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ABSTRACT

An Archival Repository reliably storesdigita objectsforlong
periods of time (decades or centuries). The archival nature
of the system requires new techniques for storing, indexing,
and replicating digital objects. In this paper we discuss the
specialized indexing needs of awrite-once archive. We also
present ardiability algorithmfor effectively replicating sets
of related objects. We describe an administrative user inter-
faceand adataimport utility for archival repositories. Finally,
we discuss and eva uate a prototyperepository we have built,
the Stanford Archival Vault, SAV.

KEYWORDS: archival storage, preservation of digital ob-
jects, replication, archival repository

1 INTRODUCTION

Information stored and managed by today’s digita libraries
can belost withinyears or decadesif specia careisnot taken.
The causes include media and system failures, format obso-
lescence and bankruptcy of publishers. At Stanford we have
implemented a prototype archiva repository, the Stanford
Archival Vault (SAV, pronounced “save”), for the long term
preservation of digital objects. These objects may include
documents, their metadata, and the programsfor interpreting
formats. Our repository does not entirely solve the preserva-
tion problem, but we believeit providesan extremely reliable
storage infrastructure for preserving digital objects, even as
hardware, software, and organi zations evolve.

Aswe implemented and tested our SAV prototype, we iden-
tified some unexpected, important challenges that led us to
modify our initial design, and to develop some new storage
and replication techniques. We believe that the encountered
challenges were not uniqueto our system, but represent some
fundamental problemsthat will be faced in the design of any
type of digita library preservation system.

For exampl e, the nature of an archival repository impliesthat
objects should be preserved and not erased. As aresult, a
repository should not allow usersto arbitrarily del ete or over-
write digital objects. This write-once policy, which is not
present in most conventional data stores, forces usto manage
data differently. For instance, consider a “set” object that
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contains pointers to the different materializations of a given
document (e.g., the postscript version, theplain text version).
The usua way of updating this set is to write a new pointer
into the set object, or to delete a pointer from the object. Be-
cause the write-once policy forbids such changes, managing
collections of objects using sets requires new storage struc-
tures. Furthermore, these new structures require specifically
tailored indexes that can speed up common accesses to digital
library sets.

A second area where we faced unexpected challengeswasin
the configuration of replication “agreements” Any archival
repository must backup its digital objectsto remote systems,
and hence must enter into some type of agreement with the
remote system regarding what objects to replicate. Agree-
ments need to be flexible so that different arrangements can
be described, eg., alibrary 7, may wish to backup all its
technical reports (TRS) at library L, but in addition Physics
TRsshould be backed up at Ls. Library Lo may inturnwish
toreplicate some of the TRsfrom 7, at another site .4, while
simultaneoudly replicating some of its materials back at L.
At the sametime, itisimportant that new documents be auto-
matically and fully incorporated into the proper agreements,
without humanintervention. For instance, supposethat anew
Physics TR is created, consisting of two materidizations, a
postscript object, and a plain text object. As soon as the
“root” digital object for thisTR (e.g., the one that linksto its
components) is added to the set of Physics TRs, all the com-
ponents should be implicitly added to the proper agreements
and automatically backed up at L, and L3. Achieving this
flexibility and automation required the concepts of replica-
tion sets and annotated links, concepts that will be useful in
any archival repository.

In this paper we discuss the challengesinimplementing SAV
and the lessons we learned. We describe the mechanisms
that were developed and that could be used in any archiva
repository. Many of the problems we encountered have been
described before in other domains; see Section 7 for related
work. Here we build on previously developed techniques
and, where necessary, present new techniques. Specifically,
we make the following contributions:

e We identify the need for an index of the link structure
between objects, or pointer index. Wediscussother important



indexes and how, if necessary, theseindexes can be built from
the pointer index.

e We present a reliability algorithm that replicates digita
objects, and detects and corrects corruption in these objects.
e We examine how to use annotated linksthat restrict traver-
sals over a graph for the purpose of conveniently specifying
replication sets. These sets are used by the reliability algo-
rithm, and must grow implicitly for automatic operation of
the system.

o We describe an administrative user interface that provides
access to objectsin arepository, with low system overhead.
¢ We introduce the InfoMonitor, an implemented software
package for migrating real-world data (e.g., from aweb site)
into arepository.

o We present experimental performance resultsfor SAV that
illustrate the efficiency and costs of the techniques we de-
scribe. Our system scales well to large data sets.

This paper is organized as follows. First, we present a gen-
eral model for an archival repository in Section 2. Then, in
Section 3 we describe the object storage component of the
system. Section 4 discusses the reiability layer, and Sec-
tion 5 examines the user interface. Section 6 presents the
InfoMonitor, while Section 7 discusses related work.

2 COMPONENTS OF AN ARCHIVAL REPOSITORY
Figure 1 shows the architecture of a prototypical archival
repository. Our implemented SAV followsthis basic design.
However, here we address the general principlesand features
that would form the basis of any archival repository. (For
specific details of the SAV architecture, refer to [11]).

The architecture in Figure 1 shows six distinct components
of the system. The first component is the object store. This
component stores and indexes digital objects so that they
can be efficiently retrieved by other modules. In addition,
the object store manages the assignment of object handles
(Section 2.1), indexing, and caching of digital objects. The
object store can be built on top of an existing storage system,
such as afile system or DBMS.

