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Abstract

Digital archives protect important data collections from
failures by making multiplecopies at other archives, so that
there are always several good copies of a collection. In
a cooperative replication network, sites “ trade” space, so
that each site contributes storage resources to the system
and uses storage resources at other sites. Here, we examine
bid trading: a mechanism where sites conduct auctions to
determine who to trade with. A local site wishing to make
a copy of a collection announces how much remote space is
needed, and accepts bids for how much of its own space the
local site must “ pay” to acquire that remote space. We ex-
aminethebest policiesfor determiningwhen to call auctions
and how much to bid, as well as the effects of “ maverick’
sitesthat attempt to subvert the bidding system. Smulations
of auction and trading sessionsindicate that bid trading can
allow sitesto achieve higher reliability than the alternative:
a system where sites trade equal amounts of space without
bidding.
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1. Introduction

Digital archives are sites charged with preserving impor-
tant data over the long term. Making a few local backup
copies of this information is not sufficient, since backup
tapes break, compact discs decay and publishers go out of
business (in addition to a host of other causes of dataloss).
Instead, archives need to replicate digital collectionsto other
archives, so that there are always severa good copies and
afailure a one site does not mean that information is lost
forever.

However, archives operate under two main constraints:
the resources (such as storage space) they have are limited,
and individual archiveswant to preservetheir ownautonomy
and decision making. For example, a government agency
may want to build adigital archiveto preserve vital records.

This agency may have a limited budget, and will not be
willing to spend a lot of money buying and maintaining
storage. Moreover, the agency islikely to be selective about
theremotesitesit will entrust withitscollections, in order to
protect private or sensitive information. Therefore, it is not
possibleto have acentral decision maker alocating spacein
the most efficient way, since this reduces the autonomy of
thelocd site.

We have been devel oping a framework, called data trad-
ing, for replicating collections to achieve reiability, while
alowing sites to make decisions about where to replicate
their collections and how many resources to contribute to
the system. In data trading, two sites agree to “swap” col-
lections, so that each site’sdataisreplicated [8, 9]. A series
of such agreements between pairs of sites builds up a peer-
to-peer trading network. Although each siteismaking local
decisions for loca benefit, the result is a global network
dedicated to preservation.

Inthispaper, wefocuson the negotiation of an agreement
between sites. For example, site A may want to replicate a
collection that is 100 GB large. Site A can contact site B
and ask for atrade, and site B may respond that it iswilling
to trade if it receives 150 GB of site A’'s space in return. If
site A contacts multiple sites asking for trades, then site A
will receive multiple such “bids,” and can pick the lowest
bid. Thus, an agreement may be concluded between site A
and some other site C, where site C givessite A 100 GB, and
inreturn site A gives site C 85 GB. This auctioning process
gives sites the freedom to set their bids using any strategy
that improves their ability to safeguard their data.

Our work draws upon concepts devel oped in related data
replication systems. Figure 1 shows a schematic classifi-
cation of data management schemes, including our work
and some other sample systems. This classification divides
schemes based on the amount of autonomy given to par-
ticipating sites (horizontal axis) and whether the system is
optimized for query and update performance, or for long
term preservation (vertical axis). Our work is focused on
the upper right box in the figure; that is, our main goal is
to ensure reliability while preserving site autonomy. Such a
community-based replication system necessarily makes dif-
ferent decisions than a system that can centralize control
in one place, or that places data close to users in order
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Figure 1. Classification of data management
schemes.

to improve efficiency. Several systems, including SAV [7]
and LOCKSS|[24, 3], can be classified as community-based
replication systems. This paper discusses how such systems
can trade data to find the most reliable replication.

The concepts behind auctions, bidding and market ori-
ented systems have been well studied by economists and
computer scientists.  In auction theory, our mechanism
would be classified as afirst-price, sealed bid auction [20]:
each bidder submits a bid but does not know the other bids,
and the winner pays the “first-price,” which is the amount
the winner bid. Ferguson et a note that in order to apply
auction theory to a specific problem, several design ques-
tions must be addressed, including how to determine the
value of resources to participants and how to conduct the
auction asadistributed protocol [12]. These are some of the
guestionswe address for the specific domain of reliable data
replication in this paper.

Other distributed computing systems|[ 26, 22, 13, 11] have
used market-oriented principles (such as auctions) in order
to allocate resources. Our work differs from these previous
systemsin several ways. First, most systems have a concept
of “money” distinct from theresources that are being bought
and sold. Inour system, there isno concept of “money,” and
resources are traded directly. Thisisbecause thelocation of
the resource, rather than the resource itsdlf, is the source of
value. A local sitehas storage space of itsown, but findsthat
storage space at aremote siteismore val uablebecause it can
be used to store acopy of acollection. This barter systemis
simpler and more appropriate for an autonomous, peer-to-
peer network than a system that requires some central entity
to control the money supply.

Second, many market-oriented systems assume a clear
di stinction between producersand consumers, such that pro-
ducers have differentincentives and follow different policies
than consumers. In our peer-to-peer system, every site is
both a producer and a consumer in every transaction, and
thus must follow a policy that reflects this hybrid role.

Third, market-based data storage and management sys-
tems are usually designed to maximize a metric of access
efficiency, or to tune the system for the read/update ratio of
dataitems. In existing systems, sites must decide whether
to keep a collection centralized, move the collection to a
new location, fragment the collection, or make a copy of
the collection, depending on the current access pattern. In
our system, copies are made to ensure reliability, and the
economic incentive system must be structured to maximize
reliability, rather than access performance. Related work is
discussed further in Section 5.

In this paper, we examine how bid trading works, and
evaluate policiesthat sites can useto construct bids. Specif-
ically, we make the foll owing contributions:

¢ We describe a mechanism by which archive sites can
participatein auctionsfor the purpose of replicatingtheir
collections. This schemeiscalled bid trading.

o We examine different policiesthat sites can use for de-
ciding when to call auctions, and how to bid when an
auctioniscalled.

o Wepresent simulation resultsthat show sitescanincrease
the number of copiesthey make of their collections (thus
improving their reliability) through bid trading. We also
present results that show which policies are best under
bid trading.

e We examine the effects of increased freedom on the
reliability of the system.

This paper is organized as follows. In Section 2, we
describe the bidding process, including our model and the
auction and bidding agorithms. Next, in Section 3 we dis-
cuss polices for calling auctions and bidding, and ways in
which maverick sites can deviate from “norma behaviors’
for their own benefit. Section 4 presents the results of ssimu-
lation experiments where we study the various policies and
maverick behaviors. In Section 5 we examine related work,
and in Section 6 we present our conclusions.

2. Bidtrading

An archive siteis an autonomous provider of an archival
storage service. The archive site takes responsibility for
replicatingdigital collectionsdeposited at thesite by clients.
A collection is a set of related digital materia, such asis-
sues of adigital journal, scientific measurements, or digital
photos of newsworthy events. Sites replicate collections as
awholeunit to simplify indexing and access, and to address
archivists' concerns that collections be kept contiguous (to
simplify issues such as provenance). Here, we treat all
collections as equally worthy of preservation and equally
difficult to preserve.

