
Implementing a Reliable Digital Object Archive�

Brian Cooper, Arturo Crespo and Hector Garcia-Molina
Department of Computer Science

Stanford University
fcooperb,crespo,hectorg@DB.Stanford.EDU

Extended version

ABSTRACT
An Archival Repository reliably stores digital objects for long
periods of time (decades or centuries). The archival nature
of the system requires new techniques for storing, indexing,
and replicating digital objects. In this paper we discuss the
specialized indexing needs of a write-once archive. We also
present a reliability algorithm for effectively replicating sets
of related objects. We describe an administrative user inter-
face and a data import utility for archival repositories. Finally,
we discuss and evaluate a prototype repository we have built,
the Stanford Archival Vault, SAV.

KEYWORDS: archival storage, preservation of digital ob-
jects, replication, archival repository

1 INTRODUCTION
Information stored and managed by today’s digital libraries
can be lost within years or decades if special care is not taken.
The causes include media and system failures, format obso-
lescence and bankruptcy of publishers. At Stanford we have
implemented a prototype archival repository, the Stanford
Archival Vault (SAV, pronounced “save”), for the long term
preservation of digital objects. These objects may include
documents, their metadata, and the programs for interpreting
formats. Our repository does not entirely solve the preserva-
tion problem, but we believe it provides an extremely reliable
storage infrastructure for preserving digital objects, even as
hardware, software, and organizations evolve.

As we implemented and tested our SAV prototype, we iden-
tified some unexpected, important challenges that led us to
modify our initial design, and to develop some new storage
and replication techniques. We believe that the encountered
challenges were not unique to our system, but represent some
fundamental problems that will be faced in the design of any
type of digital library preservation system.

For example, the nature of an archival repository implies that
objects should be preserved and not erased. As a result, a
repository should not allow users to arbitrarily delete or over-
write digital objects. This write-once policy, which is not
present in most conventional data stores, forces us to manage
data differently. For instance, consider a “set” object that

�This material is based upon work supported by the National Science
Foundation under Award 9811992.

contains pointers to the different materializations of a given
document (e.g., the postscript version, the plain text version).
The usual way of updating this set is to write a new pointer
into the set object, or to delete a pointer from the object. Be-
cause the write-once policy forbids such changes, managing
collections of objects using sets requires new storage struc-
tures. Furthermore, these new structures require specifically
tailored indexes that can speed up common accesses to digital
library sets.

A second area where we faced unexpected challenges was in
the configuration of replication “agreements.” Any archival
repository must backup its digital objects to remote systems,
and hence must enter into some type of agreement with the
remote system regarding what objects to replicate. Agree-
ments need to be flexible so that different arrangements can
be described, e.g., a library L1 may wish to backup all its
technical reports (TRs) at library L2, but in addition Physics
TRs should be backed up at L3. Library L2 may in turn wish
to replicate some of the TRs fromL1 at another siteL4, while
simultaneously replicating some of its materials back at L1.
At the same time, it is important that new documents be auto-
matically and fully incorporated into the proper agreements,
without human intervention. For instance, suppose that a new
Physics TR is created, consisting of two materializations, a
postscript object, and a plain text object. As soon as the
“root” digital object for this TR (e.g., the one that links to its
components) is added to the set of Physics TRs, all the com-
ponents should be implicitly added to the proper agreements
and automatically backed up at L2 and L3. Achieving this
flexibility and automation required the concepts of replica-
tion sets and annotated links, concepts that will be useful in
any archival repository.

In this paper we discuss the challenges in implementing SAV
and the lessons we learned. We describe the mechanisms
that were developed and that could be used in any archival
repository. Many of the problems we encountered have been
described before in other domains; see Section 7 for related
work. Here we build on previously developed techniques
and, where necessary, present new techniques. Specifically,
we make the following contributions:

� We identify the need for an index of the link structure
between objects, or pointer index. We discuss other important

1



indexes and how, if necessary, these indexes can be built from
the pointer index.
� We present a reliability algorithm that replicates digital
objects, and detects and corrects corruption in these objects.
� We examine how to use annotated links that restrict traver-
sals over a graph for the purpose of conveniently specifying
replication sets. These sets are used by the reliability algo-
rithm, and must grow implicitly for automatic operation of
the system.
� We describe an administrative user interface that provides
access to objects in a repository, with low system overhead.
� We introduce the InfoMonitor, an implemented software
package for migrating real-world data (e.g., from a web site)
into a repository.
� We present experimental performance results for SAV that
illustrate the efficiency and costs of the techniques we de-
scribe. Our system scales well to large data sets.

This paper is organized as follows. First, we present a gen-
eral model for an archival repository in Section 2. Then, in
Section 3 we describe the object storage component of the
system. Section 4 discusses the reliability layer, and Sec-
tion 5 examines the user interface. Section 6 presents the
InfoMonitor, while Section 7 discusses related work.

2 COMPONENTS OF AN ARCHIVAL REPOSITORY
Figure 1 shows the architecture of a prototypical archival
repository. Our implemented SAV follows this basic design.
However, here we address the general principles and features
that would form the basis of any archival repository. (For
specific details of the SAV architecture, refer to [11]).

The architecture in Figure 1 shows six distinct components
of the system. The first component is the object store. This
component stores and indexes digital objects so that they
can be efficiently retrieved by other modules. In addition,
the object store manages the assignment of object handles
(Section 2.1), indexing, and caching of digital objects. The
object store can be built on top of an existing storage system,
such as a file system or DBMS.

Object Store

Reliability Layer

Upper Layers
(e.g. Security)

Trusted
Remote Sites

Applications and
Data Import/Export User Interface

(e.g. InfoMonitor)

Figure 1: Architecture of the Archival Repository.

The long term archiving function of the repository is provided

by the reliability layer, which manages object replication and
corruption detection. This layer relies on different repository
sites, usually geographically dispersed, to store copies of the
objects. The reliability components at the various sites col-
laborate in detecting missing or corrupted information, and
restoring it. We assume that remote reliability components
are trusted. Communications among trusted reliability com-
ponents can be encrypted and authenticated using standard
techniques. The reliability layer can be configured in various
ways (e.g., number of sites involved,number of copies needed
for each object) to achieve different levels of reliability and
system cost; the determination of appropriate configuration
parameters is investigated in [12].

