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Abstract

In this paper, we investigate how existing social networks can benefit P2P data networks by leveraging the
inherent trust associated with social links. We present a trust model that lets us compare routing algorithms
for P2P networks overlaying social networks. We propose SPROUT, a DHT routing algorithm that, by using
social links, significantly increases the number of query results and reduces query delays. We discuss further
optimization and design choices for both the model and the routing algorithm. Finally, we evaluate our model

versus regular DHT routing and Gnutella-like flooding.

1 Introduction

Social networks are everywhere. Many people all over the world participate online in established social networks
every day. AOL, Microsoft, and Yahoo! all provide instant messaging services to millions of users, alerting them
when their friends log on. Many community websites, such as Friendster [6], specialize in creating and utilizing
social networks. As another example, service agreements between ISPs induce a “social” network through which
information is routed globally. Social networks are valuable because they capture trust relationships between entities.
By building a P2P data-management system on top of”’, or with knowledge of, an existing social network, we can

leverage these trust relationships in order to support efficient, reliable query processing.

Several serious problems in peer-to-peer networks today are largely due to lack of trust between peers. Peer
anonymity and the lack of a centralized enforcement agency make P2P systems vulnerable to a category of attacks

we call misrouting attacks. We use the term misrouting to refer to any failure by a peer node to forward a message to
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the appropriate peer according to the correct routing algorithm. This includes dropping the message or forwarding
the message to other colluding nodes instead of the correct peer, perhaps in an attempt to control the results of a
query. For instance, in a distributed hash table (DHT) a malicious node may wish to masquerade as the index owner

of the key being queried for in order to disseminate bad information and suppress content shared by other peers.

In addition, malicious users can acquire several valid network identifiers and thus control multiple distinct nodes
in the network. This is referred to as the Sybil attack and has been studied by various groups (e.g. [5] [4] [8]). This
implies that a small number of malicious users can control a large fraction of the network nodes, increasing the

probability that they participate in any given message route.

Using a priori relationship knowledge may be key to mitigating the effects of misrouting. To avoid routing
messages through possibly malicious nodes, we would prefer forwarding our messages through nodes controlled
by people we know personally, perhaps from a real life social context. We could assume our friends would not
purposefully misroute our messages.! Likewise, our friends could try and forward our message through their friends’
nodes. Social network services provide us the mechanism to identify who our social contacts are and locate them in

the network when they are online.

Misrouting is far from the only application of social networks to peer-to-peer systems. Social networks repre-
senting explicit or implicit service agreements can also be used to optimize quality of service by, for example, min-
imizing latency. Peers may give queue priority to packets forwarded by friends or partners over those of strangers.

Thus, the shortest path through a network is not necessarily the fastest.

In Section 2 we present a high-level model for evaluating the use of social networks for peer-to-peer routing, and

apply it to the two problems we described above; yielding more query results and reducing query times.

Unstructured networks can be easily molded to conform to the social links of their participants. OpenNap, for
example, allows supernodes to restrict themselves to linking only with reputable or “friendly” peer supernodes, who
manage message propagation and indexing. However, structured networks, such as DHTs, are less flexible, since
their connections are determined algorithmically, and thus it is more challenging to use social networks in such
systems. In Section 3 we propose SPROUT, a routing algorithm which uses social link information to improve DHT
routing performance with respect to both misrouting and latency. We then analyze and evaluate both our model and

SPROUT in Section 4.

Social networks can be exploited by P2P systems for a variety of other reasons. In Section 5 we discuss ap-
plication scenarios where our model is useful, as well as other related and future work. Finally, we conclude in

Section 6.

"'We assume a slim, but nonzero, chance that a virus or trojan has infected their machine, causing it to act maliciously.



2 Trust Model

The basic intuition of this paper is that computers managed by friends are not likely to be selfish or malicious and
deny us service or misroute our messages. Similarly, friends of friends are also unlikely to be malicious. Therefore,
the likelihood of a node B purposefully misrouting a message from node A is proportional to (or some function
of) the distance from A’s owner to B’s owner in the social network. Observe that in a real network with malicious
nodes, the above intuition cannot hold simultaneously for all nodes; neighbors of malicious nodes, for example, will
find malicious nodes close to them. Rather our objective is to model trust from the perspective of a random good
node in the network. Likewise, we assume messages forwarded over social links would experience less latency on

average because of prioritizing based on friendship or service agreements.