A site (the “local site”) with an important collection of
size S will contact another site (the “remote site”’) and pro-



pose atrade, requesting .S bytes of space. If the remote site
agrees, the two sites swap deeds, where a deed is the right
of one site to use space at another site. Thus, theloca site
reserves some amount B of its space for use by the remote
site, and the remote site reserves S bytes of its space for
use by the local site. The local site can then use its deed
for the remote site’s space to make a copy of its collection
at the remote site. Note that each siteis agreeing to pro-
vide perpetual, online access to stored data, which means
mai ntai ning server machines, providing network connectiv-
ity, and so on, in addition to providing disk space. The
remote site can hold on to its deed for the local site, or can
use it to replicate a collection of its own. The locd site
will continue asking for trades until it has made G copies,
where (7 isthe site's replication goal. A series of such bi-
nary, peer-to-peer trades between archives creates a trading
network among many sites. Although this network is built
up from individual decisions made at local sites, it serves a
global purpose of preserving datathrough replication.

The trading negotiation must determine a “price” B for
the trade: the amount of space that the local site must give
to the remote site. In the simplest case, S = B, and the
sites exchange equally sized deeds. We can call thisscheme
fixed-price trading. A more general scheme isoneinwhich
B may be more or less than .S, depending on the needs of
theremote site. Wecan call thisgenera scheme bidtrading.
In this case, the local site calls an auction, announcing S,
and remote sites s1, s»...s, respond with bids By, Bs... B,,.
Bid B; isthe amount of storage the local site will have to
reserve for the remote site in order for the remote site to
devote S space to the local site. The local site can then
choose the most attractive bid; thisbid is usually the lowest
B; dthough other factors (such as how reliable the remote
siteis) may aso affect the decision. The remote site chosen
as the “winner” of the auction exchanges deeds with the
local site.

An example is shown in Figure 2. Site A wishes to
replicate a collection of size 80 GB. It calls an auction,
announcing the auction size of 80 GB to the remote sites
(Figure 28). Each site responds with abid (Figure 2b); this
bid isthe amount of space site A will have to giveto make a
trade. Site A chooses thewinner as site ', which submitted
the lowest bid. Next atrade is conducted (Figure 2c), with
sites A and C' exchanging deeds. Now, site A can use its
deed for site C' to make a copy of itscollection.

In this paper we examine how increasing the amount of
freedom in the bidding system affects the resulting reliabil-
ity. We can think of a “spectrum of freedom,” illustrated
by the following scenarios, ranging from the most restric-
tive (top of the list) to the least restrictive (bottom of list).
(There are many other scenarios besides the ones we il-
lustrated here)) Figure 3 shows this spectrum of freedom
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Figure 2. Bid trading example.
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Figure 3. Spectrum of bidding freedom.

o Fixed-Price Bids. All sites follow the same fixed-price
policy discussed above: A bid B must be the same as
the amount of space requested, S.

o Adaptive Bids. All sites follow the same policy, but the
policy takesinto account local conditions. For example,
the bid B may be determined by afunction f(R, S) that
takes into account the available free space R a the site
(and the requested space S).

e Multiple Policies. Sites are partitioned into classes, de-
pending on factors such astheir free space. For example,
there would be a family of bidding functions f, fa, ...,
and al sitesin aclass use the same function.

e Maverick Ste. We again have multiple classes, but now
there is a single “maverick” site that follows its own
policy to try to improve its own reliability even at the
expense of the overal reiability. For example, one site
may choose a different bidding function than that used
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by other sitesinitsclass.

o Free Market. Each sites may use its own policy in an
attempt to maximize its own benefit.

o Malevolent Stes. Some sites break the basic trading
rules and try to subvert the system. For example, a site
may promiseto storeacollection, and then deleteit. Or a
sitecould carry out adenia of service attack, generating
S0 many message that other sites cannot trade.

In this paper we confine our attention to scenarios at
the “restrictive” end of the spactrum, specifically the Fixed-
Price, Adaptive, Multiple, and Maverick scenarios. Our
main reason isthat the" permissive” scenarios have so many
degrees of freedom that it is very hard to study them, with-
out first gaining an understanding of the more controlled
scenarios. Furthermore, we believe that the restrictive sce-
narios are reglistic since archival siteswill almost certainly
want to trade with known entities they trust. Thus, it is
reasonabl e to expect that sites would agree to use particular
classes of bidding functions, onesthat given them sufficient
autonomy while still preserving the integrity of the overall
system. Sincewe are assuming trusted archival sites, we do
not study in this paper mechanisms that enforce the sel ected
policiesor rules, or that detect violations.

2.1. Reliability

Our goal isto providethemost reliable storagefor collec-
tions. We can measure thereliability withwhich acollection
is stored by calculating the probability that the object is not
lost despite sitefailures. Therefore, we define thefollowing
reliability concepts:

Ste reliability: the probability that a site will fail. By
“fail” we mean a failure that results in data loss. A site
can recover from such a failure by retrieving an error free
copy of thelost data, usually from another sitein thetrading
network. However, for some period after the falure, the
dataislocally irretrievable.

Local data mean time to failure (MTTF): the expected
timethat at |east one copy of all of thelocal site’scollections
survives, despite site failures.

Figure 4 can be used to illustrate these reliability con-
cepts. The figure shows three sites, A, B and C, storing
copies of collections 1, 2 and 3. The figure indicates (with
a double box) that site A owns collection 1, site B owns
collection 2, and site C owns collection 3. Each of thethree
sites(A, B and C) couldfail independently. For example, we

can assume that over the course of some interval (say, one
year), that a site has a ten percent chance of failure. Then
thesitereliability R;, or probability that site s; will fail each
year, is 0.1. This value reflects not only the reliability of
the hardware that stores data, but also other factors such as
bankruptcy, viruses, hackers, users who accidentally delete
data, and so on.

Fromthe sitereliabilities R4, Rp..., and the assignment
of copies to sites (shown in Figure 4), we can calculate
the local data MTTF. First, we calculate the probability F;
that all copies of any collection owned by site s; are lost
in one year. For the example in Figure 4, collection 1 will
be lost if both site A and site C fail, but will not be lost if
either site survives. The probability of both sites failing is
0.1 x 0.1 =0.01. Because thisisthe only collection owned
by siteA, P, = 0.01.

Next, we calculate the expected number of years M;
before any of site s;’s collections are lost. The probability
that a collectionislost inthe 1" year is (1 — P;)' ! x P;;
that is, the probability that it was not lost in any of the
previousj — 1 yearsbutislostinthe j'* year. Then, wecan
calculate the mean timeto failurefor site s;’s collections as
the expected number of years before its collections are lost,
whichis

M;=> (1= P) =t x P xj)=1/P,
ji=1

For site A, with P, = 0.01, the MTTF M4 is 100 years.
Similarly, the Mg of site B is 100 years, since collection 2
will belost only if both site B and site C fail. However, M
is1000years. For collection 3to belost, al three sites must
fail, and this event has a probability of P = 0.1 = 0.001.

Our goal here isto find which policies guiding the deci-
sion making of alocal site maximize the local data MTTF
for that site.

2.2. Trading process

When asitewishesto replicate acollection, it must either
acquireanew deed for aremotesite, or use an existing deed.
In order to acquire anew deed, theloca sitecallsan auction,
inviting remote sites to submit bids. Then, theloca site has
taken on therol e of theauctioning site. The decision of when
tocall anauctionisdetermined by theauction calling policy.
Auction calling policies are described in Section 3.1.1. An
exampleof thestepsthat theauctioning sitecan takeisshown
inFigure5. (Other algorithmsare possible; for example, the
auctioning site could broadcast the auction announcement
and receive bidsin parallel.)