Applications and
Data |mport/Export User Interface
(e.g. InfoMonitor)
Upper Layers
(e.g. Security)
isbili Trusted
Reliability Layer Remote Sites

Object Store

Figure 1: Architecture of the Archival Repository.

Thelongterm archiving function of therepository isprovided

by thereliabilitylayer, which manages object replication and
corruption detection. Thislayer relies on different repository
sites, usually geographically dispersed, to store copies of the
objects. The reliability components at the various sites col-
laborate in detecting missing or corrupted information, and
restoring it. We assume that remote reliability components
are trusted. Communications among trusted reliability com-
ponents can be encrypted and authenticated using standard
techniques. Therdliability layer can be configured invarious
ways(e.g., number of sitesinvol ved, number of copiesneeded
for each object) to achieve different levels of rdiability and
system cost; the determination of appropriate configuration
parameters isinvestigated in [12].

Upper layersontop of thereliability layer provide additional
functionality, such asuser security, intellectual property man-
agement, and query processing. The upper layers provide
a programming interface (API) and appropriate information
models so that various “applications’ can access the repos-
itory. One application is a user interface component that
allows users to view the contents of the repository and per-
form operations on it. Another important application is an
import/export utility that provides batch migration of objects
into and out of the repository, from digita libraries that do
not providethe high reliability of the archive.

In this paper we focus on the lower system layers (object
store and reliability), which are the ones that have been im-
plemented in our initiad SAV prototype. However, we do
cover two important applicationsthat must deal directly with
thelower layers. Oneisauser interfacefor the system admin-
istrator (Section 5) that allows him to view the digital objects
in the repository, create new objects, group semantically re-
lated items together, and construct agreements to replicate
objects. A second applicationisthe InfoMonitor (Section 6),
which migrates information from a standard file system or
web siteinto the repository.

2.1 Digital objects

A digital object in our system consists of a list of fields
(namefvaue pairs), and is assigned an object handle. This
model has the advantage of being both simple and powerful
enough to store most types of information. An object handle
isused by the system to efficiently locate an object. Handles
are seldom seen by users. Users see human-readable names
that are mapped by the system to one or more handles. For
example, a user requesting the “postscript” version of “Tech
Report #512” may be given access to the object with handle
“62975." Our SAV system generates object handles by com-
puting a signature of the object’s contents. However, other
mechanisms for assigning handles are possible. Thework we
describe here is equally applicable to any handle protocol.

The name/value pairs are defined by the creator of the object,
who generates as many fieldsas necessary. These fields store
content data, metadata, or any other useful values. More-
over, by storing another object’s handle as the value of a



field, an object creator can construct a rel ationship between
objects. Such a reference field represents a “link” between
two objects. To illustrate, a technical report object could
include fields with names AUTHORS, Tl TLE, CONTENT,
PREVI QUS, HANDLE, and CHECK. Field PREVI QUS could
contain an object reference to the previous version of the
technical report. Inthisway, achain of report versions could
be represented in the archive. More complex data structures
(trees, sets, version graphs [40, 21], etc.) can be built using
object references. Other data structures that may be useful
are described in[11].

Two fields are required in al objects. Field HANDLE is a
required reference field containing the handle of the object
itself, while CHECK is an error detection code (e.g., CRC)
computed over all remaining fields. These two fieldsmake it
possible to verify that a given object is not corrupted and is
indeed the object one believesit to be.

2.2 AR Properties

In order to protect digital objects against 10ss over time, in
genera anarchival repository must enforce certain properties.
The no deletions policy specifies that users should not have
the capability to delete objects once they are archived. A user
can “take an object out of circulation” by changing its access
rights, but thisisdifferent from physically erasing it fromthe
repository. Allowing usersto delete objectsisdangerousinan
archival system. Intentional deletions introduce ambiguous
situationswhereit isnot clear if amissing object was del eted
by auser (and should not berestored) or lost dueto some error
(and should be restored). With no intentional deletions, the
reliability layer simply restores any missing objects, leading
to much better long term reliability.

Similarly, the no modifications policy prevents users from
changing archived data. Modification are instead handled
by creating version chains, with a newer object pointing to
an older object via an object reference. No modifications
again eliminates ambiguous states where it is unclear which
isthe “right” instance of areplicated object to restore. With
version chains, any lost or corrupted version is restored to
its original state. The no deletions and no modifications
properties together define a write-once archive, where data,
once written, isnever erased. Write-onceisapolicy in SAV,
not a requirement of the underlying media as in some other
write-once schemes [14] (see Section 7 for related work on
write-once storage).

The third property is universal handles. This property guar-
antees that an object retains its handle regardless of which
repositoriesit is replicated to, and that the handle is unique
within therepository network. Thus, ahandleunambiguously
identifies a single object. Without this property, the system
would have to explicitly record what objects are copies of
which, greatly increasing the chances of errors. Moreover,
with universal handles, object references can be unambigu-
oudly resolved, allowing the structure of a graph of objectsto

| oo | [ o2 | [ o3 |

Figure 2: Structure of set {O1, 02, 03}

beretained even asthe objectsare replicated to different sites.
Universal handles also has important efficiency benefits; for
example, two sites can quickly determine whether they have
the same objects simply by comparing lists of handles.