We now describe a flexible model for representing the behavior of peers relative to a node based on social
connections. We will illustrate the model usage for two different specific issues: minimizing the risk of misrouting,

and decreasing latency to improve Quality of Service.

2.1 Trust Function

We express the trust that a node A has in peer B as T'(A, B). Based on our assumption, this value is dependent only
on the distance (in hops) d from A to B in the social network. To quantify this measure of trust for the misrouting
scenario, we use the expected probability that node B will correctly route a message from node A. The reason for

this choice will become apparent shortly.

One simple trust function would be to assume our friends’ nodes are very likely to correctly route our messages,
say with probability f = 0.95. But their friends are less likely (0.90), and their friends even less so (0.85). Note, this
is not the probability that the peer forwards each packet, but instead the probability that the peer is not misbehaving
and dropping all packets. Averaged over all nodes, they are equivalent. A node’s trustworthiness decreases linearly
with respect to its distance from us in the social network. This would level off when we hit the probability that any
random stranger node (far from us in the social network) will successfully route a message, say r = 0.6. For large
networks with large diameters probability  represents the fraction of the network made up of good nodes willing to
correctly route messages. Thus, r = 0.6 means that we expect that 40% of the network nodes (or more accurately
network node identifiers) will purposefully misroute messages. Here we have presented a linear trust function. We

consider others in Section 4.3.

When measuring QoS we would want to use a very different function. Let T'(A, B) be the expected additional

latency incurred by a message forwarded through node B, which it received from node A. For simplicity, let us



assume that T'(A, B) = € if a social link exists between A and B and A - € otherwise. For example, assume € = 1
and A = 3. If A has a service agreement, or is friends with, B, then B give any message it receives from A priority
and forward it in about 1 (ms), otherwise it is placed in a queue and takes on average 3 (ms). We will use these same

values for € and A in our example below and in our analysis in Section 4.6.

We do not claim any of these functions with any specific parameter values is an accurate trust representation of
any or all social networks, but they do serve to express the relationship we believe exists between social structure

and the quality of routing.

2.2 Path Rating

We wish to use our node trust model to compare peer-to-peer routing algorithms. For this we need to calculate a
path trust rating P to use as our performance metric. The method for calculating P will be application-dependent

(and we will present two specific examples below), but a few typical decisions that must be made are:

1. Source-routing or hop-by-hop? Will the trust value of a node on the path be a function of its social distance

from the message originator, or only from whom it received the message directly?

2. How do you combine node trust? Is the path rating the product, sum, maximum value, or average value of the

node trust values along the path? Any appropriate function could be used.

We now give as example a metric for reliability in the presence of misrouting. We need to compare the likelihood
that a message will reach its destination given the path selected by a routing algorithm. We calculate the reliability
path rating by multiplying the separate node trust ratings for each node along the path from the source to destination.
For example, assume source node S wishes to route a message to destination node D. In order to do so a routing
algorithm calls for the message to hop from S to A, then B, then C, and finally D. Then the reliability path rating
will be Pr = T(S,A) « T(S,B) « T(S,C) « T(S, D). Given that T'(X,Y’) is interpreted as the actual probability
node Y correctly routes node X’s message, then Pr is the probability that the message is received and properly
handled by D. Note that 7'(X,Y) is dependent only on the shortest path in the social network between X and Y’

and thus independent of whether Y was the first, second, or nth node along the path.

Including the final destination’s trust rating is optional and dependent on what we are measuring. If we wish to
account for the fact that the destination may be malicious and ignore a message, we include it. Since we are using
path rating to compare routing algorithms going to the same destination, both paths will include this factor, making

the issue irrelevant.



For the Quality of Service we would want our path rating to express the expected time a message would take
to go from the source to the destination. Given that T'(A, B) is the latency incurred by each hop we would want to
use an additive function. And if each node decides whether to prioritize forwarding based on who it received the
message from directly, and not the originator, then the function would be hop-by-hop. Calculating the latency path
rating for the path used above would be P, = T'(S,A) + T(A,B) + T(B,C) + T(C, D).