The auction procedure finds all the remote sites that do
not aready have a copy of collection C', and solicits bids
(viathe GetBid() message) from these sites. Notethat, for a



Cal | Auction(Coll ection C) {
/* The size of the collection */
S 1= C.size();

/* The nunber of bids we receive */
BidCount .= 0;

for each 7:=0..n such that site s; does not
have a copy of C {

D, := Size of any deeds held by | ocal
site for site s;'s space;

B; := s;.CGetBid(S — D;);

if B, != NULL then BidCount++;

/* E.g., site ¢ has refused to bid */
}

if (BidCount = 0) then return;
/* No sites have bid */

W := PickWnner (Bg..B,);
if (W = NULL) then return;
/* Al bids are too high. */

get a deed of size S fromsite W;
give a deed of size Bw to site W;

¥

Pi ckWnner (Bi ds Bg..B,) {
L := Local Avai | abl eSpace();
select lowest non-NULL bid By;
if B, >L then return NULL;
return i;

Figure 5. Auction algorithm.

site s;, theauctionsiteonly needs .S — D; GB of space, since
it dready holds deeds for D; GB of s;’s space (D; > 0).
It is possible that some (or dl) of these sites will not bid
(submitting a bid of NU LL), either because they do not
have at least S space, or simply because they do not want to
tradeat thistime. If nositesbid (orif all remotesitesalready
have a copy of '), then the auction terminates without any
trading.

If at least one bid is submitted, then the auctioning site
must pick awinner. Figure 5 shows a simple PickWinner()
procedure that selects the site that submitted the lowest bid.
Thus, in this scheme, the bidding site can bid lessto have a
better chance of winning the auction, but will get a smaller
deed for space at theauctioning siteinreturn. Itispossibleto
extend PickWinner() to take more factorsinto account. For
example, the auctioning site may prefer the most reliable
bidding site, the bidding site with the most free space, or
some combination of these and other factors. Here, we
assume that the auctioning site simply picksthe lowest bid.
If the lowest bid is larger than the local free storage space,
then the auctioning site cannot accept any bids, because it
does not have enough space to give the bidding site. Inthis
case, thewinningbidis NU .1, e.g. thereisno winner and
the auction will terminate.

Figure 5 shows that the auctioning site cal culates avalue
L, which isthe local storage available for public use. The

GetBid(Size 5) {
L := Local Avai | abl eSpace();
if S>L then return NULL;
B := BidPolicy();
return B;

Figure 6. Bidding algorithm.

space management policy, which determines how /. is cal-
culated, isdiscussed in Section 2.3.

Once a winner is chosen, then the sites trade. The auc-
tioning site acquires a deed of size S, and must give the
winning site a deed of size By (the winning site’s bid).
By may be more, less or the same as S. At this point,
the auctioning site can use its new deed to store a copy of
collection C'.

When alocal siteis asked to bid in an auction, it runsa
local version of GetBid() to choose a bid and send it to the
auctioning site. (Thelocal siteisnow serving therole of the
biddingsite.) Inthesimplest case, thebidding sitereturns.S,
the auction amount. Then, the auctioning site and bidding
sitewould exchange equally sized deeds, if the bidding site
won the auction. However, the bidding site can choose a
bid based on many factors, such as how urgently it needs
to replicate its own collections, how scarce itsloca storage
space it, how desirable it is to trade with the auctioning
site, and so on. The policy that guidesthe construction of an
appropriatebidiscalled thebidding policy. Biddingpolicies
are described in Section 3.1.2.

A basic version of GetBid() that usesabiddingpolicy, en-
capsulated in thefunction BidPolicy(), isshown in Figure6.
This figure shows that the bidding site also calculates I,
the amount of publicly availableloca space (from the space
management policy). If the auction amount S islarger than
L, thebidding siterefusesto bid (returningabidof NU L 1).

2.3. Space management policy

The auctioning site follows a space management policy!
to determine how much space to keep for itself, and how
much to release for use by others. This released amount,
L, isused as the localy “freg’” space, or space that can be
traded away. Althoughit ispossibleto set L to bethe tota
freeloca storage space, our previouswork [9] suggeststhat
it is better to keep some of the local space in reserve for
future use. (Although [9] focuses on fixed-price trading, it
is reasonable to assume that the conclusion remains valid
here.)

Our space management policy says that sites should “re-
lease” for public use space equa to n x a, where n isthe

1The space management policy is called an advertising policy in [9].



number of remote copies a site wishes to make and a isthe
amount of space used for archiving locally owned collec-
tions (e.g. measured in GB). For example, if a site wishes
to make at least Gy = 3 copies, it needs to make at least
2 remote copies; thus, the space management policy isto
release 2 x a GB of space for public use, if possible. When
anew collection of size s is deposited at the loca site, this
resultsin 2 x s more public space being released at thelocal
site.

3. Scenarios

The bidding mechanism provides a framework for data
replication. However, sites must make two basic decisions:
when to call an auction, and how much to bid in a particular
auction. These decisionscan beguided by anauctioncalling
policy and a bid policy. In Section 2, we described the
Adaptive Bids scenario, the Multiple Policies scenario, and
the Maverick Site scenario. In this section, we examine the
types of policiesthat may be adopted under each scenario.

3.1. Adaptive Bids scenario

Inthe AdaptiveBidsscenario, all sitesusethesameglobal
auction calling policy and the same global bid policy.

3.1.1 Auctioncdling policies

The auction calling policy is aset of rulesfor automatically
deciding when to call an auction and for what collection.
The auction policy can either dictate that auctionsare called
periodically, or that they are caled in response to some
event. For example, asitemay call an auction every night, or
may call auctionswhen anew collection has been deposited
locally. Here, we assume that sites call auctions when they
need to make copies of their collections, and when they
believethat thereisagood chance that an auction will result
inatrade. Thus, if asite callsan auction and no remote sites
bid (e.g. becausetheremotesitesdo not have enough storage
space), then it does not make sense to call the auction again
unless the state a the remote sites change (e.g. at least one
site gets more space). Therefore we focus on event-based
auction calling policies. We are not concerned here withthe
mechanisms that sites use to detect events. Instead, we can
assume that the implementation of the system allows events
to be detected.

Once asite decides to call one or more auctions, it must
decide which collections to replicate. The collections that
must be most urgently replicated are those collections that
are rarest (have the fewest copies). Thus, asite can call an
auction to replicate each collection, and can do so starting
with the rarest collection. However, a site must decide how

many collections to try and replicate during each round of
auctions. It has two choices:

o CallForAll: cal auctionsfor al of the collections. This
policy triesto usethe“call auction” mechanism to make
as many copies as possible of each collection.

e CallForRare: call auctions only for the rarest collec-
tions. For example, a site may be trying to make ¢
copies of every collection; (G isagoa localy defined
by the site administrator. We can define the “rare” col-
lections as those that have less than G /2 copies, and the
“gbundant” collections as those that have at least /2
copies. Rare collections are replicated when the local
site calls an auction for them. Abundant collections can
also be replicated, but only as a result of the locd site
bidding in an auction called by aremote site.

3.1.2 Bidpolicies

The bid policy isaset of rulesfor automatically calculating
the bid for each auction. There is a huge space of possible
bid policies. We cannot attempt to study them al, so wewill
restrict our examination to a subset of the possible policies.
Specifically, we will examine afamily of policiesdefined by
two parameters:

¢ |: theinterva of potential bids.

e P(): the policy function that determine how bids vary
aongtheinterva I. 0 < P() < 1.

