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Abstract. Research in Peer-to-peer systems has focussed on building
eÆcient Content Addressable Networks (CANs), which are essentially
distributed hash tables (DHT) that support location of resources based
on unique keys. While most proposed schemes are robust to a large num-
ber of random faults, there are very few schemes that are robust to a
large number of adversarial faults. In a recent paper ([1]) Fiat and Saia
have proposed such a solution that is robust to adversarial faults.
We propose a new solution based on multi-butter
ies that improves
upon the previous solution by Fiat and Saia. Our new network, multi-
hypercube, is a fault tolerant version of the hypercube, and may �nd
applications to other problems as well. We also demonstrate how this
network can be maintained dynamically. This addresses the �rst open
problem in the paper ([1]) by Fiat and Saia.

1 Introduction

Peer-to-peer (P2P) systems are distributed systems without (ideally) any cen-
tralized control or hierarchical organization, which make it possible to share var-
ious resources like music [7, 3], storage [5] etc over the Internet. One approach
to building P2P systems is to build a distributed hash table (DHT) that sup-
ports location of resources based on their unique key. Such a network is called a
content addressable network (CAN) and various solutions ([8, 9, 11]) have been
proposed for building eÆcient CANs.

While most schemes for building CANs are fairly robust against random
attacks, a powerful agent like a government or a corporate can attack the system
by carefully deleting (making faulty) chosen points or nodes in the system. For
instance, the Gnutella [3] �le sharing system, while speci�cally designed to avoid
the vulnerability of a central server, has been found (refer [10]) to be highly
vulnerable to an attack by removing a very small number of carefully chosen
nodes. Thus it is unclear if any of these systems are robust against massive
orchestrated attacks.

Recent work by Fiat and Saia [1] presents a CAN with n nodes that is
censorship resistant, i.e. fault tolerant to an adversary deleting up to a constant
fraction1 of the nodes. It is clearly desirable for a P2P system to be censorship
resistant and to the best of our knowledge this is the �rst such scheme of its kind.

1 The paper provides a system that is robust to deletion of up to half the nodes by an
adversary. It can be generalized to work for arbitrary fraction.



However a drawback of the solution presented in [1] is that it is designed for a
�xed value of n (the number of participating nodes) and does not provide for the
system to adapt dynamically as n changes. In fact the �rst open problem that
they mention in their paper (Sect. 6 of [1]) is the following: \Is there a mechanism
for dynamically maintaining our network when large numbers of nodes are deleted
or added to the network? .."

This paper solves this open problem by proposing a new network that can
be maintained dynamically and is censorship resistant. Our new network, multi-
hypercube, is a fault tolerant version of the hypercube network and may �nd
applications to other problems as well. We �rst present a static solution that is
much simpler than that presented in [1] and improves upon their solution. Next
we show how we can dynamically maintain our network as nodes join and leave.

A drawback of our solution is that it requires a recon�guration after an
adversarial attack (details in Sect. 3.1). This does not involve adding new edges
or nodes to the network. It only involves sending messages along existing edges
to label some nodes as \faulty". This recon�guration step requires O(logn) time
and O(n log n) messages are sent, where n is the number of nodes in the network.

We present a table (refer to Table 1) that compares all of these solutions based
on some important factors. The parameter n is the number of nodes participating
in the network.

Network linkage query cost Messages Fault Dynamic Data Replication
(degree) (path length) per query Tolerance factor

CAN [9] O(d) O(n1=d) O(n1=d) ? Yes O(1)

Chord [11] O(log n) O(log n) O(log n) Random Yes O(1)

Viceroy [8] 7 O(log n) O(log n) ? Yes O(1)

CRN [1] O(log n) O(log n) O(log2 n) Adversarial No O(log n)

MBN (this paper) O(log n) O(log n) O(log n) Adversarial No O(1)

DMBN (this paper) O(log n) O(log n) O(log n) Adversarial Yes O(1)

Table 1. Comparison of recent solutions.

Paper Organization:We begin by brie
y reviewing some of the related work in
Sect. 2. In Sect. 3 we present a simpler and better censorship resistant network.
Section 4 provides a dynamic construction of our network. Finally we conclude
with a discussion of open problems in Sect. 5.

2 Related Work

Most CANs are built as an overlay network. The goal is to build a CAN with
short query path length since it is directly related to the latency observed by the
node that issues the query. Besides a small query path length, other desirable



features of a solution include low degree for every node, fewer messages per
query, fault tolerance etc.