Though we focus on linear paths in this paper, the rating function can generalize to arbitrary routing graphs, such

as multicast trees.

3 Social Path Routing Algorithm

We wish to leverage the assumed correlation between routing reliability or efficiency and social distance by creating a
peer-to-peer system that utilizes social information from a service such as a community website or instant messenger
service. Though there are many ways to exploit social links, for this paper, we focus on building a distributed hash
table (DHT) routing algorithm. Specifically, we build on the basic Chord routing algorithm [13]. Chord was chosen
because it is a well-known scheme and studies have shown it to provide great static resilience, a useful property
in a system with a high probability of misrouting that is difficult to detect and repair [7]. Our technique is equally
applicable to other DHT designs, such as CAN [10] or Pastry [11].

When a user first joins the Chord network, it is randomly assigned a network identifier from O to 1. It then
establishes links to its sequential neighbors in idspace, forming a ring of nodes. It also makes roughly log, n long
links to nodes halfway around the ring, a quarter of the way, an eighth, etc. When a node inserts or looks up an item,
it hashes the item’s key to a value between 0 and 1. Using greedy clockwise routing, it can locate the peer whose id
is closest to the key’s hash (and is thus responsible for indexing the item) in O(logn) hops. For simplicity, we will

use “key” to refer to a key’s hash value in this paper.

Our Social Path ROUTing (SPROUT) algorithm adds to Chord additional links to any friends that are online.
All popular instant messenger services keep a user aware of when their friends enter or leave the network. Using this
existing mechanism a node can determine when their friends’ nodes are up and form links to them in the DHT as
well. This provides them with several highly trusted links to use for routing messages. When a node needs to route

to key £ SPROUT works as follows:

1. Locate the friend node whose id is closest to, but not greater than, k.

2. If such a friend node exists, forward the message to it. That node repeats the procedure from step 1.



3. If no friend node is closer to the destination, then use the regular Chord algorithm to continue forwarding to

the destination.

3.1 Optimizations

Here we present two techniques to improve the performance of our routing algorithm. We evaluate them in Sec-

tion 4.2.

3.1.1 Lookahead

With the above procedure, when we choose the friend node closest to the destination we do not know if it has a
friend to take us closer to the destination. Thus, we may have to resort to regular Chord routing after the first hop.
To improve our chances of finding social hops to the destination we can employ a lookahead cache of 1 or 2 levels.
Each node may share with its friends a list of its friends and, in 2-level lookahead, its friends-of-friends. A node can
then consider all nodes within 2 or 3 social hops away when looking for the node closest to the destination. We still

require that the message be forwarded over the established social links.

3.1.2 Minimum Hop Distance

Though SPROUT guarantees forward progress towards the destination with each hop, it may happen that at each hop

SPROUT finds the sequential neighbor is the closest friend to the target. Thus, in the worst case, routing is O(n).

To prevent this we use a minimum hop distance (MHD) to ensure that the following friend hop covers at least
MHD fraction of the remaining distance (in idspace) to the destination. For example, if MHD = 0.25, then the next
friend hop must be at least a quarter of the distance from the current node to the destination. If not then we resort to
Chord routing, where each hop covers approximately half of the distance. This optimization guarantees us O(logn)
hops to any destination but causes us to give up on using social links earlier in the routing process. When planning

MHD

multiple hops at once, due to lookahead, we require the path to cover == additional distance for each additional

hop, for some appropriate k.

4 Results

In this section we evaluate our friend-routing algorithm as well as present optimizations. We compare SPROUT to

regular Chord and Chord augmented with additional links. We also discuss the trust model and compare different



trust functions. We analyze the effects of misrouting on both structured and unstructured search networks. Finally,

we apply SPROUT to QoS and reducing path latency.