Upper layers on top of the reliability layer provide additional
functionality, such as user security, intellectual property man-
agement, and query processing. The upper layers provide
a programming interface (API) and appropriate information
models so that various “applications” can access the repos-
itory. One application is a user interface component that
allows users to view the contents of the repository and per-
form operations on it. Another important application is an
import/export utility that provides batch migration of objects
into and out of the repository, from digital libraries that do
not provide the high reliability of the archive.

In this paper we focus on the lower system layers (object
store and reliability), which are the ones that have been im-
plemented in our initial SAV prototype. However, we do
cover two important applications that must deal directly with
the lower layers. One is a user interface for the system admin-
istrator (Section 5) that allows him to view the digital objects
in the repository, create new objects, group semantically re-
lated items together, and construct agreements to replicate
objects. A second application is the InfoMonitor (Section 6),
which migrates information from a standard file system or
web site into the repository.

2.1 Digital objects
A digital object in our system consists of a list of fields
(name/value pairs), and is assigned an object handle. This
model has the advantage of being both simple and powerful
enough to store most types of information. An object handle
is used by the system to efficiently locate an object. Handles
are seldom seen by users. Users see human-readable names
that are mapped by the system to one or more handles. For
example, a user requesting the “postscript” version of “Tech
Report #512” may be given access to the object with handle
“62975.” Our SAV system generates object handles by com-
puting a signature of the object’s contents. However, other
mechanisms for assigning handles are possible. The work we
describe here is equally applicable to any handle protocol.

The name/value pairs are defined by the creator of the object,
who generates as many fields as necessary. These fields store
content data, metadata, or any other useful values. More-
over, by storing another object’s handle as the value of a

2



field, an object creator can construct a relationship between
objects. Such a reference field represents a “link” between
two objects. To illustrate, a technical report object could
include fields with names AUTHORS, TITLE, CONTENT,
PREVIOUS, HANDLE, and CHECK. Field PREVIOUS could
contain an object reference to the previous version of the
technical report. In this way, a chain of report versions could
be represented in the archive. More complex data structures
(trees, sets, version graphs [40, 21], etc.) can be built using
object references. Other data structures that may be useful
are described in [11].

Two fields are required in all objects. Field HANDLE is a
required reference field containing the handle of the object
itself, while CHECK is an error detection code (e.g., CRC)
computed over all remaining fields. These two fields make it
possible to verify that a given object is not corrupted and is
indeed the object one believes it to be.

2.2 AR Properties
In order to protect digital objects against loss over time, in
general an archival repository must enforce certain properties.
The no deletions policy specifies that users should not have
the capability to delete objects once they are archived. A user
can “take an object out of circulation” by changing its access
rights, but this is different from physically erasing it from the
repository. Allowing users to delete objects is dangerous in an
archival system. Intentional deletions introduce ambiguous
situations where it is not clear if a missing object was deleted
by a user (and should not be restored) or lost due to some error
(and should be restored). With no intentional deletions, the
reliability layer simply restores any missing objects, leading
to much better long term reliability.

Similarly, the no modifications policy prevents users from
changing archived data. Modification are instead handled
by creating version chains, with a newer object pointing to
an older object via an object reference. No modifications
again eliminates ambiguous states where it is unclear which
is the “right” instance of a replicated object to restore. With
version chains, any lost or corrupted version is restored to
its original state. The no deletions and no modifications
properties together define a write-once archive, where data,
once written, is never erased. Write-once is a policy in SAV,
not a requirement of the underlying media as in some other
write-once schemes [14] (see Section 7 for related work on
write-once storage).

The third property is universal handles. This property guar-
antees that an object retains its handle regardless of which
repositories it is replicated to, and that the handle is unique
within the repository network. Thus, a handle unambiguously
identifies a single object. Without this property, the system
would have to explicitly record what objects are copies of
which, greatly increasing the chances of errors. Moreover,
with universal handles, object references can be unambigu-
ously resolved, allowing the structure of a graph of objects to

M1 M2 M3

A1

O1 O2 O3

Figure 2: Structure of set fO1; O2; O3g

be retained even as the objects are replicated to different sites.
Universal handles also has important efficiency benefits; for
example, two sites can quickly determine whether they have
the same objects simply by comparing lists of handles.

3 OBJECT STORE
The write-once policy forces us to represent related objects
in a way that is unlike traditional data stores. To illustrate,
Figure 2 shows how a “set” can be represented. This set may
represent a collection of technical reports, the set of materi-
alizations of one report, the set of replication agreements at
one site (see Section 4), and so on. The set is initially created
by generating a “set anchor” A1 object. An object likeO2 is
added to the set by creating a “set member” (represented by
M2 in the figure) which is an intermediate object pointing to
both A1 and O2. A member O2 could be deleted (not shown
in the figure) by adding a “remove set member object” that
links to A1 and M2. All changes are recorded by adding
objects rather than by modifying objects.

A problem with write-once structures is that they are difficult
to traverse. For instance, in order to find all of the mem-
bers of A1, it is necessary to identify the objects that point
to A1 (these objects would be the set member objects, e.g.,
M1;M2:::, that also point to O1; O2:::). One solution is to
scan all repository objects, looking for objects that point to
A1. Clearly this traversal is very expensive, so we need aux-
iliary indexes to help us locate objects of interest. This “who
points to me?” problem exists in other domains where objects
are connected by directed links (e.g., hypermedia [22]). Our
approach is described in Section 3.1, along with other impor-
tant indexes. Indexes need to be modified, so they cannot be
stored as digital objects, and do not enjoy the high reliability
of digital objects. Section 3.2 discusses special mechanisms
to ensure the correctness of indexes.

3.1 Indexing digital objects
A first critical index is the handle index that maps handles to
the site-specific identifier (e.g., file name) that locates the ob-
ject. This index is best implemented as a dictionary (e.g., hash
table or balanced binary search tree) with universal handles
as keys. This index, like the others we describe, is incre-
mentally maintained. That is, as new objects are created, the
index is notified so the appropriate handle-identifier pair is
added. The handle index makes universal handles feasible.
Without site-specific information in a handle, and without
a handle index, one would be forced to find an object O1

3



by scanning all repository objects looking for one with field
HANDLE = O1.