Recently various solutions { CAN ([9]), Chord ([11]), Viceroy ([8]) etc. { have
been proposed to building CANs. Please refer to Table 1 for a comparison of their
various performance parameters. A common feature to all of these solutions is
the use of an underlying abstract hash space to which nodes and data items are
hashed. It is critical to all these schemes that the data items are hashed uniformly
and deterministically based on their keys, so that any node can compute the hash
value of a data item solely based its unique key.

The CAN system designed by Ratnasamy, Francis et al [9] uses a virtual
d-dimensional (for a �xed d) Cartesian coordinate space on a d-torus as its hash
space. The hash space used by Chord [11] and Viceroy [8] is identical. It can be
viewed as a unit circle [0; 1)2 where numbers are increasing in the clockwise di-
rection. The Chord system tries to maintain an approximate hypercube network
in a dynamic manner, while the Viceroy system tries to maintain an approximate
butter
y network in a dynamic and decentralized manner.

The censorship resistant network (henceforth CRN) developed by Fiat and
Saia [1] departs from all of the above solutions in trying to provide adversarial
fault tolerance. The aim is to build a network such that even after an adversary
deletes (makes faulty) up to n=2 nodes, (1� �) fraction of the remaining nodes
should have access to (1� �) fraction of the data items, where � is a �xed error
parameter. However, their solution assumes that there are n nodes participating
in the network, where n is �xed. Their solution can be extended to form a
network that is spam resistant, i.e. resistant to an adversary that can not only
delete a large number of nodes but also make them collude so that they forward
arbitrary false data items (or messages) during query routing. In a very recent
paper ([2]), the authors have extended their previous work to build a CAN that
is dynamically fault-tolerant. Their notion of dynamic di�ers from ours and as
per their notion of dynamic fault-tolerance, the network is built for a certain
value n of the number of participating nodes. However, there may be a large
turn around of the participating nodes and during any time period for which
the adversary deletes 
n nodes, Æn (Æ > 
) new nodes are added to the system,
always maintaining that there are at least �n live nodes for some fraction �. At
every time instant the network should remain censorship resistant. They build
such a system that is an adaptation of CRN and has properties similar to it.

3 Multi-Butter
y Network (Multi-Hypercube)

In this section we present a censorship resistant network based on multi-butter
ies,
which we refer to as MBN (Multi-Butter
y Network). Our solution is better than
CRN in the following respects:

1. While routing in CRN requires O(log2 n) messages, routing in our network
requires O(log n) messages.

2 While the Chord paper [11] describes their hash space as \identi�er circle modulo
2m" the two are equivalent
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Fig. 1. Splitter with N inputs and N out-
puts.

N Inputs

N splitter N/2 splitters N/4 splitters

N Outputs

Fig. 2. A splitter network with n rows,
log n + 1 levels.

Fig. 3. Twin Butter
y with 8 inputs.
Fig. 4. Butter
y network of 16 rows and 5
levels.

2. The data replication factor in CRN is O(logn). i.e. every data item is stored
at O(logn) nodes. In our network the data replication factor is O(1).

3. The data availability in our network degrades smoothly with the number of
adversarial deletions. No such guarantees are given for CRN.

Similar to [1] we �rst present a static version, where the number of partic-
ipating nodes(n) is �xed. Later, we will provide a dynamic construction that
maintains an approximate version of this network and has similar properties.

Our construction is based on multi-butter
ies. Fig. 4 shows a twin-butter
y.
Multi-butter
y networks were introduced by Upfal [12] for eÆcient routing of
permutations and were later studied by Leighton and Maggs [6] for their fault
tolerance. Please refer to their papers for details. Butter
ies and Multi-butter
ies
belong to the class of splitter networks (Fig. 3), whose building block is a splitter
(Fig. 2). In an N -input splitter of a multi-butter
y with multiplicity d, every



input node is connected to d nodes from the upper and lower output nodes.
Similarly every output node has edges from 2d input nodes. The splitter is said to
have (�; �)-expansion if every set of k � �N input nodes is connected to at least
�k upper output nodes and �k lower output nodes, where � > 0 and � > 1 are
�xed constants (Refer to Fig. 2). Thus, the N input nodes andN=2 upper (lower)
output nodes form a concentrator with (�; �)-expansion. A multi-butter
y is said
to have (�; �)-expansion if all its splitters have (�; �)-expansion. Splitters are
known to exist for any d � 3, and they can be constructed deterministically
in polynomial time [12], but randomized wirings will typically provide the best
possible expansion. In fact, there exists an explicit construction of a splitter with
N inputs and any d = p+ 1, p prime, and � � d=(2(d� 4)�+ 8) (Corollary 2.1
in [12]). In the case of a butter
y network any pair of input and output nodes
are connected by a unique (bit correcting) logical path. However, in the case of
a multi-butter
y there is a lot of redundancy since there is a choice of d edges to
choose from, at every node, instead of a single edge as in the case of a butter
y.
As a result there is a myriad of paths that connect any pair of input and output
nodes. This redundancy is the key to the fault tolerance of a multi-butter
y,
which was formally proven in [6].