4.1 Simulation Details

To test our SPROUT algorithm for DHTs compare it to Chord in the following scenario. Assume the members of
an existing social network wish to share files or information by creating a distributed hash table. Believing that
some peers in the network are unreliable, each node would prefer to route messages through their friends’ nodes if
possible. We use two sources for social network data for our simulations. The first is data taken from the Club Nexus
community website established at Stanford University [1]. This dataset consists of over 2200 users and their links
to each other as determined by their Buddy Lists. The second source was a synthetic social network generator based
on the Small World topology algorithm presented in [9]. Both the Club Nexus data and the Small World data created
social networks with an average of approximately 8 links per node. We randomly inserted each social network node

into the Chord id space.

We also ran experiments using a trace of a social network based on 130,000 AOL Instant Messenger users and
their Buddy Lists provided by BuddyZoo [3]. Because of the size of this dataset, we have only used the data to

verify results of our other experiments.

For each experiment we randomly chose a query source node and a key hash value to look up (chosen uniformly
from O to 1). We compute a path using each routing algorithm and gather statistics on path length and path rating.

Each data point presented below is the average of 1,000,000 such query paths.

4.2 Algorithm Evaluation

We first focus on the problem of misrouting. We use the linear trust function described in Section 2 with f = 0.95
and r = 0.6, which corresponds to 40% of the nodes misbehaving. We feel such a large fraction of bad nodes is
reasonable because of the threat of Sybil attacks [4]. We evaluate different trust functions and parameter values in

Section 4.3.

We compare SPROUT, using a lookahead of 1 and MHD = 0.5, to Chord using the Club Nexus social network
data. The first and third rows of Table 1 give the measured values for both the average path length and average
reliability path rating of both regular Chord routing and SPROUT. With an average path length of 5.343 and average
reliability of 0.3080, Chord performed much worse in both metrics than SPROUT, which attained values of 4.569
and 0.4661, respectively. In fact, a path is over 1.5 times as likely to succeed using standard SPROUT as with regular
Chord.



Table 1: SPROUT vs. Chord

Avg. Path Length

Avg. Reliabilty

Regular Chord 5.343 0.3080
Augmented Chord 4.532 0.3649
SPROUT(1,0.5) 4.569 0.4661

Table 2: Evaluating lookahead and MHD

Lookahead
MHD None 1-level 2-level
Length | Rating | Length | Rating | Length | Rating
0 4.875 | 0.4068 | 5.101 | 0.4420 | 5.378 | 0.4421
0.125 | 4.805 | 0.4070 | 5.003 | 0.4464 | 5.258 | 0.4478
0.25 4765 | 0.4068 | 4.872 | 0.4525 | 5.114 | 0.4551
0.5 4.656 | 0.4033 | 4.569 | 0.4661 | 4.757 | 0.4730

But this difference in performance may be simply due to having additional links available for routing, and the
fact that they are friend links may have no effect on performance. To equalize the comparison we augmented Chord
by giving nodes additional links to use for routing. Each node was given as many additional random links as that
node has social links (which SPROUT uses). Thus, the total number of links useable at each node is equal for
both SPROUT and augmented Chord. The performance of the augmented Chord (AC) is given in the second row of
Table 1. As expected, with more links to choose from AC performs significantly better than regular Chord, especially
in terms of path length. But SPROUT is still 1.3 times as likely to route successfully. In the following sections we

compare SPROUT only to the augmented Chord algorithm.

How were lookahead and MHD values used above chosen? Table 2 shows the results of our experiments in
varying both parameters in the same scenario. As we see, the largest increase in path rating comes from using a
1-level lookahead. But this comes at a slight cost in average path length, due to the fact that more lookahead allows
us to route along friend links for more of the path. For example, for MHD = 0.5, no lookahead averaged 0.977 social
links per path, while 1-level lookahead averaged 2.533 and 2-level averaged 3.491. Friend links tend to not be as
efficient as Chord links, so forward progress may require 2 or 3 hops, depending on the lookahead depth. But friend

links a more likely to reach nodes closer to the sending node on the social network.