Another important index is the pointer index that gives the
handles of all objects that link to a given object Oi. For
example, for A1 in Figure 2, the pointer index can quickly
give us the handles for M1, M2 and M3, from which we
can find the members of set A1. Note than in a traditional
system a pointer index may be unnecessary if all references
are “doubly linked.” However, in an archival repository, A1

cannot point to M1 (which was created after A1). Hence,
a pointer index is essential. Again, a pointer index is best
implemented as a dictionary. For convenience, the pointer
index can be extended to list the outgoing links for each
object. This makes it possible to traverse the repository’s
graph structure without retrieving the objects themselves.

To make a pointer index feasible, stored fields (Section 2.1)
that contain references must be tagged as such. This allows
the system to scan repository objects, extract references and
build the index. The creator of an object must tag handle
fields, either by indicating they are of “handle type” or by
using field names that the system recognizes as containing
handles (e.g., PREVIOUS in our earlier example).

The third type of index is an object structure index, designed
to record the members of a particular object structure, e.g.,
a set or a version chain. For example, if we look up A1 of
Figure 2 in a set index, we would directly obtain the handles
forO1,O2 and O3. This same information could be obtained
from the pointer index, but at a greater cost in execution time.
(With a pointer index we would have to examine all objects
that point to A1, look for the set member objects, and then
follow their links to the members.) Moreover, the set index
can also give us a list of all sets in use, and (if properly
inverted) the sets a given member participates in.

If space is more valuable than speed, some of these indexes
can be eliminated. For example, an object structure index is a
specialized view of the pointer index, and the SAV can query
the pointer index rather than materialize a “set index”. The
handle index can be folded into the pointer index, especially
if the site-specific identifier (filename) can be computed from
the handle itself. For example, if the filename is the hex-
adecimal representation of the handle, then the list of handles
indexed in the pointer index is equivalent to the handle index.
Using the pointer index to emulate other indexes does not
introduce significant efficiency overhead, but eliminating the
pointer index is very expensive for reasons discussed above.
Thus, the only index which must be materialized is the pointer
index, and other indexes can be materialized to trade space
for speed. The implications of this issue in the context of
scalability are discussed in Section 3.3.

3.2 Maintaining index consistency
Indexes are important for the operation of the repository, yet
they are inherently not as reliable as digital objects. First,

it does not make sense to replicate indexes across sites to
achieve reliability. (Indexes contain site specific information
that is not useful at the remote sites, and since indexes change
often, updating the remote copies would be too expensive).
Second, since indexes are updated in place, they are much
more prone to software errors than write-once digital objects.

There are two steps to ensure that index errors do not cor-
rupt the underlying digital objects. The first step is to make
indexes disposable. This means that no information that is
critical for the long-term survival of the repository should be
placed in an index. In other words, it should be possible to
at any time throw away all indexes and reconstruct correct
indexes from the underlying digital objects. As a corollary,
all index information must be considered a hint only. For ex-
ample, if a pointer index tells us that object O1 points to O2,
we must verify this (by looking at the actual objects) before
performing a critical operation based on this information.

With disposable indexes, a corrupted index will not adversely
affect the digital objects, but can still be very inconvenient.
For example, consider a set A2 representing the three avail-
able recordings for a given song (e.g., MP3, wav, midi). If
the index is corrupted, the index may tell us that only two
recordings are available, or may give us a recording for a dif-
ferent song! A user query could check and ignore the bogus
recording, but it will not easily discover that there is a missing
recording. The information is not lost, since the recording
objects are still in the repository, and are still linked to A2.
Yet, to avoid inconveniencing the user, it is very important
to make every effort to ensure that the indexes are consistent
with the uncorrupted digital objects.

There are two ways to ensure this consistency of indexes:

� Rebuild from scratch: Periodically discard an index, and
completely rebuild it from the objects in the archive. The
rebuild procedure is also useful when objects are added in
bulk through a data import utility (see Figure 1).
� Check and repair: An index is checked and fixed incre-
mentally.

To illustrate a check and repair process, consider checking
the handle index. The object store iterates through each of
the handles in the index, and loads the corresponding object
from disk. Each object is then be examined to ensure that its
HANDLE matches what the index reports. If not, the “bad”
index entry referring to that object is deleted, and a new,
correct index entry is added.

Note that index rebuilding easily discovers objects that are
completely missing from the index, while a check and repair
task can only verify existing entries in the index. On the
other hand, check and repair allows the index to be available
continuously, while the index created by the rebuild task is
not available until the rebuild is complete. (Of course, the old,
possibly corrupted index could still be used to serve requests
while the new index is being built.)

4



In our implemented SAV system, indexes are kept in main
memory and rebuilt from scratch at system startup. They
are also rebuilt at the prompting of a user, or at predefined
intervals. A check and repair mechanism could be added in
the future.

3.3 Performance measurements
To evaluate the overhead of building indexes, we conducted
experiments on our SAV prototype, running on an Gateway E-
4200 (450 MHz Pentium III, 256 MB RAM, 128 MB swap,
Red Hat Linux 6.0). The SAV is implemented in both in
Java 2 and C++; the measurements presented here are from
the C++ version. Digital objects containing real documents
from the Stanford Database Group’s web site were stored in
the archive. Five object sets of different sizes were tested
in order to assess scalability. The smallest set contained
over 54,000 objects and 2 GB of total data, while the largest
contained over 270,000 objects and 10 GB of total data. In
each set, the average object size was 39 KB. For comparison,
the largest data set (10 GB) represents the archived contents
of approximately 25 average-sized web sites1 [9].

The results are shown in Figure 3. The three lines in the

Figure 3: Performance of the object store.

figure represent the three tasks required to rebuild the han-
dle, pointer and set indexes. These tasks are: read objects
from disk (solid line), compute the CRCs to detect corrup-
tion (dotted line) and index the objects (dashed line). The
times scale linearly with the size of the archived data set. The
complete index building operation requires an average of 13
milliseconds per archive object (342 seconds per gigabyte),
and this time is dominated by the disk read (77%) and CRC
computation (21%). The high overhead of the disk read and
CRC computation is mitigated by the fact that indexes are
rarely rebuilt, and most SAV operations avoid these costs by
using the indexes after they are already built. Moreover, any
scheme that validates indexes by examining the actual objects
on disk would incur these costs; our system is not unusual in

1The Stanford Database Group’s web site contains five times as many
web pages as the average site as reported in [9]. The small data set (2
GB) contains the archived contents of our group’s site, and the larger sets
were produced by repeatedly archiving the group’s site to produce slightly
different objects.

this respect.