At an intuitive level, our aim is to build a network such that even after an
adversary deletes a constant fraction of the nodes in the network,
(n) remaining
nodes are each connected by small length paths to 
(n) of remaining nodes. In
other words even after an adversary deletes a constant fraction of the nodes, there
should remain a connected component of size 
(n) and small diameter. While
this is not the end goal of a censorship resistant network, we will see later how
such a network can be easily enhanced to make it censorship resistant. Although,
nodes in a multi-butter
y have constant degree, a multi-butter
y with n nodes
can only tolerate O(n= logn) faults and is not suited for Censorship Resistance.
Hence we build a new network called multi-hypercube that is based on multi-
butter
ies and is in fact the fault tolerant version of hypercube. In short, a
multi-hypercube is to a multi-butter
y as a hypercube is to a butter
y. If the
role of all the nodes in a single row of a multi-butter
y is played by a single
node then what we get is a multi-hypercube3. Consider an N input splitter in a
multi-hypercube. In this splitter, upper N=2 input nodes are connected to lower
N=2 output nodes (and vice versa), via an expander of degree d. As a result
we get better expansion factor (�) for the same degree as compared to that in
a multi-butter
y, where instead of a (N=2; N=2) expander we have a (N;N=2)
concentrator. To the best of our knowledge this network has not been studied
earlier, neither are we aware of the use of the term multi-hypercube. A formal
de�nition follows:

Multi-Hypercube: A multi-hypercube of dimension m and multiplicity d con-
sists of 2m nodes, where every node has degree 2md. A node with binary repre-
sentation b1b2 : : : bm is adjacent to 2d nodes at each level i (1 � i � m). At level
i it has \out-edges" with d nodes whose �rst i bits are b1b2 : : : bi�1bi. It also has

3 The caveat is that in every splitter we only maintain the \cross" edges and not the
\straight" edges



\in-edges" from d nodes belonging to the same set, i.e. with �rst i bits given by
b1b2 : : : bi�1bi. The connections are such that the expansion property holds for
every splitter, like in the case of a multi-butter
y.

Thus, a multi-hypercube with n nodes has degree 2d logn for each node. A
multi-hypercube is a fault tolerant version of the hypercube network, and turns
out to be ideal for censorship resistance. We hope that this network will �nd
other applications as well.

Given n, the network that we build is a multi-hypercube with n nodes and
(�; �) expansion. The fault tolerance property that we will prove (Theorem 1)
about the multi-hypercube is the exact equivalent of the corresponding property
for a multi-butter
y. We refer to this network as the Multi-butter
y network
(MBN), since we prefer to visualize it as a multi-butter
y. Data items are ran-
domly hashed onto any node. Thus the data replication factor is 1 and using
consistent hashing, as in [11], we can guarantee that whp the load on any node
is at most O(log n) times the expected average load.
Distributed creation: Similar to [1] we describe how we create our network
in a distributed manner. In the �rst round every node broadcasts its unique
identi�er (ip-address) to all other nodes. Based on the identi�ers that a node
receives from other nodes it determines its index i in the sorted list of identi�ers.
This can be done by comparing every identi�er with its own and maintaining
a count of smaller identi�ers. Thus at the end of round one every node knows
its index i in the sorted list. Based on its index i every node computes the
indexes of all the other nodes that it will connect to. Note, every node connects
to at most 2d logn other nodes. In round two every node broadcasts its index
(i) and identi�er (ip-address) to all other nodes. Every node in turn remembers
the identi�ers of the pertinent 2d logn nodes and forms a connection with them.
As mentioned before data items are randomly hashed onto any one of the n
nodes based on their key and this hash function is known to all the nodes. Data
items can be inserted by performing a query on them to reach the node they
must belong to and then inserting them at that node. The construction of the
network requires 2 broadcasts from every node, with a total of 2n2 messages and
assumes that each node has O(logn) memory, similar to the creation of CRN.
Routing: Every node (source) that wishes to access a data item computes the
hash of its key and �nds out the index of the node the data item belongs to
(destination). Routing between the source and destination is done using the
standard, logical bit-correcting path as in a hypercube. Due to the redundancy
in connections, in a fault free multi-hypercube we will have a choice of d out
edges at each level (splitter) of the routing. This choice may be reduced if some
of the nodes become faulty, as we shall see later. The number of messages sent
for a single query is at most logn and time taken is also logn.