Increasing MHD limits the choices in forward progressing friend hops, causing the algorithm to switch to Chord

earlier than otherwise, but mitigates inefficient progress. A large MHD seems to be most effective at both shortening
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Figure 1: Performance of SPROUT and AC in different size Small World networks. The third curve shows the relative performance of

SPROUT with respect to AC, plotted on the right-hand y-axis. Note that the x-axis is logscale.

path lengths and increasing path rating. This is not very surprising. Since our reliability function is multiplicative

each additional link appreciably drops the path reliability.

From these results we chose to use a 1-level lookahead and an MHD of 0.5 for our standard SPROUT procedure.
Though 2-level lookahead produced slightly better reliability we did not feel it warranted the longer route paths and
exponentially increased node state propagation and management. Our available social network data indicates that a
user has on average between 8 and 9 friends. Thus, we would expect most nodes’ level-1 lookahead cache to hold

less than 100 entries.

The path ratings presented above were relatively small, indicating a low, but perhaps acceptable, probability of
successfully routing to a destination in the DHT. If the number of friends a user has remains constant but the total
number of network nodes increases we would expect reliability to drop. As the number of nodes n increases, the
average Chord path length increases as O(logn). Each additional node in a path decreases the path rating. But
by how much? To study this issue we ran our experiment using our synthetic Small World model for networks of

different sizes, but always with an average of around 8 friends per node. We present these results in Figure 1.

As expected, for larger networks the path length increases, thus decreasing overall reliability. Because the
average path length is O(logn) as in Chord, the reliability drops exponentially with respect to log n. The range of
network sizes tested is insufficiently large to properly illustrate an exponential curve, giving it a misguiding linear
appearance. The third curve gives the percent increase in reliability of SPROUT with respect to augmented Chord.
Notice that the reliability of SPROUT over AC remains relatively constant, thus resulting in increasing relative
performance for SPROUT over AC. In fact, at 10,000 nodes SPROUT performs over 50% better than AC. As the

network grows, the average number of social links increases slightly. The benefit SPROUT derives from additional
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Figure 2: Performance of SPROUT and AC for different trust functions and varying f. Higher value is better.

friend links is greater than the benefit AC derives from additional random links.

4.3 Calculating Trust

All of our previous results used a linear trust function with f = 0.95. Of course other trust functions or parameter
values may be more appropriate for different scenarios. T'(A, B), using the linear trust function LT we previously

described, is defined in Equation 1 as a function of d, the distance from A to B in the social network.

LT(d) = max(1 — (1 — f)d,r) (1)

Instead of a linear drop in trust, we may want to model an exponential drop at each additional hop. For this we

use an exponential trust function T, shown in Equation 2.

ET(d) = max(f?,r) (2)

Another simple function we call the step trust function S7'(d) assigns an equal high trustworthiness of f to all

nodes within h hops of us and the standard rating of r to the rest. Equation 3 defines the step trust function.
ST (d) =if (d < h) then f else r (3)

In our experiments we set h, the social horizon, to 5.

All three functions are expressed so that f is the rating assigned to nodes one hop away in the social network,
the direct friends. In Figure 2 we graph both routing algorithms under all three trust functions as a function of the
parameter f.

We see here that both the linear (LT) and exponential (ET) trust functions perform equivalently while the step

trust function (ST) gives less performance difference for varying f. The key observation here is that SPROUT

10
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Figure 3: Performance of SPROUT and AC for varying r, the probability of strangers routing correctly.

demonstrates a clear improvement over augmented Chord for a whole variety of trust functions, especially for f
values greater than 0.85. For example, at f = 0.96 using the exponential function SPROUT succeeds in routing
47% of the time, while AC only 38%. Thus, even if one does not know precisely the trust function, one can expect

SPROUT to perform substantially better.

We also varied r, the perceived reliability of random unknown nodes in the network and present the results in
Figure 3. We find that for values of < 0.75 path ratings remained unchanged. Above 0.75 both algorithms’ ratings
steadily increased. When 5% or less of unknown peers are likely to misroute ( > 0.95) both algorithms perform
equally well, even with f also 0.95 so that we trust our friends no more than any stranger. This means that while
SPROUT significantly improves path reliability in a peer-to-peer network with many malicious and selfish peers, we

do not suffer any appreciable penalty for using it in a network with very few bad peers.