We can call the bid policies described by these parameters
I-P policies.

As an example, consider a policy where a site bids be-
tween 0.5 x S and 1.5 x .S (where S istheamount of space
the auctioning site is asking for). Then, the intervd I is
0.5 x S...1.5 x S. The bid policy may dictate that sites bid
low when their local storage space isabundant, and bid high
when their storage space is more scarce. Then, P() «x K,
where K isthefraction of local storage space till free.

A specia case of thisfamily of I-P policiesis wherethe
interval 7isS...S. Inthiscase, thebidding siteawaysbids S
(and P() isimmaterid). Thisisthe fixed-price policy. If all
sites use the fixed-price policy, then there is no bidding, and
the result isfixed-price trading (as described in Section 2).

Here, we examine bid policies with different values of
I and P(). For P(), we examine a set of policies based
on two factors: the amount of available local storage space
at the bidding site, and the rareness of the bidding site's
collections.

In order to construct abid, the bidding sitemust determine
how valuableit feelsitsloca spaceisinrelationtotheremote
site’'s space. In other words, it must determine an exchange
rate between the two space resources. We can represent this
exchange rate £ as aratio of the value of the bidding site’s
space to value of the auctioning site’s space. For example,



if £ = 2, then the bidding site feels that every unit of its
own space is twice as valuable as every unit of the remote
site’'sspace. Inthiscase, if theauctioning site asksfor 3 GB
of space at the bidding site, then the bidding site should ask
for 6 GB in return.

The site’'sbid B can thusbe calculated as

B=FExS

The exchange rate £ can vary from auction to auction de-
pending on the current situation of the bidding site. For
example, the bidding policy may adjust £ upward as local
space gets used up to indicate that space is more valuable as
it becomes scarcer. The bidding policy determinesthevalue
of £ for each auction, and thus determines how a site bids.
1 definesthe maxi mum and minimum bidsallowed by the
policy, while P() determinesthebid for aparticular auction.
In this paper, our goal isto study how I and P() impact the
reliability asiteisableto achieve, so that we can define bid
policies that produce the highest rdliability. For simplicity,
here we assume that bid policiesare synmetric: theinterval
I straddles thevalue 1. In thiscase, F variesin the range
(1—1/2)..(1+I/2). Then, wecan caculate E &s

E=1xP()+(1-1/2)
and B as
B=Sx({IxP()+(1-1/2) @)

We have studied four different policy functions P(),
which give us four different bid policies. FreeSpace,
UsedSpace, AbundantCollection and RareCollection. Re-
cal that under the Adaptive Bid scenario we are studying
here, dl sites would agree to use one of the following op-
tions:

FreeSpace: A sitebidsmorewhen it hasmorefree space.
In thiscase, P() = K/T, where K is the amount of free
local space, and 7' is the total amount of local space (used
and free). Under the FreeSpace policy, a site tends to win
auctions when its space is scarce, because then the site bids
low. Thismay bethe best policy since space scarcity makes
trading more difficult, and thus sites should try to win as
many auctions as possible.

UsedSpace: A site bids more when more of its space is
used. P() = (T'— K)/T. Under this policy, sites tend to
bid low and win auctions when their space is abundant, but
bid high (and |ose more auctions) when their space isscarce.
This policy may be preferred to allow sites to hoard local
space when that spaceis scarce.

AbundantCollection: A site bids more when its collec-
tionsare abundant. If C' isthe number of copiesof therarest
collection (the collection with the fewest copies), and G is
a“goal” number of copiesto make of each collection, then
P() = C'/G. Inother words, when thereare very few copies

of therarest collection, then the site bidsow, winsauctions,
and replicates its rare collections. When there are many
copiesof itsrarest collection (and thusmany copies of every
collection), thesite bids higher, and winsfew auctions. This
policy may be preferred becauseit allowssitesto make more
trades when their collections are rare. In order to keep P()
between 0 and 1, wetreat C'/G > 1 as 1.

RareCollection: A sitebidsmorewhenitscollectionsare
rare. Inthiscase, P() = (G — C)/G. Inorder to keep P()
between O and 1, wetreat G — C' < 0 as(. Although asite
will bid high and win fewer auctions when its collections
arerare, each time it wins an auction the sitewill acquire a
large amount of space at theauctioning site. Thiswill alow
sitesto replicate many collectionswhen they win auctions.

In previous work [8, 9], we have examined the Fixed-
Price Bids scenario. This scheme is even more restrictive
than the Adaptive Bids scenario, since sites cannot bid at
al. Inthe results of Section 4, we compare the reliability
achievabl e under bid trading to those achievabl e under fixed-
price bidding.

3.2. Multiple Policies scenario

Different sites have different resources and resource re-
quirements, and it may bethat thereis no one policy that is
good for al sites. Therefore, it may be useful to partition
the sites into distinct classes, and allow each class to use
a different policy. This is the Multiple Policies scenario.
For example, we may create a class of sites that have a
large amount of storage space, and another class of sitesthat
have |ess storage space. Then, the sitesin the high capacity
class could use a policy that best utilizes their abundant re-
sources, whilethe low capacity siteswould use apolicy that
best manages their scarce resources. The Multiple Policies
scenario is less restrictive than the Adaptive Bids scenario,
where all sites must use the same policy regardless of needs
Or resources.

For the MultiplePolicies scenario, we can study the same
alternativesoutlined in Section 3.1. In other words, once we
define the classes of sites, we can determinethe auction call
policy and bid policy that provides the best reliability for
each class.

3.3. Maverick Site scenario

The data trading network is founded on a principle of
collective benefit from individua action. Sites seek to help
themselves, and in doing so, help other sites. However, itis
possiblethat individua sitesmay pursuepoliciesthat benefit
only themselves while causing a reduction in reliability for
other sites. In the Maverick Site scenario, most sites use
the policiesthat are best for their class, but one site deviates
from these policies.



Although there are a large number of ways in which a
maverick sitemay attempt to subvert thetrading mechanism
for itsown benefit, we can only examine afew here. Specif-
icaly, we will examine some ways that sites may use the
ability to call auctions and choose their own bids to “un-
fairly” benefit themselves. In Section 4.4 we examine the
effect (if any) these behaviors have on therdiability of sites
in the trading network. Recall that we are focusing here on
behaviors that till fit within the rules of the protocol, and
are not examining behaviorswhich are maliciousandviolate
the basic trading framework.

3.3.1 Maverick auction calling behaviors

Trades occur when auctions are called. Although sites can
chooseto call or not call an auction depending on their local
situations, there are behaviors that differ markedly from
either the CallForAll or CallForRare policies. Here, we
study the AlwaysCall behavior, and the NeverCall behavior.

AlwaysCall: asite calls auctions constantly. A local site
may try to do thisin an attempt to reserve as much space as
possible a remote sites for its own use. In every auction,
thelocal site must give some of its own space to the winner
of the auction. Thus, we would expect this behavior to
only benefit sitesthat have alot of local space to give away.
Otherwise, the maverick site could call lots of auctions but
would only be able to conduct a trade as a result of a few
auctions. This behavior would not normally be followed by
all sitesbecause sitesare expected to call auctionswhenthey
need to make atrade, not simply because they wish to hoard
all of the space at remote sites.

NeverCall: asite never cdls auctions. A local site may
try to do this so that it could set the price of dl trades it
participates in. This behavior would not normally be fol-
lowed by all sitesbecause sitesare expected to call auctions;
otherwise, no trading would ever occur.

