function of its
own ID. Taken together, the short- and long-distance TCP connections form the overlay routing network
that is responsible for routing messages between hosts.

The problem of designing a good DHT routing network has received much attention recently. For our
purposes, it suffices to treat the routing network as a black-box with the following property: Using the
routing network, it is possible to send a message to the “manager” of a randomly-chosen point in [0, 1) by
paying a cost of R messages, with high probability. The earliest DHT routing networks were based on the
hypercube and its variants. These can route in R = Θ(log n) messages, with only Θ(log n) connections per
node. Examples of these networks are Chord [SMK+01,GM04], Pastry [RD01] and Tapestry [ZHS+04].
Later papers have shown that it is possible to achieve R = Θ(log n/ log log n) with the same number of
connections. Examples of these networks are high-degree de Bruijn networks, as has been observed by
several groups [AAA+03, FG03, KK03, LKRG03, NW03], high-degree butterflies [KMXY03], Kleinberg-
style randomized butterflies [M03], and several other randomized networks that were analyzed in a recent
paper [MNW04] (for example, randomized-Chord [ZGG03,GGG+03], randomized-hypercubes [GGG+03],
Symphony [MBR03], skip-graphs [AS03] and SkipNet [HJS+03]).
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4.2 Balanced Binary Trees for Decentralized Load Balancing in DHTs

Upon arrival, a new host has to select an ID for itself4. DHTs are decentralized — there is no global
knowledge of the current set of IDs. At any instant, any member of the ring can ascertain the IDs of
k adjacent hosts in the ring by paying a cost of 2k messages, or it can identify the ID of a host that
manages a random number in [0, 1), by paying a cost of R messages. A good ID selection algorithm
should enjoy three properties: (a) simplicity and decentralization, (b) low-cost in terms of number of
messages, and (c) small variation in partition sizes for load balance among managers. We will quantify
variation in partition sizes by defining σ, the partition balance ratio, as the ratio between the largest and
smallest partition sizes.

The relationship between binary trees (described in Section 3) and host IDs is as follows. Only leaf
nodes of the tree correspond to host IDs. The internal nodes of the tree are conceptual. The sequence
of 0s and 1s along the path from the root to a leaf node, treated as the binary expansion of a fraction in
[0, 1), constitutes the ID of that leaf.

A “random walk down the tree” is equivalent to identifying the manager of a point chosen uniformly
at random from the interval I = [0, 1). We need R messages per random walk. Inspecting the “vicinity”
of a leaf node or its parent (see Section 3 for a formal definition of vicinity) is equivalent to identifying
whether the corresponding set of IDs along the circle exists or not. To make the inspection low-cost, we
stipulate that each host maintain knowledge of its vicinity at all times. Thus when a new host is added
to the ring (some leaf node splits in the corresponding tree), all other nodes in its vicinity are informed
of the arrival. By choosing r(`) =

√
log ` and v(`) = Vc`/

√
log `W, we obtain the following theorem:

Theorem 4.1 A new host needs Θ(log n/
√

log log n) messages w.h.p. to obtain an ID, where n denotes
the current number of hosts and R = Θ(log n/ log log n). The partition balance ratio is σ = Θ(1) w.h.p.

Proof: From Theorem 3.1, the tree has leaves in at most four different levels w.h.p. With n leaf nodes,
the level of any leaf is Θ(log n) w.h.p. With r(`) =

√
log `, the number of random walks down the tree is

Θ(
√

log log n). With R = Θ(log n/ log log n) messages per random walk, the total number of messages is
Θ(log n/

√
log log n).

Whenever a new host is inserted, all other members of the vicinity it belongs to, are informed of its
existence. Informing all members of a vicinity of size v(`) requires at most v(`) messages (by using only
the short-distance “ring”-connections). With n leaf nodes, the level of a leaf node is Θ(log n) w.h.p. With
v(`) = Vc`/

√
log `W, a vicinity has Θ(log n/

√
log log n) nodes, requiring as many messages.

Since leaf nodes are in Θ(1) different levels, σ = Θ(1) w.h.p. �

4.3 Lower Bound on σ with Balanced Binary Trees

How small a value of σ can possibly be realized in a decentralized setting? Ideally, we would like to have a
distributed algorithm which ensures that the number of bits in any ID is either blog2 nc or dlog2 ne, when
the current number of hosts is n. This goal seems unattainable for a decentralized algorithm because of
the following intuition. When n = 2k − 1, all leaf nodes in the corresponding tree should ideally be in
levels {k − 1, k}. However, with n = 2k + 1, all leaf nodes should be in levels {k, k + 1}. Therefore, a
decentralized algorithm is likely to have leaves in at least three different levels, especially when n is close
to a power of two5.