Of course, it is very good that the cost to build indexes
scales linearly, but such cost may still be significant for large
archives. One solution is to rebuild each type of index at a
different time. Another solution is to partition a repository
into smaller sets that are reindexed at separate times. This
would spread out the rebuilding over time. If this scheme is
used, there must be some mechanism to deal with object ref-
erences that cross partitions, perhaps by querying the indexes
for both partitions simultaneously.

It is reasonable to ask how many objects can be indexed be-
fore the indexes no longer fit in main memory. We measured
the per-object size of indexes as 57 bytes for the handle index,
76 bytes for the pointer index, and 9 bytes for the set index.
We assume that, to save space, only the pointer index is ma-
terialized (as discussed in Section 3.1). If we dedicated 128
MB of RAM to indexes, the SAV could index over 1.7 mil-
lion objects, or 65 GB of archived data2. For larger archives,
more RAM could be purchased, or the index could be stored
on disk and efficiently accessed using known techniques [16].

4 RELIABILITY LAYER
As described in Section 1, the replication layer backs up ob-
jects remotely, detects lost or corrupted objects, and restores
them to their pristine state when necessary. The challenge
is to develop flexible mechanisms for determining what sites
participate in replication agreements, and what objects are
backed up where. In addition, we need efficient mechanisms
for checking and restoring information. In this section we
describe the techniques and algorithms that were developed
as the SAV prototype was implemented, but that we believe
are well suited for any archival repository.

The example shown in Figure 4a illustrates the basic replica-
tion steps we follow. The replication process begins when a
replication agreement R1 is created at one of the three sites
(Stanford in the example). Object R1 identifies the sites that
participate (Stanford, MIT, Berkeley) and the objects that are
to be replicated. For now, let us assume that R1 simply con-
tains pointers to the objects to replicate, O1 and O2. Objects
R1, O1 and O2 initially exist only at Stanford, so Stanford
conducts the first site check. The Stanford site contacts the
MIT site and discovers that MIT does not yet know about the
agreement, so that all three objects are replicated to MIT.3

Similarly, all three objects are copied to Berkeley (Figure 4b).

Each of the three sites then begins a cycle of repeated site
checks, connecting to the other two sites and comparing snap-
shots. As long as there are no errors, the snapshots will agree.
However, consider the situation where O1 is lost at Stanford
due to a disk failure. The next site to perform a site check

2A large repository may also use compression [42] to save disk space.
3As described earlier, the reliability layers at each site trust each other, so

they willingly take each others’ agreements and objects. Clearly, beforeR1

was created, Stanford checked with the other sites to see if there was enough
storage capacity, or to arrange for payment for the service.

5



MIT

Berkeley

R

Stanford

O1

1

O
2

(a)

MIT

Berkeley

O1

O
2

R
1

O1

O
2

R
1

O1

O
2

R
1

Stanford

(b)

Figure 4: A replication network

will notice that O1 is missing, so O1 will be copied back to
the Stanford site.

4.1 Replication networks
Our example illustrates a strongly connected replication net-
work. Each of the sites holding a copy of R1 knows about
the other sites, and each site contacts every other site during
the site check. If there are N sites in the network, each site
check must contact N � 1 sites. This structure is recorded in
R1 by including a complete list of the sites in the agreement.

Other structures are possible. For example, in a weakly con-
nected network, each site is connected to some, but not all,
of the other sites. The topography of the structure could be a
cycle, a tree, or some other structure. The strongly connected
network has the advantage that each site check connects with
every site, which means that new objects are quickly repli-
cated to all sites. In contrast, the weakly connected network
allows each site to connect to a fixed number of remote sites
(e.g., two) even as the number of sites N in the network
grows. Because fewer sites are contacted, site checks take
less time and so they can be performed more frequently. This
decreases the interval between the occurrence of a failure and
the detection and correction of the error.

In a weakly connected network, links between sites are actu-
ally separate replication agreements, listing only the sites for
that link. In order to construct weakly connected replication
networks, it is therefore necessary for different agreements
at the same site to include the same digital objects. This
capability is one of the features of the snapshot construction
algorithm described in the next section.

4.2 Constructing snapshots of the replication set
In Figure 4a we suggested that agreement R1 point to the
“covered” objects O1 and O2. This is clearly not a good
idea since we could never add more objects to the agreement.
(Digital object R1 cannot be modified.) An alternative is
to treat the agreement object as a set anchor, so that any
object connected via a “set member” object is covered. For
example, in Figure 5, R2 would cover O2 and O3. (In this
figure, please ignore for now the different types of pointers.)
This is still not flexible enough, since new objects would have
to be explicitly linked to R2.

V1

M4

T1

V2

V3

R2

M3

R1

M2

O2 O3

R3

M5

O4

M1

Figure 5: Example replication sets.

Our solution is to recursively define the covered objects in
terms of the link structure of the repository. To illustrate,
suppose we wish to cover all versions of a technical report
under agreement R1 in Figure 5. The different versions
of the report, V1, V2 ... Vn, are related using a version
chain, in which version Vi points to the previous version
Vi�1. Initially, the first version V1 is added to R1 (through
M1). When V2 is created, it need not be explicitly added to
R1. Our replication algorithm will implicitly include V2 in
R1 because there is a path to it from R1 (viaM1 and V1). As
more versions are created, they are also implicitly included.
Thus, the replication set ofR1 includes all objects recursively
reachable from R1 (“backwards” links count).

There is a problem with this simple description of a replication
set. To illustrate, consider agreements R1 andR2 in Figure 5.
Their replication sets are connected by O2, so if we blindly
include everything that is linked to R1 in its replication set,
we would include all of R2’s set! Even if agreements do not
overlap, other objects may act as bridges and connect them.
For instance, in Figure 5, object T1 is such a bridge object.
(Object T1 may be linkingobjects written by the same author,
for example.)