3.3.2 Maverick bidding behaviors

Under normal bid policies, sitessometimesbid high (£ > 1)
and sometimes bid low (£ < 1). However, maverick sites
may decideto patterntheir bidding in order totake advantage
of other sites, rather than calculating bids based on normal
bid policies. Here, we study the BidHigh, BidLow and
NeverBid behaviors.

BidHigh: asite consistently bidshigh; £ > 1 dways. A
maverick site may decideto do thisso that whenever it wins
an auction, it receives a lot of remote space while giving
away relatively little local space. This behavior alows a
Site to extract more resources from the system than it is
contributing. If every site bid high always, then what a site
gained when it was a bidder it would lose as an auctioner,
and no site would gain benefit. If a BidHigh site accrues

[ Variable [ Description [ Basevalues
S Number of sites 10to 15
F Site storage factor 2t06
P Site reliability 0.9
CperSmin, Min/max CperSyin = 4,
CperSyrax collections per site CperSyprax = 25
CsizepmIn, Min/max Csizeprrny = 50 GB,
CSiZéMAX collectionsize CSiZéMAX = 1000GB
Ctot Total dataat asite CtotprrntoCtotprax
CtotarrnN, Min/max value Ctotarrny = 200GB,
Ctotprax of C'tot Ctotarax = 10,000 GB
Gar Minimumreplicationgoal | 3copies
Gr Ideal replication goal 6 copies

Table 1. Simulation variables.

advantage, itisbecauseitistheonly site consistently bidding
high.

BidLow: asiteconsistently bidslow, e.g. £ < 1 dways.
The benefit of BidLow isthat asite winsmore auctions, and
thus reserves more space at remote sites for its own use. If
every site bid low, then no one site would consistently win
auctions. In other words, normal sites win some auctions
and lose some auctions, but amaverick sitetriestowin every
auction.

NeverBid: a site never submits a bid to an auction. The
site can dtill conduct trading, but does so only by calling
auctions. A site may try to do this so that it can aways
determine when a trade occurs, and never has to wait for a
remote siteto call an auction. The trading network assumes
sites bid in auctions; if dl sites refused to bid in auctions
then the network wouldfall apart as no auctionswould result
in trades.

4. Results

We have conducted a series of experiments to study the
tradeoffsinvolved in bid trading. In these experiments, we
conducted simulated trading sessions between archive sites,
comparing various bid and auction calling policies under
the Adaptive Bids, Multiple Policies and Maverick Sites
scenarios. In this section, we discuss our simulator, and
present the results of our experiments.

4.1. Thebid trading simulator

Our simulator conductsaseries of simulated auctionsand
trades, and the resulting local data reliabilitiesare then cal-
culated. Table 1 liststhe key variablesin the simulation and
theinitial base valueswe used; these variables are described
bel ow.

The simulator generates a trading scenario, which con-
tainsa set of sites, each of which has a quantity of archival
storage space as well as a number of collections “owned”
by thesite. The number of sites S is specified as an input to



the simulation. Our experiments represent 1200 total sce-
narios, 200 for each S in therange 10...15. The number of
collections assigned to a site is randomly chosen between
CperSyrn and CperSyrax. All of the collectionsin the
system are ordered randomly and are deposited at their as-
signed site in this random order; this models collections
being created and archived over time. A siteis“born” when
thefirst of itscollectionsisarchived, and no site has advance
knowledge about the creation of other sites or collections.
The collections assigned to a site al have different, ran-
domly chosen sizes between C'sizeprry and Csizeprax.
The sum of the sizes of all of the collections assigned to a
siteisthe total data size C'tot of that site, and ranges from
Ctotprry to Ctot pr 4 x . Thevaueswe chosefor thesevari-
ables represent a highly diverse trading network with small
and large collections and sites with small or large amounts
of data.

The archival storage space assigned to the site is the
storage factor F' of the site multiplied by the Ctot a the
site. This models a situation where a site administrator
chooses to install /' times as much disk space as needed
to store the locally owned collections. The space left after
storing collections is public space used to store copies of
collections owned by other sites. In our experiments, we
wanted to study the effect of bid policies on sites with a
large amount of space (relative to their collection size) and
on sites that had comparatively less space relative to data
size. Therefore, in each scenario, some sites may have a
large F' (.. 6) while others may have asmall F' (e.g. 2).
Although a particular site is assigned a quantity of storage
space, it does not release al of this space immediately for
public use. Instead, the site follows the space management
policy described in Section 2.3.

Sites call auctions in response to events indicating that
the global state has changed (see Section 3.1.1). Inour Sim-
ulator, the basic events occur when a user deposits a new
collection at a site. The site receiving the new collection
callsn auctionsto replicate the new collection; the value of
n isdictated by the site’s auction policy. At the same time,
other sitesalso call auctions as dictated by their auction call
policies. The auctionscalled by different sitesare randomly
interleaved to model a series of auctions being called con-
currently by multiple sites. Depositing collections are the
main state-changing events because the space management
policy dictates that new space is released at a site after it
gets a new collection. Thus, a deposit of a new collection
isasigna that there is now more space in the system, and
previously impossible trades may now be feasible.

As described in Section 2.1 we model site failures by
specifying avalue R;: the probability that site s; will fail.
In the present work, for al sites R; = 0.1. (For experi-
ments where the site reliability differs, but specifically in
the context of fixed-price trading, see [8].)

In the following sections, we examine the improvement
or detriment due to using one policy versus another. For ex-
ample, imagine a site achieves aMTTF of 100 years using
policy X, and aMTTF of 300 years using policy Y. Then,
wewould report a 200 percent improvement for using policy
Y versus a basdline of policy X. For each experiment, we
ran 1200 simulations, and used the standard deviation of our
measurements to calculate 95 percent confidence intervals.
In our experiments, these intervalswere +50 or less except
where noted. For example, the average percent MTTF im-
provement for policy Y (versuspolicy X) might be 200450
(with 95 percent confidence).

4.2. Adaptive Bids scenario

First, we examined which policiesresulted in the highest
reliability under the Adaptive Bids scenario, where all sites
use the same policy. We studied both the auction policy and
the bid policy.

421 Auctionpolicies

The auction policy dictates when asitewill call an auction,
and for which collection. As described in Section 3.1.1, we
examined the Call ForAll and CallForRarepolicies. Withthe
CallForAll policy, alocal site repeatedly cals auctions for
each of itscollections, inrarest first order, aslong asthelocal
Site is receiving bids from remote sites. The CallForRare
policy is the same, except that the local site does not call
auctionsfor collectionswith at least Gy = 3 copies.

We ran a set of experiments where we compared the ef-
fects of the auction caling policy. We ran five different
experiments, one for each bid policy (including the Fixed-
Price policy). A sample result for the auction policy, in a
situation where sites used the UsedSpace policy, isshownin
Figure7. Thisfigure showsthe average increase or decrease
inreliability experienced by siteswhen the Call ForRare pol -
icy isused versus a baseline of when the CallForAll policy
isused. The CallForRare policy provides up to 850 percent
improvement in MTTF over the CallForAll policy (when
F' = 5.8). The 95 percent confidenceinterval for thisfigure
is £50 percentage points, except for /' > 4.4, where the
interval expands to as much as £100.