3 OBJECT STORE

The write-once policy forces us to represent related objects
in away that is unlike traditional data stores. To illustrate,
Figure 2 showshow a“set” can berepresented. Thisset may
represent a collection of technica reports, the set of materi-
alizations of one report, the set of replication agreements at
onesite (see Section 4), and so on. Theset isinitially created
by generating a“set anchor” A4; object. An object like O is
added to the set by creating a “ set member” (represented by
M, inthefigure) which is an intermediate object pointing to
both A; and O,. A member O- could be deleted (not shown
in the figure) by adding a “remove set member object” that
linksto A; and M,. All changes are recorded by adding
objects rather than by modifying objects.

A problem withwrite-once structuresisthat they are difficult
to traverse. For instance, in order to find al of the mem-
bers of A;, it is necessary to identify the objects that point
to A; (these objects would be the set member objects, eg.,
My, M,..., that aso point to O1,0,...). One solution is to
scan al repository objects, looking for objects that point to
A;. Clearly thistraversal isvery expensive, so we need aux-
iliary indexes to help us locate objects of interest. This“who
pointsto me?’ problem existsin other domainswhere objects
are connected by directed links (e.g., hypermedia[22]). Our
approach isdescribed in Section 3.1, along with other impor-
tant indexes. Indexes need to be modified, so they cannot be
stored as digita objects, and do not enjoy the high reliability
of digital objects. Section 3.2 discusses special mechanisms
to ensure the correctness of indexes.

3.1 Indexing digital objects

A first critical index isthe handleindex that maps handlesto
the site-specificidentifier (e.g., file name) that locates the ob-
ject. Thisindex isbestimplemented asadictionary (e.g., hash
table or balanced binary search treg) with universal handles
as keys. This index, like the others we describe, is incre-
mentally maintained. That is, as new objects are created, the
index is notified so the appropriate handle-identifier pair is
added. The handle index makes universal handles feasible.
Without site-specific information in a handle, and without
a handle index, one would be forced to find an object O,



by scanning all repository objects looking for one with field
HANDLE = O;.

Another important index is the pointer index that gives the
handles of al objects that link to a given object O;. For
example, for A; in Figure 2, the pointer index can quickly
give us the handles for M, M, and M3, from which we
can find the members of set A;. Note than in a traditiona
system a pointer index may be unnecessary if all references
are “doubly linked.” However, in an archival repository, A;
cannot point to A, (which was created after A;). Hence,
a pointer index is essential. Again, a pointer index is best
implemented as a dictionary. For convenience, the pointer
index can be extended to list the outgoing links for each
object. This makes it possible to traverse the repository’s
graph structure without retrieving the objects themsel ves.

To make a pointer index feasible, stored fields (Section 2.1)
that contain references must be tagged as such. This allows
the system to scan repository objects, extract references and
build the index. The creator of an object must tag handle
fields, either by indicating they are of “handle type” or by
using field names that the system recognizes as containing
handles (e.g., PREVI QUS in our earlier example).

Thethird type of index is an object structure index, designed
to record the members of a particular object structure, eg.,
a set or aversion chain. For example, if we look up 4; of
Figure 2 in a set index, we would directly obtain the handles
for Oy, O, and Os. Thissame information could be obtained
from the pointer index, but at agrester cost in execution time,
(With a pointer index we would have to examine all objects
that point to A,, ook for the set member objects, and then
follow their links to the members.) Moreover, the set index
can aso give us a list of all sets in use, and (if properly
inverted) the sets a given member participatesin.

If space is more valuable than speed, some of these indexes
can beeiminated. For example, an object structureindex isa
specialized view of the pointer index, and the SAV can query
the pointer index rather than materialize a “set index”. The
handle index can be folded into the pointer index, especially
if the site-specific identifier (filename) can be computed from
the handle itself. For example, if the filename is the hex-
adecimal representation of the handle, then thelist of handles
indexed in the pointer index isequivalent to the handleindex.
Using the pointer index to emulate other indexes does not
introduce significant efficiency overhead, but eliminating the
pointer index is very expensive for reasons discussed above.
Thus, theonly index which must bematerialized isthe pointer
index, and other indexes can be materialized to trade space
for speed. The implications of this issue in the context of
scalability are discussed in Section 3.3.

3.2 Maintaining index consistency
Indexes are important for the operation of the repository, yet
they are inherently not as reliable as digita objects. First,

it does not make sense to replicate indexes across sites to
achieve reliability. (Indexes contain site specific information
that isnot useful at the remote sites, and since indexes change
often, updating the remote copies would be too expensive).
Second, since indexes are updated in place, they are much
more proneto software errorsthan write-once digital objects.

There are two steps to ensure that index errors do not cor-
rupt the underlying digital objects. The first step is to make
indexes disposable. This means that no information that is
critical for the long-term survival of the repository should be
placed in an index. In other words, it should be possible to
at any time throw away all indexes and reconstruct correct
indexes from the underlying digita objects. As a corollary,
all index information must be considered a hint only. For ex-
ample, if apointer index tells us that object O, pointsto O,
we must verify this (by looking at the actual objects) before
performing a critical operation based on thisinformation.