Our solution is to annotate repository links to indicate when
they should be traversed in building replication sets. Some
links, like the ones out of T1 in Figure 5, should never be
traversed. Links such as these have nothing to do with repli-
cation, and are shown as dotted lines in the figure. Other
links like the ones between M2 and O2, and between M3 and
O2, should only be traversed in the direction of their “arrow”
to avoid merging replication sets. Such links are shown as
dashed lines in the figure. When computing the replication
set for R1 we would reach O2 but would stop there. Simi-
larly, when computing the R2 set we would also reach O2,
but would again stop there.

In summary, we use the concept of a graph with annotated
links. In such a graph, every link is annotated in one of three
ways:

1. two-way recursive: The link should always be traversed dur-
ing a replication set traversal.

2. one-way recursive: The links should only be traversed in the
direction of the link during a replication set traversal.

6



3. non-recursive: The link should never be traversed when defin-
ing a replication set.

The annotated type of a link is specified when the link (and
thus the object containing the link) is created. The example
shown in Figure 5 can serve as a template for determining
how links should be marked. If it is desirable to change the
annotation on a link after it is created, then the replication set
traversal algorithm must be extended to allow the annotations
on links to be modified by an administrator. Since modifi-
cations cannot be written to objects, these modifications can
be represented as version chains, and the traversal algorithm
would be designed only to consider the most current version
of a link when deciding whether to traverse it. This is an
example of the generally applicable strategy of representing
modifications as version chains rather than modifying digital
objects themselves.

Link annotations have been used in other domains; Halasz
and Schwartz [22] describes their use in the hypertext do-
main. Our technique is similar in that our annotations restrict
graph traversals. However, the goal in hypertext systems is
to facilitate human navigation, whereas our goal is to auto-
mate the process of discovering subgraphs (replication sets)
of larger graphs (the entire object structure of the repository.)
Moreover, the annotations in [22] determine the direction of
the link (e.g., by denoting which object is the parent and
which object is the child) whereas our annotations describe
how to interpret the direction. (See Section 7.)

4.3 Detecting object corruption
Each site periodically constructs a snapshot of the replica-
tion set of each known agreement.4 A snapshot includes the
handles of all non-corrupted objects that are part of the agree-
ment. Snapshots are then compared with the corresponding
ones at remote sites.

Sometimes it is easy to see that an object is corrupted. For
example, if an attempt to read an object from disk results
in an error, corruption is clearly present. In addition, the
reliability layer also must detect less obvious corruption that
exists when an object can be read from disk but nonetheless
contains incorrect information. This type of corruption is
detected by comparing an object’s stored CHECK value (see
Section 2) with a freshly recalculated error detection code
based on the current contents of the object.

The snapshot construction algorithm is as follows:

1. A list (called snapshot) is created and is initially empty.

2. A search stack is created and initiallycontains only the handle
of the replication agreement.

3. A handle is popped off of the search stack; the object it
identifies is the current object.

4The objects representing replication agreements form part of an implicit
agreement among all sites. Thus, if an agreement object is lost at a site, it
will be recovered from another site.

Figure 6: Performance of the reliability layer.

4. The current object is checked for corruption by comparing
the recalculated error code with the value CHECK stored in
the object. If current is corrupted, the object is ignored and
the algorithm returns to step 3. If current is not corrupted,
the algorithm continues.

5. The handle of the current object is added to the snapshot list.

6. Each of the links pointing to or from current are traversed
(using the pointer index) if and only if such a traversal con-
forms to the annotation on the link. Traversing these links
produces a set of objects. The handle of each of these objects
is added to the search stack, unless the object has been seen
before (infinite loops must be avoided).

7. If there are still handles on the search stack, the algorithm
returns to step 3.

Once snapshots are created at both sites, the remote site sends
the snapshot to the local site, and the local site performs a
comparison. Any handles missing locally represent objects
that must be retrieved from the remote site, and any han-
dles missing remotely represent objects that must be sent to
the remote site. Our current implementation performs the
comparison by storing the local replication set in a red-black
balanced binary tree and then searching this tree for each han-
dle in the remote set. This process requires nlog(n) time for
n handles, and the performance ramifications of this growth
are discussed in Section 4.4.

4.4 Performance measurements
In order to evaluate the performance of the reliability layer,
we conducted experiments on our SAV prototype. We per-
formed the reliability algorithm on the data sets described
in Section 3.3, using two different SAV instances running
on identical machines connected by 10 Mbit Ethernet. The
measurements are shown in Figure 6. In the figure, the solid
line represents the time to construct a snapshot at a partic-
ular repository site. This process must be repeated at both
the local and remote sites for each site check; however, the
snapshot construction at different sites can run concurrently.
The snapshot construction time scales linearly with repository

7



size, and represents an incremental duration of 40 microsec-
onds per object (1.2 seconds per gigabyte).

The snapshot comparison time (dotted line in Figure 6) in-
creases as nlog(n) (as discussed above). This non-linearity
is inconsequential since our implementation also examines
each object on disk for corruption during the site check, and
the I/O cost dominates the time to compare the snapshots by
three orders of magnitude. If the examination for corruption
is done lazily between (instead of during) site checks, then
the comparison time would consume a larger fraction of the
site check time (about 1=3 in our experiments). If the non-
linear growth of the comparison time hinders performance
and scalability, we could substitute a scheme whose time
grew linearly, for example by inserting handles into a hash
table instead of a binary tree.

The amount of time to send a snapshot from one site to another
was 10 microseconds per object (267 milliseconds/gigabyte),
as shown by the dashed line in Figure 6. Various optimiza-
tions are possible for use with slow networks or very large
repositories. For example, the remote site can compute a
signature S (e.g., CRC) of all the handles in the snapshot.
Instead of sending the entire snapshot, the remote site only
sends S, a single number. The local site computes the sig-
nature of its snapshot, and compares both signatures. If the
signatures match, then the snapshots are the same. If the
signatures do not match, then the snapshots could be sub-
divided and signatures computed for each subdivision until
the local site can determine what the differences are between
the snapshots. This optimization is described in more detail
in [10].