Theresultsfor other bid policiesaresimilar: CallForRare
is better than CallForAll regardless of which bid policy is
used. Theseresultssuggest that it isdetrimental toreliability
if adite calls too many auctions. Although the CallForAll
policy causes the site to actively try to replicate collections
by calling auctions, the end result is that sites call too many
auctions too soon, using up their local storage, and too few
copies are made of collections deposited later in the trading
session. Instead, sites should try to strike a balance between
calling auctions themselves, and bidding in auctions called
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Figure 7. Auction calling policies under the

Adaptive Bids scenario.

by other sites. The first copies of a collection can be made
by calling auctions, in order to ensure that the collection
isreplicated at least afew times. Then, the collection can
be replicated more times when the site bids in and wins
auctions. Thisiswhat happens with the CallForRarepolicy.

4.2.2 Bidpolicies

Next, we examined different bid policies. The bid policies
described in Section 3.1.2 were implemented by calculating
B using Equation 1. If multiple sites submitted identical
minimum bids, the local site chose the site with which it
had traded the most in the past. If thisdid not break thetie,
thelocal site chose randomly among the tied sites. (Choos-
ing previous partners first produces higher reliability than
making random the first tiebreaker; see[9].)

In our experiment, 7 = 1 and P() was either FreeSpace,
UsedSpace, AbundantCollection, or RareCollection for all
Sites; we also tested FixedPrice (e.g., I = 0). The Fixed-
Price policy represents a trading network that does not use
bidding, and comparing against the FixedPrice policy al-
lows usto determine whether bid trading isbeneficia versus
a non-bidding data trading network. The results are shown
in Figure 8, which showsthe percent MTTF change for each
bid policy versus a baseline of the FixedPrice policy. The
figure shows that no one policy is best. For high capac-
ity sites (with ' > 4.4), either the UsedSpace policy or
FreeSpace policy is best. For these policies, the 95 per-
cent confidence interval is +50 for /' < 5.6 and 100 for
F' > 5.6; thus for high capacity sites the confidence inter-
vals for the UsedSpace and FreeSpace policies overlap and
neither is statisticaly “better” than the other. (Also, the
dipsin peaks for UsedSpace and FreeSpace for F > 4.4
are noise within the confidence interval.) For mid capacity
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Figure 8. Bid policies in the Adaptive Bids
scenario.

sites (3.2 < I' < 4.4) dl policies are roughly the same,
since all are within the confidence interval of +50. For low
capacity sites (F' < 3.2), dl policies are the same (within
the confidence interval) as the FixedPrice baseline, except
FreeSpace, which provides up to 140 percent improvement
over FixedPrice.

Low capacity sitestend to have littlefree space, and thus
these sites bid low (and win auctions) under the FreeSpace
policy. Very low capacity sites (F' < 2.6), can rarely bid
in auctions (since they usually do not have enough space to
storethe auctioning site’s collection) and must aggressively
try towin all the auctionsthey do participatein. Thismeans
that FreeSpace benefits low capacity sites. As F' increases,
sitestend to have morelocal storage avail able, which means
that siteswith higher 7' bid less aggressively, winning fewer
auctions. This causes the downturn seen in the FreeSpace
curve of Figure 8 for /' > 2.6. However, the FreeSpace
curve begins to rise again for ¥ > 4.4, eg. for high ca-
pacity sites. These sites, with alarge amount of free space,
bid high and win few auctions. However, when they do
win an auction, they “win big,” getting a large amount of
remote space while giving little away in return. Therefore,
there are two competing effects: bidding low and winning
many auctions, or bidding high and winning big in a few
auctions. Low capacity sites, which often cannot bid at al,
benefit from FreeSpace because when they do bid, they bid
aggressively. Intherange 2.6 < F' < 4.4, sites ill cannot
bidinvery many auctions, but now tend to losethe onesthey
dobidin. For F' > 4.4, the“winning big” effect dominates,
since high capacity sites can bid in many auctions and thus
can afford to wait until they can win an auction with ahigh
bid.

Under the UsedSpace policy, sites bid more when they
havelittlefree space. Inthiscase, high capacity sites(which



usualy have lots of free space) bid low and win auctions.
Althoughthese sites are not getting much remote storage per
auction (because they bid low) they are winning many auc-
tions, and get alarge amount of remote space in aggregate.
Low capacity siteswin fewer auctionsunder UsedSpace be-
cause they are bidding higher. As noted above, low capacity
sitesonly benefit by bidding aggressively, which they cannot
do under UsedSpace.

Thisexperiment suggeststhat may bebetter if high capac-
ity sitesand low capacity sitesuse different policies. Thisis
the Multiple Policies scenario, which we study next.

4.3. Multiple Palicies scenario

Inthe MultiplePoliciesscenario different sitesuse differ-
ent polices based on some partition of the sites. The results
inFigure7 suggest that al sitesbenefit from the CallForRare
policy, so we did not study the case where different classes
used different auction policies. However, Figure 8 suggests
that for bid policies, the storage factor F' is a good way to
partition sites into classes. Therefore, we constructed three
classes: high capacity sites (' > 4.4), mid capacity sites
(3.2 < F < 4.4) and low capacity sites (' < 3.2).

We ran simulationsin which all of the sitesin one class
used the same bid policy, while different classes may have
used different policies. We can summarize the results as
follows:

e The best class divisionis actualy two classes, with low
capacity F' < 3.4 and high capacity ¥ > 3.4, rather
than three classes. Recall that sites are tryingto make at
least Gy = 3 copies. Thismeans asitewith F' > 3.4
has enough space to make 3 copies, and intuitively has
a high storage capacity relative to the storage needed to
make trades. A sitewith /' < 3.4 has troublemaking 3
copies, and intuitively has low storage capecity relative
to the needed storage.

e High capacity sites (#' > 3.4) should use the UsedSpace
policy withany 7 > 0. UsedSpace alows high capacity
sites to bid low and win many auctions, so the sites can
make as many copies as possible of their collections.

o Low capacity sites (F' < 3.4) should use the FreeSpace
policy with I = 2. FreeSpace allows low capacity sites
to bid low and win many of the auctionsthey participate
in, so the sites can aggressively try to make at least 3
copies of their collections.

¢ Bidtradingasamechanismisuseful, sinceit allowssites
to improve their reliability over fixed-price trading.
Inorder to determinetheseresults, wetested every combi-
nation of apossiblebid policy for low, mid and high capacity
sites; since there are five different policiesand three storage
classes there are 125 combinations. To start with, 7 = 1
in each case except FixedPrice. We analyzed the results
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Figure 9. Best bid policy for (a) high capacity
and (b) mid capacity sites.

by plotting the effect of bid policies on the reliability for a
particular class for each combination of policiesused by the
other two classes.

For example, we plotted the effect on high capacity sites
(where F' > 4.4) of the bid policy used by those sites, in
the scenario where mid capacity sites used the UsedSpace
policy and low capacity sites used the AbundantCollection
policy. The results are shown in Figure 9a. As the figure
shows, the UsedSpace policy is significantly better for high
capacity sites than other policies. This genera result, and
the shape of the plotted curves, remains the same regardless
of thebid policiesused by midand |ow capacity sites. Recall
that under UsedSpace, sites bid low and win auctions when
they have lots of free space. Even though high capacity
sites make lots of trades, they tend to still have alot of free
space, and thus continue to win auctions and make copies
of their collections. In other words, the high capacity sites



have enough space so that they can afford to continually bid
low. Inthisfigure, the 95 percent confidenceinterval is+50
except intherange F' > 4.8, where the confidence interval
is +100. The dips and peaks in the UsedSpace curve are
noise within these confidence intervals.