With disposableindexes, acorrupted index will not adversely
affect the digita objects, but can still be very inconvenient.
For example, consider a set A» representing the three avail-
able recordings for a given song (e.g., MP3, wav, midi). If
the index is corrupted, the index may tell us that only two
recordings are available, or may give usarecording for adif-
ferent song! A user query could check and ignore the bogus
recording, but it will not easily discover that thereisamissing
recording. The information is not lost, since the recording
objects are still in the repository, and are till linked to As.
Yet, to avoid inconveniencing the user, it is very important
to make every effort to ensure that the indexes are consistent
with the uncorrupted digital objects.

There are two ways to ensure this consistency of indexes:

¢ Rebuild from scratch: Periodically discard an index, and
completely rebuild it from the objects in the archive. The
rebuild procedure is aso useful when objects are added in
bulk through a dataimport utility (see Figure 1).

e Check and repair: An index is checked and fixed incre-
mentally.

To illustrate a check and repair process, consider checking
the handle index. The object store iterates through each of
the handles in the index, and loads the corresponding object
from disk. Each object isthen be examined to ensure that its
HANDL E matches what the index reports. If not, the “bad”
index entry referring to that object is deleted, and a new,
correct index entry is added.

Note that index rebuilding easily discovers objects that are
completely missing from the index, while a check and repair
task can only verify existing entries in the index. On the
other hand, check and repair allowstheindex to be available
continuoudly, while the index created by the rebuild task is
not availableuntil therebuildiscomplete. (Of course, theold,
possibly corrupted index could still be used to serve requests
whilethe new index is being built.)



In our implemented SAV system, indexes are kept in main
memory and rebuilt from scratch at system startup. They
are aso rebuilt a the prompting of a user, or at predefined
intervals. A check and repair mechanism could be added in
the future.

3.3 Performance measurements

To evaluate the overhead of building indexes, we conducted
experimentson our SAV prototype, running on an Gateway E-
4200 (450 MHz Pentium 111, 256 MB RAM, 128 MB swap,
Red Hat Linux 6.0). The SAV isimplemented in both in
Java 2 and C++; the measurements presented here are from
the C++ version. Digital objects containing real documents
from the Stanford Database Group’s web site were stored in
the archive. Five object sets of different sizes were tested
in order to assess scalability. The smallest set contained
over 54,000 objectsand 2 GB of total data, whilethe largest
contained over 270,000 objects and 10 GB of total data. In
each set, the average object size was 39 KB. For comparison,
the largest data set (10 GB) represents the archived contents
of approximately 25 average-sized web sites' [9].

The results are shown in Figure 3. The three lines in the
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Figure 3: Performance of the object store.

figure represent the three tasks required to rebuild the han-
dle, pointer and set indexes. These tasks arel read objects
from disk (solid line), compute the CRCs to detect corrup-
tion (dotted ling) and index the objects (dashed line). The
timesscale linearly with the size of thearchived dataset. The
complete index building operation requires an average of 13
milliseconds per archive object (342 seconds per gigabyte),
and thistime is dominated by the disk read (77%) and CRC
computation (21%). The high overhead of the disk read and
CRC computation is mitigated by the fact that indexes are
rarely rebuilt, and most SAV operations avoid these costs by
using the indexes after they are aready built. Moreover, any
scheme that validatesindexes by examining the actual objects
on disk would incur these costs; our system is not unusua in

1The Stanford Database Group’s web site contains five times as many
web pages as the average site as reported in [9]. The small data set (2
GB) contains the archived contents of our group’s site, and the larger sets
were produced by repeatedly archiving the group’s site to produce slightly
different objects.

this respect.

Of coursg, it is very good that the cost to build indexes
scales linearly, but such cost may till be significant for large
archives. One solution is to rebuild each type of index a a
different time. Another solution is to partition a repository
into smaller sets that are reindexed at separate times. This
would spread out the rebuilding over time. If thisschemeis
used, there must be some mechanism to deal with object ref-
erences that cross partitions, perhaps by querying theindexes
for both partitions simultaneously.

It is reasonable to ask how many objects can be indexed be-
fore the indexes no longer fit in main memory. We measured
the per-object size of indexes as 57 bytesfor the handleindex,
76 bytes for the pointer index, and 9 bytes for the set index.
We assume that, to save space, only the pointer index is ma
terialized (as discussed in Section 3.1). If we dedicated 128
MB of RAM to indexes, the SAV could index over 1.7 mil-
lion objects, or 65 GB of archived data?. For larger archives,
more RAM could be purchased, or the index could be stored
on disk and efficiently accessed using knowntechniques[16].

4 RELIABILITY LAYER

As described in Section 1, the replication layer backs up ob-
jects remotely, detects lost or corrupted objects, and restores
them to their pristine state when necessary. The challenge
isto develop flexible mechanisms for determining what sites
participate in replication agreements, and what objects are
backed up where. In addition, we need efficient mechanisms
for checking and restoring information. In this section we
describe the techniques and a gorithms that were developed
as the SAV prototype was implemented, but that we believe
arewd | suited for any archiva repository.

The example shown in Figure 4aillustratesthe basic replica-
tion steps we follow. The replication process begins when a
replication agreement R, is crested at one of the three sites
(Stanford in the example). Object 2 identifiesthe sitesthat
participate (Stanford, MIT, Berkeley) and the objectsthat are
to be replicated. For now, let us assume that R; simply con-
tains pointersto the objectsto replicate, O, and O,. Objects
Ry, O and O5 initidly exist only at Stanford, so Stanford
conducts the first site check. The Stanford site contacts the
MIT siteand discoversthat MIT does not yet know about the
agreement, so that all three objects are replicated to MIT.3
Similarly, al three objectsare copied to Berkeley (Figure4b).