4.4 Number of Friends

In a given network, a node with more friends is likely to perform better since it has more choices of social links
to use. But how much better? How much improvement would a node expect to gain by establishing some trust
relationship with another node? To quantify this, we generated 100 queries from each node in the Club Nexus
network, calculated its path rating, and grouped and averaged the results based on the number of social links each

node has.

Figure 4 shows the results for SPROUT using 0- and 1-level lookahead, as well as AC for the Club Nexus data.
For example, 85 nodes in the network had exactly 10 social links. The average path rating for those 85 nodes when
running SPROUT with 1 lookahead was 0.553. Note that the three curves are linear with respect to the log of the

node degree, indicating an exponentially decreasing benefit return for each additional social link. For instance, nodes

11
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Figure 5: Performance of SPROUT and AC for different uniform networks with varying degrees.

with only 1 social peer attained a reliability rating of 0.265 with SPROUT with no lookahead, while nodes with 10
social peers scored 0.471, a difference of 0.206. A node with 10 social peers would need to grow to over 100 social

peers to increase their rating that same amount (the one node with 103 social links had a rating of 0.663).

From these curves we can estimate how many links a typical node would need to have in order to attain a
specified level of reliability. For instance, considering the SPROUT with 1-level lookahead curve, we see that a node

would need about 100 social links to attain an average rating of 0.7, and about 600 social links to get a rating of 0.9.

Though a single node increasing its number of friends does not greatly influence its performance, what perfor-
mance can nodes expect if we a priori set the number of friend connections each node must have? To analyze this
we create a random regular social network graph of 2500 nodes where each node has an equal degree and vary this

degree for each simulation run. The results are shown below in Figure 5.

The curves correspond to SPROUT with 1-level lookahead and augmented Chord. As expected, we see that both

curves rise more steeply than in the previous graph. If all nodes add an extra social link the probability of successful

12



routing will rise more than if only one node adds a link (as seen in Fig. 4). But the curves level off just below 0.9. In
fact, similar simulations for larger networks showed the same results, with reliability leveling off under 0.9 at around
100 social links per node. This confirms that even at high social degree, each path is expected to take multiple hops
through nodes that are, to some small amount, unreliable. Even if all nodes were exactly two social hops away from
each other, this would yield a reliability of 0.95%0.9=0.855. Therefore, we would not expect a node in the Club

Nexus dataset, as seen in Figure 4, reach 0.9 reliability, even with 600 links.

Though SPROUT provides greater reliability than Chord, neither algorithm performs particularly well. Our
results from Table 1 showed ratings of less than 0.50, indicating less than 50% of messages would be expected to
reach their destination. Perhaps DHT routing is incapable of providing acceptable performance when members of

the network seek to harm it. In the next section, we evaluate the brute force method of query flooding.

4.5 Comparison to Gnutella-like Networks

So far we have limited our analysis of SPROUT to Chord-like DHT routing. We were also interested in comparing
the effects of misrouting on structured P2P networks to unstructured, flooding-based networks, such as Gnutella. To
balance the comparison we assume the unstructured network’s topology is determined by the social network, using
only its social links, and apply the same linear trust function used before to calculate the probability that a node

forwards a query flood message.

Because querying the network is flooding-based, we cannot use the probability of reaching a certain destination
as our metric. Instead, we would like to find the expected number of good responses a querying node would receive.
For a DHT we assume a node would receive all or no responses, depending on whether the query message reached
the correct well-behaved index node (we do not consider the problem of inserting item keys into the DHT caused by
misrouting). In an unstructured network the number of good responses located is equal to the number of responses at
well-behaved nodes reached by the query flood. Because the flood is usually limited in size by a time-to-live (TTL),

even if there are no malicious nodes in the network, not all query answers will be located.

We modelled a Gnutella-like network with a topology based on the Club Nexus data and used a TTL of 5,
allowing us to reach the vast majority of the nodes in the network (over 2000 on average). We seeded the network
with files based on empirically collected data from actual networks [12] and ran 10000 queries for different files from
varying nodes, dropping a query message at a peer with a probability based on the trust function and the shortest
path to the querying node. We averaged across 10 runs (for different file distributions) and present the results, as a

function of r (the expected reliability of a node distant in the social network), in Figure 6.