4It is customarily assumed in DHT design that the new host “knows” one existing member of the ring at the outset.
5A formal proof requires a precise definition of the notion of decentralization.
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4.4 Experimental Results

Figure 1 studies various 〈r, v〉 schemes for growing binary trees. With 〈r, v〉 = 〈1, 1〉, host IDs belong to
as many as six different levels when n = 211. With 〈r, v〉 = 〈1, 4`〉, host IDs are in only three different
levels. Thus 4 appears to be a reasonable value for constant c in the constraint: ∀` : r(`)v(`) ≥ c`.
Finally, five random walks are sufficient to obtain 3-level trees, when the number of hosts is n = 216. In
terms of messages, this is superior to either of the two extremes: 〈1, c`〉 and 〈c`, 1〉.
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(a) Distribution of host IDs using 〈1, 1〉 scheme.
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Figure 1: In (a), the dotted curve shows the number of hosts with 12-bit IDs, as the total number of hosts increases
over time, with the 〈1, 1〉 scheme. The number of curves intersecting a vertical line equals the number of different
levels at which leaf nodes exist, for that n. In (c), using c = 4, the 〈1, c`〉 scheme results in 3-level trees. In (d),
the four curves correspond to n = 2` hosts for ` = 13, 15, 17 and 19 respectively. The total cost is Rx + y, where x
is the number of random walks, y = V4`/xW, and R = `/ log

2
` hops on average.

4.5 Previous DHT Load Balancing Proposals

Early DHT designs allowed each host to independently choose a number in [0, 1) uniformly at ran-
dom [SMK+01, ZHS+04,RD01,RFHK01, FG03,KK03, MBR03,MNR02,HJS+03]. Such an algorithm is
decentralized and requires zero messages to select an ID. However, σ = Ω(log2 n) [NW03] w.h.p., where
σ denotes the partition balance ratio, defined as the ratio between the largest and the smallest partition
sizes. King and Saia [KS04] recently established that σ = Θ(n log n) w.h.p.

If each host chooses a random number in [0, 1) and splits the partition the number falls into, σ
diminishes to Θ(log n) [AHKV03,NW03]. Further improvement is possible. If each host creates Ω(log n)
virtual IDs [DKK+01], σ reduces to O(1). However, the number of overlay connections per host gets
amplified by a factor of Ω(log n) – this is costly because higher degree overlay networks require more
resources for maintenance.

Two different approaches for ID management have recently been proposed, each of which guarantees
σ = Θ(1) with only one ID per host. The first approach [NW03, AAA+03, KR04, M04] is overlay-
independent while the second is overlay-dependent [AHKV03]. Naor and Wieder [NW03] and Abraham
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et al [AAA+03] proposed that a new host should choose Θ(log n) random points from [0, 1), identify the
managers of these points and split the largest manager into two. Karger and Ruhl [KR04] proposed an
elegant variation on the idea that supports departures as well, albeit at the cost of re-assignment of IDs of
at most O(log log n) hosts w.h.p. per arrival and departure. Adler et al [AHKV03] analyzed an overlay-
dependent scheme that is specific to hypercubes. The idea is to identify the manager of a random point in
[0, 1), probe other managers it has established overlay connections with, and to split the largest of these
managers into two. A scheme for handling departures exists, but it has not yielded to formal analysis
yet. The idea in [AHKV03] had earlier been proposed as a heuristic in an early DHT paper [RFHK01].
Manku [M04] recently established that σ ≤ 4 for the following scheme: a new host first randomly identifies
the manager of a random number in [0, 1), inspects Θ(log n) managers in its “vicinity” and splits the
largest manager. Departures are handled similarly and cause at most one host ID to be re-assigned.
The message complexity for the schemes outlined above is either Θ(log2 n/ log log n) messages [AAA+03,
NW03,KR04] or Θ(log n) messages [AHKV03,M04], for networks with R = Θ(log n/ log log n).

Two additional approaches to load-balancing are as follows. Byers et al [BCM03] suggest that a node
should continue to choose a random number in [0, 1) as its ID. However, an object should be stored at one
out of several possible locations (determined by multiple hash-values of the object-name). A drawback of
this idea is the overhead associated with multiple probes necessary when storing and retrieving objects.
Godfrey et al [GLS+04] take a systems approach, identifying the run-time loads on various nodes. They
propose heuristics for re-distributing objects between pairs of lightly- and heavily-loaded nodes.

5 Future Directions

a) Our load-balancing algorithm does not address host departures. Only two known algorithms handle
departures [KR04,M04]. Simulations show that a simple variation of the insertion algorithm maintains
3-level trees: “A departed host is replaced by the deepest leaf in the union of vicinities probed.”

b) If we could establish Theorem 2.2 for any β ∈ (1
2 , 1), we could show that leaf nodes belong to at most

three different levels, which we believe is optimal.

c) It would be interesting to analyze structured coupon collection over cliques when bd 6≥ c log n, and to
explore the impact of multiple choices (d ≥ 2) over general graphs.
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