Another possibility is to perform the snapshot construction
and comparison incrementally over a period of days. For
example, both sites could start the traversal on the first day,
but only descend a certain number of levels in a breadth
first traversal of the replication set objects. This would pro-
duce partial snapshots, which the sites would compare. The
sites would exchange any objects missing from the partial
snapshots. On day two, both sites would descend further in
the traversal to produce another partial snapshot. Eventu-
ally, both sites would reach the end of the traversal, at which
point all of the partial snapshots that were produced would be
equivalent to the complete snapshot. Then, the process would
repeat at the first day again. In this way, only a small amount
of bandwidth would be utilized each day. This scheme would
require a mechanism for dealing with new objects added after
the first day. Such objects could be included if they appear in
a partial snapshot after they were added. Alternatively, they
could be excluded until the snapshot process restarts.

5 USER INTERFACE

Our current SAV prototype includes an administrative user
interface that lets a manager examine and modify the reposi-
tory. In general, the goals for such an interface are as follows:

Figure 7: The Sets view

1. The user must be able to locate specific digital objects in the
repository, even if the repository contains many objects.

2. The user must be able to easily perform structuringoperations
on objects, such as grouping related objects into sets, and to
view the topology of object structures.

3. The user must be easily able to set configuration parameters
of the system. This includes defining replication agreements.

4. The interface module must not significantly detract from the
performance of the rest of the system.

The best way to achieve these goals is to provide specialized
types of views into the repository:

� objects view: A general view which can display any object
in the archive.
� structure views: Views that display common objects struc-
tures, such as sets or version chains.
� configuration views: Views which allow a user to configure
the system and its replication agreements.

Our SAV prototype currently includes four different views,
and will be extended to include others. Due to space lim-
itations, in this section we only briefly illustrate two of the
views. For a complete discussion, which covers performance
issues related to the user interface, please see [6].

Figure 7 is a screen shot of our set interface (an example of
a structure view) from the Java implementation. The objects
that participate in sets can be viewed through a more generic
interface (not shown here), but the set interface is especially
tailored to show sets and their members clearly.

In the set view, only sets and their members are shown. A
set is represented by the “stacked document” icon, and a set
member is represented by the “single document” icon. The
default view shows all of the sets in the repository and a

8



Figure 8: The Agreements view

descriptive string.5 The filter window (bottom of Figure 7)
can be used to restrict which sets are shown (using regular
expressions). Set objects can be expanded (by clicking on
the icon) to show the set members. If one of these members
is another set, that set can be further expanded to show its
members. The “View” button on the left lets one view the
contents (label, value pairs) of a selected digital object. (A
separate, specialized view window is opened.)

Because a structure view is specific to a particular object
structure, it can also be used as an interface for constructing
that particular structure. Figure 7 shows a “Create set” button,
which can be used to create a new set, and an “Add document”
button, which can be used to add an object to an existing set.
The “Refresh” button is similar to a “reload” button on a web
browser; it forces the interface driver to get fresh information
from the repository. This decoupled interaction between the
interface and the repository makes it unnecessary for the
repository to continuously update the display. The menus at
the top of the window provide additional functionality that is
not discussed here.

An example of a configuration view is shown in Figure 8.
This replication agreement interface lets administrators cre-
ate and configure agreements. The default display of the
replication agreement view is a list of the active agreements.
Each agreement can be expanded to view the list of sites in
the agreement as well as the replication set. Since replica-
tion sets are defined recursively (Section 4.2), our interface
allows objects in the replication set to be expanded to reveal
linked objects. In this way, a user can manually examine the
graph that will be automatically traversed by the reliability
algorithm. As before, individual objects can be viewed using
the “View” button, and individual agreements can be found

5Currently, objects contain a DISPLAYNOTES field that describes their
role or use. This field is used as the object description in the view. The filter
window searches over these fields.

using the filter field. Finally, the “Create agreement,” “Add
site,” and “Add document” buttons let the administrator enter
new agreements, and add sites and objects to them.

6 THE INFOMONITOR
After developing SAV, we discovered a “sad fact” about
archival repositories: Many users do not want to deposit
their digital objects in an archival repository, or in any form
of digital library for that matter! They are perfectly happy
with their objects residing on conventional file systems or web
servers, where they can use their favorite editors and tools to
work on them. After all, it is not their job to ensure that their
objects are available to future generations years from now.
However, preservation is the job of a librarian, who needs
tools to “capture” important objects in a way that does not
require active participation by users (but of course requires
user consent). The InfoMonitor we describe in this section
represents one such tool; the goal is to provide an automated
way to migrate data into the archive.6

The InfoMonitor serves as a “bridge” between a repository
such as SAV and an existing environment where digital ob-
jects reside. Our example environment is a web site (but
the InfoMonitor can be used in other scenarios too). Users
continue to create, edit and access web pages using standard
tools (e.g., text editors). The InfoMonitorcarefully tracks the
files representing the web pages, and decides what objects
should be archived. In addition, it monitors changes to the
files, translating those changes into repository updates.

One of the hardest challenges faced by the InfoMonitor is in
deciding how to interpret the changes to the web site. For
example, suppose that a web page is modified. Modifications
are not allowed on the repository, so the action must be auto-
matically translated into the creation of a new version of the
corresponding digital object. If the web page is deleted, a
“final” version is added in the repository, indicating that the
web page was removed. Changes to the web site file structure
must be carefully analyzed to determine how they impact the
archived objects. For instance, if a web page is “moved”
from one location to another, this action can be interpreted as
a deletion followed by an insertion, or it can be interpreted as
new version of the web page (where one of its properties, its
file name, was changed).

The InfoMonitoroffers an administrative user interface, anal-
ogous to the one described in Section 5. Through this inter-
face, an administrator can define portions of the web site
to archive (by setting “filters”), and can examine archived
objects and how they map to web site files. The interface
also offers a historical view, where archived objects can be
viewed as of a given time. Finally, the administrator can also
restore web site files based on the repository objects. Thus,
the InfoMonitor offers a fairly automated way to archive a

6This approach contrasts with some other tools that build linked object
databases, such as the collaborative authoring tools in DeVise [19], which
require and encourage human interaction.