Each of the three sites then begins a cycle of repeated site
checks, connecting to the other two sitesand comparing snap-
shots. Aslong asthereareno errors, the snapshotswill agree.
However, consider the situation where O, islost at Stanford
due to a disk failure. The next site to perform a site check

2 A large repository may also use compression [42] to save disk space.

3 Asdescribed earlier, the reliability layersat each site trust each other, so
they willingly take each others' agreementsand objects. Clearly, before R4
was created, Stanford checked with the other sitesto seeif there was enough
storage capacity, or to arrange for payment for the service.
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Figure 4: A replication network

will notice that O, is missing, so O, will be copied back to
the Stanford site.

4.1 Replication networks

Our example illustrates a strongly connected replication net-
work. Each of the sites holding a copy of R; knows about
the other sites, and each site contacts every other site during
the site check. If there are NV sitesin the network, each site
check must contact N — 1 sites. Thisstructureisrecorded in
Ry by including acompletelist of the sitesin the agreement.

Other structures are possible. For example, in aweakly con-
nected network, each site is connected to some, but not al,
of the other sites. Thetopography of the structure could be a
cycle, atree, or some other structure. The strongly connected
network has the advantage that each site check connectswith
every site, which means that new objects are quickly repli-
cated to all sites. In contrast, the weakly connected network
alows each site to connect to a fixed number of remote sites
(eg., two) even as the number of sites V in the network
grows. Because fewer sites are contacted, site checks take
lesstime and so they can be performed morefrequently. This
decreases theinterval between the occurrence of afailureand
the detection and correction of the error.

In aweakly connected network, links between sites are actu-
ally separate replication agreements, listing only the sites for
that link. In order to construct weakly connected replication
networks, it is therefore necessary for different agreements
at the same site to include the same digital objects. This
capability is one of the features of the snapshot construction
algorithm described in the next section.

4.2 Constructing snapshots of the replication set

In Figure 4a we suggested that agreement 1, point to the
“covered” objects O; and O,. This is clearly not a good
ideasince we could never add more objectsto the agreement.
(Digital object R; cannot be modified.) An aternative is
to treat the agreement object as a set anchor, so that any
object connected viaa “set member” object is covered. For
example, in Figure 5, R, would cover O, and Os. (In this
figure, pleaseignore for now the different types of pointers.)
Thisisstill not flexible enough, since new objectswould have
to be explicitly linked to R».

Figure 5: Example replication sets.

Our solution is to recursively define the covered objects in
terms of the link structure of the repository. To illustrate,
suppose we wish to cover all versions of atechnical report
under agreement R; in Figure 5. The different versions
of the report, V1, V2 ... V,,, are related using a version
chain, in which version V; points to the previous version
Vi_1. Initialy, the first version V; isadded to R; (through
My). When V5 is created, it need not be explicitly added to
Ry. Our replication algorithm will implicitly include V2 in
R, becausethereisapathtoit from Ry (viaM; and V4). As
more versions are created, they are also implicitly included.
Thus, thereplication set of 27 includesall objectsrecursively
reachable from R, (“backwards’ links count).

Thereisaproblemwiththissimpledescription of areplication
set. Toillustrate, consider agreements R, and R, in Figureb.
Their replication sets are connected by O-, so if we blindly
include everything that is linked to R; in its replication set,
wewouldincludeal of R,'sset! Even if agreements do not
overlap, other objects may act as bridges and connect them.
For instance, in Figure 5, object 77 is such a bridge object.
(Object 17 may belinking objectswritten by the same author,
for example.)

Our solutionis to annotate repository links to indicate when
they should be traversed in building replication sets. Some
links, like the ones out of 77 in Figure 5, should never be
traversed. Links such as these have nothing to do with repli-
cation, and are shown as dotted lines in the figure. Other
linkslikethe ones between A, and O, and between M3 and
O,, should only be traversed in the direction of their “arrow”
to avoid merging replication sets. Such links are shown as
dashed linesin the figure. When computing the replication
set for Ry we would reach O, but would stop there. Simi-
larly, when computing the R, set we would aso reach O,
but would again stop there.

In summary, we use the concept of a graph with annotated
links. In such agraph, every link is annotated in one of three

ways:

. two-way recursive; The link should always be traversed dur-

ing areplication set traversal.

. one-way recursive: Thelinksshould only betraversed in the

direction of thelink during areplication set traversal.



3. non-recursive: Thelink should never betraversed when defin-

ing areplication set.

The annotated type of alink is specified when the link (and
thus the object containing the link) is created. The example
shown in Figure 5 can serve as a template for determining
how links should be marked. If it is desirableto change the
annotationon alink after itiscreated, then the replication set
traversal agorithm must be extended to allow the annotations
on links to be modified by an administrator. Since modifi-
cations cannot be written to objects, these modifications can
be represented as version chains, and the traversal agorithm
would be designed only to consider the most current version
of a link when deciding whether to traverse it. Thisis an
example of the generally applicable strategy of representing
modifications as version chains rather than modifying digital
objects themsel ves.