The results for other combinations of policies used by
low and mid capacity sites are the same: UsedSpace is best
for high capacity sites regardless of the policy used by other
classes of sites.

Sample results for mid capacity sites (in the case
where high capacity uses UsedSpace and low capacity uses
FreeSpace) are shown in Figure 9b. (The 95 percent confi-
dence interva in thisfigure is +30.) Asthis figure shows,
UsedSpace is clearly the best policy for F' > 3.4, but in
theinterval 3.2 < F' < 3.4 thereisno clearly best policy.
The same result is observed regardless of the low capacity
bid policy used. (We restricted our examination to the cases
where high capacity sites use UsedSpace, sinceit isclearly
the best policy for those sites.) This suggeststhat /' > 3.4
is a better definition of high capacity sites than 7 > 4.4.
Moreover, further experiments (results not shown) suggest
that theinterval 3.2 < F' < 3.4 isbest considered part of the
low capacity class, al sitesintherange F' < 3.4 dobest with
the FreeSpace policy when high capacity sites(F' > 3.4) use
UsedSpace. In other words, high capacity sites do best with
UsedSpace and low capacity sites do best with FreeSpace,
for the same reasons discussed in Section 4.2.2.

In order to examine the impact of I on reliability, we ran
an experiment where / varied between 0 and 2 for high ca-
pacity (F' > 3.4) sitesusing UsedSpace, whilelow capacity
sites (#' < 3.4) used FreeSpace (with I = 1). The results
(not shown) for high capacity sitesindicatesthat the MTTF
does not change significantly as I changes. Although sites
achieve better reliability with 7 > 0, with up to 100 percent
improvement in MTTF versus / = 0, the actua value of /
does not matter. Increasing I increases the maximum bid
that the high capacity site makes. While this means that the
site receives more remote storage when it wins an auction,
it also means the site wins fewer auctionsbecause it ismore
likely that some other site is bidding less. The simulation
resultsindicate that these effects cancel out.

We a so ran an experiment where [ varied between 0 and
2for low capacity sitesusing FreeSpace, whilehigh capacity
sites use UsedSpace with 7 = 1. The results for are shown
in Figure 10, which shows the percent differencein MTTF
achieved by sites for each value of I versus a baseline of
I = 0. As the figure shows, low capacity sites achieve
the highest reliability with I = 2, with up to a 420 percent
improvement over / = 0. By increasing the bid span, low
capacity sites magnify the benefits of the free space policy:
they win even more auctions, by bidding lower more often.
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policy and low capacity sites.

4.4 Maverick Site scenario

Some sites may decide not to follow the best policy for
their storage class as a whole. Instead, they may behave
differently, in the hope of achieving benefit for themselves.
This situationis the Maverick Site scenario. Here, we con-
sider whether the behaviors outlined in Section 3.3 can be
used to benefit an individua site. Specifically, we are inter-
ested in two questions:

e Can a site accrue benefit by behaving in a manner dif-
ferent from the rest of itsclass?

e Does the differing behavior reduce the reliability
achieved by the sitesthat are followingtheir class's pol-
icy?

In other words, it is not useful to a site to act differently
fromitsclassif it achieves no benefit. At the same time, it
may not detrimental for normal sites if one site's behavior
deviates. We study these questionsin this section.

We have implemented maverick behaviors as described
in Section 3.3. With the BidHigh behavior, themaverick site
uses £ = 1.5 aways, and with the BidLow behavior, the
maverick siteuses £ = 0.5 dways. With the AlwaysCall
behavior, the maverick sitecontinually callsauctions of size
50 GB (the minimum collection size in our simulations) in
additiontoregular auctionsforitscollections. WiththeNev-
erCall and NeverBid behaviors, themaverick sitenever calls
auctionsand never bidsinauctions(respectively). Whilethis
isnot an exhaustivelist of the behaviorssitesmay engagein,
they represent a variety of ways in which sites may behave
differently than the rest of the sites in their class. In that
sense, studying these behaviors helps us to get an idea of
how much a site can benefit itself or damage the system by
acting differently.
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Figure 11. Maverick behaviors:
and (b) NeverCall.

(a) BidHigh

The results were:

e A maverick high capacity site can sometimes benefit
from the BidHigh behavior, but does not harm other
sites doing so.

o A maverick high capacity site can also benefit from the
NeverCall policy, and in doing so may harm other sites.

We first examined the situation where a maverick high
capacity site deviates from the behavior recommended for
itsclass. Inthiscase, duringeach simulation, ahigh capacity
sitewas chosen randomly asthe“ maverick” site. Theresults
for the BidHigh behavior is shown in Figure 11a. This
figure shows two curves. one curve for the maverick site
(Iabeled “Maverick™) and one curve for the other sitesin the
same simulations as the maverick site but that themselves
are not deviating (labeled “Normal™). Both of these curves

13

represent the percent change in reliability for a site versus
a baseline of no maverick sites (e.g., the Multiple Policies
scenario).

Thefigure shows that the MTTF difference for maverick
sites varies widely, sometimes with an increase in MTTF
(up to 130 percent) and sometimes with a decrease (by up to
25 percent) versus the case where the site does not deviate.
Moreover, the variance in our measurements is very high:
the 95 percent confidence interval for the “Maverick” curve
is 175 percentage points. The result is that the average
plotted in thefigureis very noisy with many dipsand peaks
withinthewide confidenceinterva; for any given F' aMav-
erick site may experience a large benefit or detriment. In
order to understand this variability, we must understand the
situationsin which the BidHigh behavior is beneficial. Bid-
High hel ps the maverick site because the siteisableto get a
large amount of space at the remote site, while giving avay
comparétively little. On the other hand, a BidHigh site may
not win very many auctions, since it is bidding higher than
other sites, and low bidderswin an auction. In sometrading
sessions, themaverick siteisfrequently thelonebidderinan
auction, and thus acquires a large amount of remote space
a little cost to itself. In other sessions, there are usually
more biddersin an auction, and thusthe maverick site wins
few auctions, makes fewer trades and experiences alossin
reliability. The end result is that the BidHigh behavior is
risky; sometimes it pays off and sometimes not.

However, Figure 11a aso indicates that non-maverick
sites do not experience a significant decrease in reliability
versus the case where no site is maverick. (The dips and
peaksinthe“Norma” curve are noise withinthe 95 percent
confidence interval of +£50 for /' < 5.2 and £75 for F* >
5.2.) Although the maverick site is able to extract a high
priceinan auction, other sitesare still ableto make copies of
their collections and achieve reliability. Thisindicates that
the BidHigh behavior is not likely to decrease thereliability
of the system.

Figure 11b shows the results from another experiment,
where one high capacity site pursuestheNeverCall behavior.
Aswith the BidHigh behavior, the maverick site sometimes
does well (achieving up to a 75 percent increase in MTTF)
and sometimes does poorly (achieving up to a 25 percent de-
crease in MTTF). Once again, thevariance is very high: the
confidenceinterval for the*Maverick” curveis+100, result-
ing in anoisy average with many dipsand peaks within this
interval. Recall that ahigh capacity site uses the UsedSpace
policy, often bidding low and winning auctions. When the
site's storage space begins to fill up, the site starts losing
auctions, because it is bidding higher. Normally in this sit-
uation, a site still trades by calling auctions, but must often
pay ahigh priceinthesetrades (sincetheremote site setsthe
price.)) However, amaverick siterefusesto cal auctions, in-
stead bidding (and bidding high). If the maverick siteisthe



only bidder, then it gets alarge amount of remote space and
makes several copies of itscollectons. If there are other bid-
ders, the maverick site loses auctions and makes no trades.
Thus, as with the BidHigh behavior, sometimes NeverCall
benefits a maverick site and sometimes hurts the site. This
produces the high variance observed in our results.