9



Set: /

InfoMonitorDirectory

Filter
1

File
1

Set: /subdir/

File FileFile
2

Filter
3

Filter
2

Figure 9: The InfoMonitor creates this data struc-
ture in the SAV.

web site. Web users do not need to perform explicit saves to
the repository, yet their pages are safely archived.

Figure 9 illustrates how the InfoMonitor represents the web
pages as digital objects. The left hand side structure mimics
the target file structure, while the right side represents the
selection filters and other data. If the top level InfoMonitor
Directory is added to a replication agreement, then this entire
structure will be replicated at other repository sites.

Initially, the structure of Figure 9 is created by a bulk load
utility that scans the web site. (This same utility was used to
acquire the data sets used for the experiments of Sections 3
and 4.) The InfoMonitor can perform two types of periodic
checks to track the web site: a quick and a slow one. The
quick scan compares the timestamps of files with those of the
archived objects, to detect new or modified files. Timestamps
can be unreliable, so the slow scan actually compares the
contents of files to the archived content. In either case, as
changes are observed, the appropriate objects are added to
the archival repository.

The InfoMonitor has been implemented as part of our SAV
prototype. It is currently being used to archive 26,000 files
(2 GB) of our group’s web site. Additional details and per-
formance numbers are available in [7].

7 RELATED WORK

The digital library community has begun to focus on the prob-
lem of designing and implementing long term archives [17,
37, 20, 13, 15, 2, 36, 28]. Several projects have focused on
building archives, including the Computing Research Repos-
itory [23], the Archival Intermemory Project [18, 4] and the
Victorian Electronic Records Strategy [39]. These projects
have focused on different archive architectures than the SAV
design we discuss here, and information discovery, not preser-
vation, has been the focus of many of the efforts. The San
Diego Supercomputer Center [34] has examined indexing
digital archives from the standpoint of metadata; such an in-
frastructure would be useful as a document discovery mech-
anism in the “upper layers” mentioned in Section 2. The
Internet Archive [1] is building a collection of archived web
pages, but so far has not addressed the problem of preserva-
tion.

The archiving problem is related to the problem of increasing
the reliability of file systems. The traditional solution is
data backup [5, 25, 29]. Several commercial producets use
hierarchical replication systems to automatically backup and
reliably store data [27, 8, 26]. The backup problem focuses
on shorter durations than the archiving problem. Moreover,
users of backup systems are usually interested in restoring the
most current version of data, while archives are responsible
for storing all versions. Another approach is to redesign
the file system itself to incorporate more reliability features.
One idea is to use Redundant Arrays of Inexpensive Disks
(RAID) [32, 38], so that disk failures can be overcome. Others
have suggested using logs to improve many aspects of the file
system, including the reliability [35]. For example, the Clio
Log File system [14] archives data to write once storage.
Such systems could serve as the data storage component of
our Object Store layer (Section 2).

Another related area is the problem of maintaining consis-
tency between nodes in replicated databases. Much work
has been done in designing algorithms for propagating data
from one replicate to another [3, 33]. These systems fo-
cus on systems that allow updates and deletions of objects.
Archival Repositories, which do not allow digital objects to
be modified or erased, require different approaches. Sim-
ilarly, filesystems using replication (such as LOCUS [41],
Harp [30] or Zebra [24] among others) focus on providing
high availability and fault tolerance for frequently accessed
filesystems. Our focus is on long term reliability for data that
may be archived for decades between accesses.

Finally, many of the issues we discuss here are also present
in hypermedia systems [22, 19]. Although the problems are
similar, hypermedia systems focus on presentation of objects
as much as on the storage of objects, and also must cope
with inconsistencies due to modifications and deletions. As a
result, the general solutions tend to be similar (e.g., annotating
links to restrict graph traversals) although the details and the
implementation differ from what we present here.

8 CONCLUSIONS
In this paper we have discussed issues that arise when im-
plementing a reliable archival storage system. Although we
have discussed these issues from the perspective of our SAV
design, they are relevant to the construction of any reliable
archive. We have discussed solutions for defining and index-
ing digital objects and references between them in a write-
once repository. We have discussed efficient algorithms for
replicating objects to multiple sites using different replica-
tion networks, and for building and comparing snapshots of
repository contents so that corruption can be detected. These
algorithms allow the set of replicated objects to grow implic-
itly, rather than through the intervention of a human.

We have also described two “applications” that interface with
SAV. One is an administrative user interface for monitoring
and controlling SAV. The second is the InfoMonitor, a tool

10



for automatically importing and tracking information outside
the repository.

The SAV prototype demonstrates that a reliable archive can
be built, that it can operate efficiently, and that it can interact
effectively with the outside world.

REFERENCES
1. Internet Archive. The Internet Archive: Building an In-

ternet library. http://www.rlg.org/longterm/index.html,
2000.

2. Howard Besser. Information longevity. http://-
sunsite.berkeley.edu/Longevity/, 2000.

3. Yuri Breitbart, Raghavan Komondoor, Rajeev Rastogi,
S. Seshadri, and Avi Silberschatz. Update propagation
protocols for replicated databases. In Proceedings of
the ACM SIGMOD Conference, 1999.

4. Yuan Chen, Jan Edler, Andrew Goldberg, Allan Got-
tlieb, Sumeet Sobti, and Peter Yianilos. A prototype
implementation of archival intermemory. In Proceed-
ings of the Fourth ACM DL Conference, 1999.

5. Ann Chervenak, Vivekenand Vellanki, and Zachary
Kurmas. Protecting file systems: A survey of backup
techniques. In Proceedings Joint NASA and IEEE Mass
Storage Conference, March 1998.

6. Brian Cooper, Arturo Crespo, and Hector Garcia-
Molina. Implementing a reliable digital ob-
ject archive. http://www-db.stanford.edu/pub/papers/-
arpaperext.ps, 2000. Extended version of paper.

7. Brian Cooper and Hector Garcia-Molina. In-
foMonitor: Unobtrusively archiving a World Wide
Web server. http://www-db.stanford.edu/pub/papers/-
fmpaper.ps, 2000. Technical Report.

8. IBM Corporation. Adstar distributed storage man-
ager (ADSM) - distributed data recovery white pa-
per. http://www.storage.ibm.com/storage/software/-
adsm/adwhddr.htm, 1999.