Link annotations have been used in other domains, Halasz
and Schwartz [22] describes their use in the hypertext do-
main. Our techniqueissimilar inthat our annotations restrict
graph traversals. However, the goa in hypertext systemsis
to facilitate human navigation, whereas our goa is to auto-
mate the process of discovering subgraphs (replication sets)
of larger graphs (the entire object structure of the repository.)
Moreover, the annotationsin [22] determine the direction of
the link (e.g., by denoting which object is the parent and
which object is the child) whereas our annotations describe
how to interpret the direction. (See Section 7.)

4.3 Detecting object corruption

Each site periodically constructs a snapshot of the replica
tion set of each known agreement.* A snapshot includes the
handles of al non-corrupted objectsthat are part of the agree-
ment. Snapshots are then compared with the corresponding
ones at remote sites.

Sometimes it is easy to see that an object is corrupted. For
example, if an attempt to read an object from disk results
in an error, corruption is clearly present. In addition, the
reliability layer also must detect |ess obvious corruption that
exists when an object can be read from disk but nonetheless
contains incorrect information. This type of corruption is
detected by comparing an object’s stored CHECK value (see
Section 2) with a freshly recalculated error detection code
based on the current contents of the object.

The snapshot construction algorithmis as follows:

1. Alist (called snapshot) is created and isinitialy empty.
2. A search stack iscreated andinitially containsonly thehandle

of the replication agreement.
. A handle is popped off of the search stack; the object it
identifiesisthe current object.

* The objects representing replication agreementsform part of an implicit
agreement among all sites. Thus, if an agreement object is lost at a site, it
will be recovered from another site.
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Figure 6: Performance of the reliability layer.

. The current object is checked for corruption by comparing

the recalculated error code with the value CHECK stored in
the object. If current is corrupted, the object isignored and
the algorithm returns to step 3. If current is not corrupted,
the algorithm continues.

. The handle of the current object isadded to the snapshot list.

. Each of the links pointing to or from current are traversed

(using the pointer index) if and only if such atraversal con-
forms to the annotation on the link. Traversing these links
produces a set of objects. The handle of each of these objects
is added to the search stack, unless the object has been seen
before (infiniteloops must be avoided).

. If there are still handles on the search stack, the agorithm

returnsto step 3.

Once snapshotsare created at both sites, theremote site sends
the snapshot to the local site, and the local site performs a
comparison. Any handles missing locally represent objects
that must be retrieved from the remote site, and any han-
dles missing remotely represent objects that must be sent to
the remote site. Our current implementation performs the
comparison by storing the local replication set in a red-black
bal anced binary tree and then searching thistreefor each han-
dlein the remote set. This process requires nlog(n) timefor
n handles, and the performance ramifications of this growth
are discussed in Section 4.4.

4.4 Performance measurements

In order to evduate the performance of the reliability layer,
we conducted experiments on our SAV prototype. We per-
formed the reliability algorithm on the data sets described
in Section 3.3, using two different SAV instances running
on identical machines connected by 10 Mbit Ethernet. The
measurements are shown in Figure 6. In the figure, the solid
line represents the time to construct a snapshot at a partic-
ular repository site. This process must be repested at both
the local and remote sites for each site check; however, the
snapshot construction at different sites can run concurrently.
Thesnapshot constructiontime scaleslinearly with repository



size, and represents an incremental duration of 40 microsec-
onds per object (1.2 seconds per gigabyte).

The snapshot comparison time (dotted line in Figure 6) in-
creases as nlog(n) (as discussed above). This non-linearity
is inconsegquential since our implementation also examines
each object on disk for corruption during the site check, and
the 1/0O cost dominates the time to compare the snapshots by
three orders of magnitude. If the examination for corruption
is done lazily between (instead of during) site checks, then
the comparison time would consume a larger fraction of the
site check time (about 1/3 in our experiments). If the non-
linear growth of the comparison time hinders performance
and scalability, we could substitute a scheme whose time
grew linearly, for example by inserting handles into a hash
tableinstead of abinary tree.

Theamount of timeto send asnapshot from one siteto another
was 10 microseconds per object (267 milliseconds/gigabyte),
as shown by the dashed line in Figure 6. Various optimiza-
tions are possible for use with slow networks or very large
repositories. For example, the remote site can compute a
signature S (e.g., CRC) of al the handles in the snapshot.
Instead of sending the entire snapshot, the remote site only
sends S, asingle number. The locd site computes the sig-
nature of its snapshot, and compares both signatures. If the
signatures match, then the snapshots are the same. If the
signatures do not match, then the snapshots could be sub-
divided and signatures computed for each subdivision until
thelocal site can determinewhat the differences are between
the snapshots. This optimization is described in more detail
in[10].

Another possibility is to perform the snapshot construction
and comparison incrementally over a period of days. For
example, both sites could start the traversal on the first day,
but only descend a certain number of levels in a breadth
first traversal of the replication set objects. This would pro-
duce partia snapshots, which the sites would compare. The
sites would exchange any objects missing from the partial
snapshots. On day two, both sites would descend further in
the traversal to produce another partia snapshot. Eventu-
ally, both sites would reach the end of the traversal, a which
point all of the partial snapshotsthat were produced would be
equiva ent to the compl ete snapshot. Then, the process would
repeat at thefirst day again. Inthisway, only asmall amount
of bandwidthwouldbe utilized each day. This scheme would
require amechanism for dealing with new objects added after
thefirst day. Such objects could beincludedif they appear in
apartia snapshot after they were added. Alternatively, they
could be excluded until the snapshot process restarts.