The top curve, labelled Total, indicates the total number of files in the entire network matching each query (on

13
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Figure 6: Performance of SPROUT and AC versus unstructured flooding.

average), independent of the routing algorithm used. This value is approximately 150. The expected number of good
answers received for the DHT curves was calculated as this total number times the expected probability of reaching
the index node storing the queried for items. Flooding results in significantly more responses on average, a factor of
almost 2 for small . More importantly, this means we would expect to locate at least some good answers flooding
when the DHT completely fails. For values of 7 less than 0.5 all the curves level off. If » = 1 then we assume no
nodes in the network are malicious. Thus DHT outperforms flooding since it will always locate the index node and

retrieve all the available answers.

Note, these results are meant to be a rough comparison of these two P2P styles. The flooding model does not
take into account messages dropped due to congestion. This is a much larger problem for flooding protocols than
DHTs. In our simulations on the 2200 node Club Nexus network each query reached, on average, over 2000 nodes.
This indicates the number of messages produced by the flood was even greater (due to duplicate messages). The
DHT algorithm, on the other hand, averaged around 5 messages to reach the index node. Thus, flooding schemes

will not scale to very large networks as well as DHTs.

On the other hand, in the DHT model, we are only considering the probability of a query message being mis-
routed. We assume all good answers are inserted at the correct index node, not taking into account that index
insertions may fail just as well as index queries. If we factor in index insertion failures, the DHT curves would shift

down, further increasing the relative performance difference with flooding.

Though flooding is more costly in terms of processor and network bandwidth utilization, it is clearly a more
reliable method of querying in a network suffering from some amount of misrouting. A better solution may be to
use a hybrid scheme where one uses DHT routing until they detect misrouting or malicious nodes, then switch to

query flooding. In fact, a such a scheme is proposed in [2] and discussed in Section 5.
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Figure 7: Latency measurements for SPROUT vs AC w.r.t. network size. Lower is better.
4.6 Latency Comparisons

As we stated before, both SPROUT and our social trust model are not limited to studying misrouting. With few
modifications our model can be used to evaluate other issues, such as Quality of Service. If peers prioritized their
message queues based on service agreements and/or social connections we may want to use latency as the metric
for comparing routing algorithms. Using the latency trust function (with € = 1 and A = 3) and latency path rater we
described in Section 2, we route messages using both SPROUT and augmented Chord and see which provides the

least latency. We would expect SPROUT to perform even better with respect to Chord in such systems.

We performed an analysis to determine the optimal MHD for latency-based routing. As in the misrouting sce-
nario an MHD of 0.5 performed the best. This is surprising since the latency path rater is additive, not multiplicative.
The difference with other values for MHD was almost negligible, indicating that for small A where the cost of social
links and regular links are similar, shortening the overall path outweighs choosing social links. In fact, with a larger

A of 10, smaller MHD values perform significantly better than 0.5.

Figure 7 shows the average path latency for both SPROUT and augmented Chord as a function of the network
size (using a Small World topology). The third curve shows the percent decrease in latency attained by switching
from AC to SPROUT. We see that SPROUT results in roughly half (40-60%) the latency of AC. We would expect
SPROUT to deliver messages twice as fast as AC by preferring to take advantage of service agreements, rather than
simply minimizing hop count.

Clearly, Quality of Service issues greatly benefit from routing algorithms which account for service agreements
between peers, as SPROUT does. In fact, real-world systems which deal with QoS, such as ISPs and phone carriers,
base their routing decisions on service agreements among their peers, though their networks are not as dynamic as

peer-to-peer networks.
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4.7 Message Load

One problem SPROUT faces is uneven load distribution due to the widely varying social connectivity of the nodes.
Peers with more social links are expected to forward messages for friends at a higher rate than weakly socially
connected peers. To study this issue we measure the number of messages forwarded by each node over all 1,000,000
paths for both SPROUT(1,0.5) and augmented Chord. The resulting load on each node, in decreasing order, is given
by the first two curves in Figure 8. The load is calculated as the fraction of all messages a node participated in

routing.