There is adifference in the case of NeverCall, however:
non-maverick sites may be hurt by this behavior. Thisis
because the maverick siteiseither winning auctions at high
prices and reserving much of the space in the system for
itself, or losing auctions and therefore not giving away its
own space. In either case, some sitesthat may otherwise use
this space cannot, resulting in lessreliability for those sites.
Thisis seen most clearly in Figure 11b in the case of /' =
5.6, where the decrease in MTTF of 56 percent verses “No
maverick sites’ islarger than the 50 confidence interval.
Non-maverick sites may need to pursue some corrective to
discouragesitesfromfollowingthe NeverCall behavior. For
example, they can attempt to identify a maverick site and
refuse to trade with it altogether, encouraging the maverick
siteto pursue normal behavior.

Our experiments have aso shown that other maverick
behaviors are not effective, resulting in either no benefit or
sharply reduced reliability for the maverick site. BidLow is
not effective because although a site wins many auctions, it
always does so by giving avay much of its own space and
getting littlein return. NeverBid is a so ineffective because
the local siteis at the mercy of bids cast by other sites. In
other words, every auction the site participates in results
in a trade (because the site is the auctioner) but many of
these trades come at aloss for thelocal siteif other sitesare
bidding high. AlwaysCall is not effective for two reasons.
First, asite may acquire many deeds at many sites, but there
is no guarantee it will acquire a large enough deed a any
site to be useful. As a consequence, the site uses up al
of its local space without necessarily replicating many of
its collections. Second, AlwaysCdl is like the NeverBid
behavior in that most trades are aresult of the maverick site
caling an auction, and then potentially paying a high price
in thetrade.

In no casedoesamaverick behavior benefit alow capacity
site. Low capacity sitesarerarely theonly bidder inauctions,
because their lack of storage space means that they often
cannot bid at all. Asnoted above, beingtheonly bidder inan
auction is key to benefiting from the BidHigh or NeverCall
behaviors.

4.5. Number of sites

All of the results reported here are for relatively small
peer-to-peer networks of 10 to 15 sites. A smal network
is appropriate for our problem domain, where we assume
a small federation of libraries and archives cooperating to
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provide preservation. A library is unlikely to entrust its
collectionsto thousands of Gnutella-like clients running on
unknown, unreliable home computers. Instead, the library
will choose a set of remote sites that are relatively well
trusted, and conduct bid trading among these sites.

In previous work [8], we have examined the impact of
the site count on reiability for the Fixed Price scenario,
and found that a relatively small network of about 5-7 sites
is in fact the most reliable. In the context of this paper,
we have conducted experiments under the Adaptive Bids,
Multiple Policies and Maverick Site scenarios, and found
that once again 5-7 sitesis the optimal network size. These
resultssuggest that alarger network of sitescan achieve high
reliability by forming trading groups of 5-7 sites.

5. Related work

Previous investigators have studied distributed replica-
tion systems. Examples include traditional data manage-
ment schemes, such asreplicated DBM S's[5, 15], replicated
filesystems [19] and RAID disk arrays [23]. Such schemes
utilizereplicationto protect against failuresintheshort term.
However, they do not provide a high level of autonomy to
the nodes participating in the replication network, relying
instead on a central controller to determine data placement
or manage free-space tables. Also, traditional solutionsare
concerned with load distribution, query time and update
performance, in addition to reliability [10, 25, 28]. Thus,
traditional replicated databases tend to trade somereliability
for increased performance [18]. Here, we are primarily con-
cerned about preservation (given theconstrai nt of preserving
Site autonomy).

Similarly, replicated filesystem schemes such as
Coda [16] or Andrew [21] use caching to improve avail-
ability. Andrew and Codatreat replicates as cached copies
that are created on demand and g ected from the cache when
necessary. Data trading places datain responseto reliability
needs, and we assume that a site accepting datais making a
long term commitment to provide access.

Systems such as the Archiva Intermemory [14, 6] and
OceanStore [17] are very good at preserving digita objects.
High replication is achieved at the cost of site autonomy,
as sites do not have control over where their collectionsare
replicated or which remotely-owned collectionsthey store.

Our work is aso related to existing peer to peer trading
systems such as Freenet [1] or Gnutella[2]. Such systems
are focused on finding resources within a dynamic, ever-
changing collection, and not on reliability, and less popular
or infrequently accessed items can be deleted. Thus, sys-
tems like Gnutella provide searching but do not guarantee
preservation. A searching and resource discovery mecha
nism could be built on top of our data trading system; how-
ever, our primary focus is surviving failures over the long



term.

Auctiontheory, in both economics and computer science,
has been extensively devel oped. Many auction theory results
are theorems about optimal alocation in abstract models,
and work is needed to apply theoretical mechanisms to real
systems (aspointed outin[12]). Moreover, auction theorists
usualy make assumptionsthat are not applicable here, such
as the existence of a currency different from the resources
themselves, adistinctionbetween producersand consumers,
and global pricing [27]. Other investigators have looked at
“efficient clearing”, or the best way to assign resources to
bidders so as to maximize utility across the system. In this
scenario, methods such as integer programming [4] can be
used to solve the auction, but this assumes al resources and
bids are known at the same time. In our system, resources
and bids appear over time as new collectionsare created and
new storageisadded, and archives, which must make copies
as soon as possible to avoid failures, cannot wait until all
resources and bids are known.

Severa systems have attempted to apply market-oriented
programming, and specifically auction techniques, to re-
source alocation problems. Schwartz and Kraus [26] sur-
vey methodsfor using auctionsto distributedata collections.
They assume that there isa common currency, that there is
one copy of each collection, and that the performance met-
ric is access time. Some or al of these assumptions are
shared by computationa economies such as the Blue-Skies
digital library [22], theMari posatransaction processing sys-
tem [11], and Ferguson, Nikolaou and Yemini’s replicated
data processing economy [13]. Our unique application,
replication to achieve reliability, means that we can draw
from this previous work but must also develop new tech-
niques and policies.

6. Conclusion

Wehave described bid trading: amechanismfor allowing
sites to conduct peer-to-peer data trading to achieve high
reliability. Collections are replicated when two sites agree
to trade space, such that each site can store data using the
other site’'s storage space. Bid trading alowsaloca siteto
determine how much space at the remote site to ask for in
return for giving a deed of a certain size to the remote site.
Thisresultsin asituation where a site calls an auction when
it wantsto trade. Other sites submit bids, and the auctioning
site chooses the lowest bid.

We have described how the auction and bidding process
works, and examined policies for deciding when to call an
auction and how much to bid. Using atrading simulator, we
have determined which policies providethe highest reliabil -
ity. Although the CallForRare policy is good for al sites,
there is no one bid policy that is universally most reliable.
Bid trading with the UsedSpace policy provides the high-
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est reliability for sites with alot of storage capacity. Sites
with less storage capacity should use the FreeSpace policy
instead. We have a so shown that if some sitesdeviate from
the recommended policy for their class, they may benefit
themselves dlightly but only in some cases damage the reli-
ability of other sites. Our results suggest that bid trading is
an effective, general model for peer-to-peer datatrading and
preservation.
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