5 USER INTERFACE

Our current SAV prototype includes an administrative user
interface that lets a manager examine and modify the reposi-
tory. Ingeneral, thegoalsfor such an interface areasfollows:
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Figure 7: The Setsview

. The user must be able to locate specific digital objectsin the

repository, even if the repository contains many objects.

. Theuser must beableto easily perform structuring operations

on objects, such as grouping related objects into sets, and to
view the topology of object structures.

. The user must be easily able to set configuration parameters

of the system. Thisincludes defining replication agreements.

. The interface module must not significantly detract from the

performance of the rest of the system.

The best way to achieve these goalsisto provide specialized
types of viewsinto the repository:

o objectsview: A genera view which can display any object
in the archive.

e structureviews: Viewsthat display common objects struc-
tures, such as sets or version chains.

o configurationviews: Viewswhich allow auser to configure
the system and its replication agreements.

Our SAV prototype currently includes four different views,
and will be extended to include others. Due to space lim-
itations, in this section we only briefly illustrate two of the
views. For acomplete discussion, which covers performance
issues related to the user interface, please see [6].

Figure 7 is a screen shot of our set interface (an example of
a structure view) from the Java implementation. The objects
that participatein sets can be viewed through a more generic
interface (not shown here), but the set interface is especially
tailored to show sets and their members clearly.

In the set view, only sets and their members are shown. A
set is represented by the “stacked document” icon, and a set
member is represented by the “single document” icon. The
default view shows all of the sets in the repository and a
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Figure 8: The Agreementsview

descriptive string.® The filter window (bottom of Figure 7)
can be used to restrict which sets are shown (using regular
expressions). Set objects can be expanded (by clicking on
the icon) to show the set members. If one of these members
is another set, that set can be further expanded to show its
members. The “View” button on the Ieft lets one view the
contents (label, value pairs) of a selected digital object. (A
separate, specialized view window is opened.)

Because a structure view is specific to a particular object
structure, it can aso be used as an interface for constructing
that particular structure. Figure7 showsa*Create set” button,
which can beused to createanew set, and an “Add document”
button, which can be used to add an object to an existing set.
The“Refresh” buttonissimilar to a“reload” button on aweb
browser; it forcestheinterface driver to get fresh information
from the repository. This decoupled interaction between the
interface and the repository makes it unnecessary for the
repository to continuously update the display. The menus at
the top of thewindow provide additional functiondity that is
not discussed here.

An example of a configuration view is shown in Figure 8.
This replication agreement interface lets administrators cre-
ate and configure agreements. The default display of the
replication agreement view isalist of the active agreements.
Each agreement can be expanded to view the list of sitesin
the agreement as well as the replication set. Since replice
tion sets are defined recursively (Section 4.2), our interface
allows objects in the replication set to be expanded to reveal
linked objects. In thisway, auser can manually examine the
graph that will be automatically traversed by the reliability
algorithm. Asbefore, individual objects can be viewed using
the “View” button, and individua agreements can be found

5 Currently, objects contain a DI SPLAYNOTES field that describestheir
roleor use. Thisfieldis used asthe object description in the view. Thefilter
window searches over thesefields.

using the filter field. Finally, the “Create agreement,” “Add
site,” and “Add document” buttonslet the administrator enter
new agreements, and add sites and objects to them.

6 THE INFOMONITOR

After developing SAV, we discovered a “sad fact” about
archival repositories. Many users do not want to deposit
their digital objectsin an archival repository, or in any form
of digital library for that matter! They are perfectly happy
withtheir objectsresiding on conventional filesystemsor web
servers, where they can use their favorite editors and toolsto
work on them. After all, itisnot their job to ensure that their
objects are available to future generations years from now.
However, preservation is the job of alibrarian, who needs
tools to “capture’ important objects in a way that does not
require active participation by users (but of course requires
user consent). The InfoMonitor we describe in this section
represents one such tool; the goa isto provide an automated
way to migrate data into the archive.®

The InfoMonitor serves as a “bridge” between a repository
such as SAV and an existing environment where digita ob-
jects reside.  Our example environment is a web site (but
the InfoMonitor can be used in other scenarios too). Users
continueto create, edit and access web pages using standard
tools(e.g., text editors). The InfoMonitor carefully tracksthe
files representing the web pages, and decides what objects
should be archived. In addition, it monitors changes to the
files, trand ating those changes into repository updates.

One of the hardest challenges faced by the InfoMonitorisin
deciding how to interpret the changes to the web site. For
example, supposethat aweb pageismodified. Modifications
are not alowed on the repository, so the action must be auto-
matically trandated into the crestion of a new version of the
corresponding digital object. If the web page is deleted, a
“final” version is added in the repository, indicating that the
web pagewasremoved. Changestotheweb sitefile structure
must be carefully analyzed to determine how they impact the
archived objects. For instance, if a web page is “moved”

from onelocation to another, thisaction can be interpreted as
adeletion followed by an insertion, or it can beinterpreted as
new version of the web page (where one of its properties, its
file name, was changed).