The highest loaded node in the SPROUT experiment was very heavily loaded in comparison to AC (4% vs
0.75%). As expected, a peer’s social degree is proportional to its load, with the most connected peers forwarding
the most messages. Though the top 200 nodes suffer substantially more load with SPROUT than AC, the remaining
nodes report equal or less load. Because the average path length for SPROUT is slightly higher than for AC, the
total load is greater in the SPROUT scenario. Yet the median load is slightly lower for SPROUT, further indicating

an imbalanced load distribution.

To analyze the importance of the highly connected nodes we removed the social links from the top 10 most
connected nodes, but kept their regular Chord links and reran the experiment. As the third curve in Figure 8 shows,
the load has lowered for the most heavily weighted nodes, yet remains well above AC. Surprisingly the reliability
was barely affected, dropping by 2% to 0.4569. If highly connected nodes were to stop forwarding for friends due
to too much traffic, the load would shift to other nodes and the overall system performance would not be greatly

affected.

Instead of reacting to high load, nodes may wish to only provide a limited number of social links for routing
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from the start. We limited all nodes to using only at most 20 social links for SPROUT. As we can see from the Limit
20 curve in Figure 8, the load on the highly-loaded peers (excluding the most loaded peer) has fallen further, but
not significantly from the No Top 10 scenario. The average path reliability has dropped only an additional 1.5% to
0.4500.

In the end, it is the system architect who must decide whether the load skew is acceptable. For weakly connected
homogeneous systems, fair load distribution may be critical. For other systems, improved reliability may be more
important. In fact, one could take advantage of this skew. Adding one highly-connected large-capacity node to the

network would increase reliability while significantly decreasing all other nodes’ load.

5 Related and Future Work

In [2], Castro et al propose using stricter network identifier assignment and density checks to detect misrouting
attacks in DHTs. They suggest using constrained routing tables and redundant routing to circumvent malicious nodes
and provide more secure routing. SPROUT is complementary to their approach, simply increasing the probability
that the message will be routed correctly the first time. One technique of theirs that would be especially useful in our
system was their route failure test based on measuring the density of network ids around oneself and the purported
destination. Not only can this technique be used to determine when a route has failed, but it can be used to evaluate
the trustworthiness of a node’s sequential neighbors by comparing local density to that at random locations in idspace

or around friends.

One open question is whether node ids can be assigned more intelligently to improve trustworthiness. That is, if
identifiers were assigned to nodes based on the current ids of their connected friends, what algorithm or distribution

for id assignment would optimize our ability to route over social links?

One method to provide greater reliability in a DHT for fault tolerance and/or security, is to replicate the index
to multiple nodes. If we do k-replication then when we insert, update or search for an entry in the DHT, we must
contact k nodes determined by using % hash functions. If a good node A wishes to insert an item into the DHT, it
attempts to contact all k replicas. Each message has an expected probability p of having traversed only well-behaved
nodes to the destination. Likewise, if node B wishes to look up the item A inserted it can try to contact all & replicas,
each time with an expected probability of success of p. Assuming neither A nor B can determine whether they
contacted a good node or are being lied to, the probability of B locating A’s item is 1 — (1 — p?)¥. Using the values
in Table 1 for p and a typical replication factor of k£ = 3, SPROUT would succeed 41% of the time compared to only
26% for AC.
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6 Conclusion

Today’s peer-to-peer systems are very vulnerable to malicious attacks. The anonymity and transience of the members
make it difficult to determine who to trust. Integrating social networks with P2P networks will provide this much-

needed trust information.

We have presented a method for leveraging the trust relationships gained by marrying a peer-to-peer system
with a social network, and showed how to improve the expected number of query results and the how to reduce the
expected delays. We described a model for evaluating routing algorithms in such a system and proposed SPROUT,
a routing algorithm designed to leverage trust relationships given by social links. Our results demonstrate how
SPROUT can significantly improve the likelihood of getting query results in a timely fashion, when a large fraction
of nodes are malicious. Though flooding-based search schemes are far more robust when threatened by a large
number of malicious users, with the right techniques structured networks can obtain acceptable performance at far

less bandwidth costs.
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