9. Inktomi Corporation. Web surpasses one bil-
lion documents. http://www.inktomi.com/new/press/-
billion.html, 2000.

10. Arturo Crespo and Hector Garcia-Molina. Awareness
services for digital libraries. In Lecture Notes in Com-
puter Science, volume 1324, 1997.

11. Arturo Crespo and Hector Garcia-Molina. Archival stor-
age for digital libraries. In Proceedings of the Third
ACM DL Conference, 1998.

12. Arturo Crespo and Hector Garcia-Molina. Modeling
archival repositories for digital libraries. http://www-
db.stanford.edu/pub/papers/archsim.ps, 1999. Techni-
cal Report.

13. Jean Deken. Writ in water? an exploration
of the gap between archival construct and prac-
tice in the machine-readable environment. In Work-
ing With Knowldge Conference, May 1998. Acces-
sible at http://www.slac.stanford.edu/pubs/slacpubs/-
7000/slac-pub-7811.html.

14. Ross Finlayson and David Cheriton. Log files: An
extended file service exploiting write-once storage. In
Proceedings of the 11th Symposium on Operating Sys-
tems Principles, November 1987.

15. National Science Foundation. Workshop on Data
Archival and Information Preservation: Execu-
tive summary. http://cecssrv1.cecs.missouri.edu/-
NSFWorkshop/execsum.html, 1999.

16. Hector Garcia-Molina, Jeff Ullman, and Jennifer
Widom. Database System Implementation. Prentice
Hall, Upper Saddle River, New Jersey, 2000.

17. John Garrett and Donald Waters. Preserving digital
information: Report of the Task Force on Archiving of
Digital Information, May 1996. Accessible at http://-
www.rlg.org/ArchTF/.

18. Andrew Goldberg and Peter Yianilos. Towards an
archival intermemory. In Advances in Digital Libraries,
1998.

19. Kaj Gronbaek and Randall Trigg. Design issues for a
Dexter-based hypermedia system. Communications of
the ACM, 37(2):40–49, February 1994.

20. Research Libraries Group. Long-term retention of dig-
ital research materials. http://www.rlg.org/longterm/-
index.html, 2000.

21. Anja Haake and David Hicks. Verse: Towards hypertext
versioning styles. In Hypertext ’96, 1996.

22. Frank Halasz and Mayer Schwartz. The Dexter Hyper-
text Reference Model. Communications of the ACM,
37(2):30–39, February 1994.

23. Joseph Halpern and Carl Lagoze. The Computing Re-
search Repository: Promoting the rapid dissemination
and archiving of computer science research. In Pro-
ceedings of the Fourth ACM DL Conference, 1999.

24. John Hartman and John Ousterhout. The Zebra striped
network file system. In Proceedings 14th Symposium
on Operating Systems Principles, December 1993.

25. Norman C. Hutchinson, Stephen Manley, Mike Fed-
erwisch, Guy Harris, Dave Hitz, Steven Kleiman, and
Sean O’Malley. Logical vs. physical file system backup.
In Proceedings of the Third USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
1999.

11



26. Tivoli Systems Inc. Tivoli storage manager. http://-
www.tivoli.com/products/index/storage mgr/, 1999.

27. UniTree Software Inc. Unitree technical overview.
http://www.unitree.com/overview/overview.htm, 1999.

28. Getty Conservation Institute. Time and Bits: Man-
aging digital continuity. http://www.longnow.com/-
10klibrary/TimeBitsDisc/, 1998.

29. Richard P. King, Nagui Halim, Hector Garcia-Molina,
and Christos A. Polyzois. Management of a remote
backup copy for disaster recovery. TODS, 16(2):338–
68, 1991.

30. Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul
Johnson, Liuba Shrira, and Michael Williams. Repli-
cation in the Harp file system. In Proceedings 13th
Symposium on Operating Systems Principles, October
1991.

31. Stanford Conservation Online. Electronic storage me-
dia. http://palimpsest.stanford.edu/bytopic/electronic-
records/electronic-storage-media/, 2000.

32. David Patterson, Garth Gibson, and Randy H. Katz. A
case for redundant arrays of inexpensive disks (RAID).
SIGMOD Record, 17(3):109–116, September 1988.

33. Michael Rabinovich, Narain Gehani, and Alex
Kononov. Efficient update propagation in epidemic
replicated databases. In Proceedings of the 5th Interna-
tional Conference on Extending Database Technology,
1996.

34. Arcot Rajasekar, Richard Marciano, and Reagan Moore.
Collection-
based persistent archives. http://www.sdsc.edu/NARA/-
Publications/OTHER/Persistent/Persistent.html, 2000.

35. Mendel Rosenblum and John K. Ousterhout. The de-
sign and implementation of a log-structured file system.
In Proceedings 13th Symposium on Operating Systems
Principles, October 1991.

36. David Rosenthal and Vicky Reich. Permanent web pub-
lishing. http://lockss.stanford.edu/, 2000. To appear at
Freenix, San Diego, CA, June 2000.

37. Jerome H. Saltzer. Technology, networks, and the li-
brary of the year 2000. In A. Bensoussan and J.-P.
Verjus, editors, In Future Tendencies in Computer Sci-
ence, Control, and Applied Mathematics. Proceedings
of the International Conference on the Occasion of the
25th Anniversary of INRIA, pages 51–67, New York,
1992. Springer-Verlag.

38. G.A. Schloss and M. Stonebraker. Highly redundant
management of distributed data. In Proceedings of
Workshop on the Management of Replicated Data,

pages 91–95. IEEE, IEEE Computing Society, Novem-
ber 1990.

39. Victorian Electronic Records Strategy. Victorian
electronic records strategy final report. http://-
home.vicnet.net.au/˜ provic/vers/final.htm, 1999.

40. Walter Tichy. RCS - a system for version control. Soft-
ware - Practice and Experience, 15(7):637–654, 1985.

41. Bruce Walker, Gerald Popek, Robert English, Charles
Kline, and Greg Thiel. The LOCUS distributed operat-
ing system. In Proceedings 9th Symposium on Operat-
ing Systems Principles, October 1983.

42. Jacob Ziv and Abraham Lempel. A universal algorithm
for sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

12