The InfoMonitor offersan administrative user interface, anal-
ogous to the one described in Section 5. Through thisinter-
face, an administrator can define portions of the web site
to archive (by setting “filters’), and can examine archived
objects and how they map to web site files. The interface
also offers a historical view, where archived objects can be
viewed as of agiventime. Finally, the administrator can aso
restore web site files based on the repository objects. Thus,
the InfoMonitor offers a fairly automated way to archive a

8This approach contrasts with some other tools that build linked object
databases, such as the collaborative authoring tools in DeVise [19], which
require and encourage human interaction.
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Figure 9: The InfoMonitor creates this data struc-
ture in the SAV.

web site. Web users do not need to perform explicit saves to
the repository, yet their pages are safely archived.

Figure 9 illustrates how the InfoMonitor represents the web
pages as digital objects. The left hand side structure mimics
the target file structure, while the right side represents the
selection filters and other data. If the top level InfoMonitor
Directory is added to areplication agreement, then thisentire
structure will bereplicated at other repository sites.

Initialy, the structure of Figure 9 is created by a bulk load
utility that scans the web site. (This same utility was used to
acquire the data sets used for the experiments of Sections 3
and 4.) The InfoMonitor can perform two types of periodic
checks to track the web site: a quick and a low one. The
quick scan compares thetimestamps of fileswith those of the
archived objects, to detect new or modified files. Timestamps
can be unreliable, so the dow scan actually compares the
contents of files to the archived content. In either case, as
changes are observed, the appropriate objects are added to
the archival repository.

The InfoMonitor has been implemented as part of our SAV
prototype. It is currently being used to archive 26,000 files
(2 GB) of our group’sweb site. Additiona details and per-
formance numbers are availablein [7].

7 RELATED WORK

Thedigita library community hasbegunto focusontheprob-
lem of designing and implementing long term archives [17,
37, 20, 13, 15, 2, 36, 28]. Several projects have focused on
building archives, including the Computing Research Repos-
itory [23], the Archival Intermemory Project [18, 4] and the
Victorian Electronic Records Strategy [39]. These projects
have focused on different archive architectures than the SAV
design wediscusshere, and information discovery, not preser-
vation, has been the focus of many of the efforts. The San
Diego Supercomputer Center [34] has examined indexing
digital archives from the standpoint of metadata; such an in-
frastructure would be useful as a document discovery mech-
anism in the “upper layers’ mentioned in Section 2. The
Internet Archive [1] is building a collection of archived web
pages, but so far has not addressed the problem of preserva
tion.
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The archiving problemisrelated to the problem of increasing
the reliability of file systems. The traditional solution is
data backup [5, 25, 29]. Several commercia producets use
hierarchical replication systems to automatically backup and
reliably store data [27, 8, 26]. The backup problem focuses
on shorter durations than the archiving problem. Moreove,
usersof backup systems are usually interested in restoring the
most current version of data, while archives are responsible
for storing all versions. Another approach is to redesign
the file system itself to incorporate more reliability features.
One idea is to use Redundant Arrays of Inexpensive Disks
(RAID)[32,38], sothat disk failurescan beovercome. Others
have suggested using logsto improve many aspects of thefile
system, including the reliability [35]. For example, the Clio
Log File system [14] archives data to write once storage.
Such systems could serve as the data storage component of
our Object Store layer (Section 2).

Another related area is the problem of maintaining consis-
tency between nodes in replicated databases. Much work
has been done in designing agorithms for propagating data
from one replicate to another [3, 33]. These systems fo-
cus on systems that allow updates and deletions of objects.
Archival Repositories, which do not alow digital objectsto
be modified or erased, require different approaches. Sim-
ilarly, filesystems using replication (such as LOCUS [41],
Harp [30] or Zebra [24] among others) focus on providing
high availability and fault tolerance for frequently accessed
filesystems. Our focusison longterm reliability for datathat
may be archived for decades between accesses.

Finally, many of the issues we discuss here are also present
in hypermedia systems [22, 19]. Although the problems are
similar, hypermedia systems focus on presentation of objects
as much as on the storage of objects, and aso must cope
with inconsi stencies due to modificationsand deletions. Asa
result, thegeneral solutionstend to besimilar (e.g., annotating
linksto restrict graph traversals) although the details and the
implementation differ from what we present here.

8 CONCLUSIONS

In this paper we have discussed issues that arise when im-
plementing a reliable archiva storage system. Although we
have discussed these issues from the perspective of our SAV
design, they are relevant to the construction of any reliable
archive. We have discussed solutionsfor defining and index-
ing digital objects and references between them in a write-
once repository. We have discussed efficient algorithms for
replicating objects to multiple sites using different replica-
tion networks, and for building and comparing snapshots of
repository contents so that corruption can be detected. These
algorithmsallow the set of replicated objectsto grow implic-
itly, rather than through the intervention of a human.

We have a so described two “ applications’ that interfacewith
SAV. Oneis an administrative user interface for monitoring
and controlling SAV. The second is the InfoMonitor, a tool



for automatically importing and tracking information outside
the repository.

The SAV prototype demonstrates that a reliable archive can
be built, that it can operate efficiently, and that it can interact
effectively with the outside world.
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