3.1 Fault Tolerance

In this subsection we prove the fault tolerance for our network. The proof is
similar to that presented in [6]. We will view the multi-hypercube as a multi-
butter
y where a single node plays the role of all the nodes in a row of the multi-



butter
y. In the discussion below we will refer to nodes on level 0 (leftmost level
in the �gures) as input nodes and nodes on level logn as output nodes treating
them separately. But in reality same node is playing the role of all the nodes in
a row. We prove the following theorem:

Theorem 1. No matter which f nodes are made faulty in the network, there
are at least n � �f

��1 nodes that still have a logn length logical path to at least

n� f
�(��1) nodes, such that all nodes on the path are not faulty, where (�; �) are

the expansion parameters for every splitter.

We �rst describe which outputs to remove. Examine each splitter in the multi-
butter
y and check if more than �0 = �(� � 1) fraction of the input nodes are
faulty. If so, then \erase" the splitter from the network as well as all descendants
nodes, i.e all nodes to the right of the splitter. The erasure of an m-input splitter
causes the removal of m multi-butter
y outputs, and accounts for at least �0m
faults. Moreover, since a (faulty) node plays the role of all nodes in the same
row the output nodes \erased" by it, by virtue of it being in di�erent splitters,
are the same. Thus we can attribute the erasure of an output node to a unique
largest splitter that \erased" it. Hence, at most f

�0
= f

�(��1) outputs are removed

by this process. We next describe which inputs to remove. Remember, for every
splitter each input node is connected to d nodes from either upper or lower
outputs depending on its position in the splitter. Working from the lognth level
backwards, examine each node to see if all of its outputs lead to faulty nodes
that have not been erased. If so, then declare the node as faulty. We prove that
at most f=(�� 1) additional nodes are declared to be faulty at each level of this
process.

Lemma 1. In any splitter, at most � fraction of the inputs are declared to be
faulty as a consequence of propagating faults backward. Moreover, at most �=2
fraction are propagated by faulty upper outputs and at most �=2 fraction by faulty
lower outputs.

Proof. The proof is by induction on the level, starting at level logn and working
backwards. The base case at level logn is trivial since there are no propagated
faults at this level. Now consider an arbitrary m-input splitter. If a splitter con-
tains more than �m

2 propagated faults from its upper outputs, then these faults
must have originated from faults in upper outputs and, in addition, the upper
outputs could not have been erased. Consider the set U of faulty upper outputs
(propagated or otherwise) that led to the propagated faults in the input. Since
each propagated input fault is connected d upper output faults, we conclude
that jU j > ��m=2 (using the expansion property). By induction hypothesis,
and the fact that the upper outputs were not erased (and hence had less than
�0m
2 faults), we know that jU j < �m

2 + �0m
2 = ��m=2 which is a contradiction.

Hence there could not have been more than �m
2 (�=2 fraction) propagated faults

to the inputs from faulty upper( lower) outputs.

Lemma 2. Even if we allow the adversary to make f nodes faulty on every level
there will be at most f

��1 propagated faults on any level.



Proof. The proof is again by induction on level. Consider some level l and assume
that it has more than f

��1 propagated faults. These faults are divided among
input nodes of splitters linking level l to level l+1. By previous Lemma, we know
that for every splitter with m inputs, there are at most �m=2 propagated faults
to the upper inputs and at most �m=2 propagated faults to the lower inputs.
Hence we can apply the expansion property to each splitter. Hence there must
be more than �f

��1 faults on level l + 1. This is a contradiction however, since

level l + 1 can have at most f + f
��1 = �f

��1 total faults by induction. Hence,

level l can have at most f
��1 propagated faults.

We erase all the remaining faulty nodes. The process of labeling nodes faulty
guarantees that an input node that is not faulty has a path to all the output
nodes that are not erased. This leaves a network with n� �f

��1 input nodes and

n � f
�(��1) outputs nodes such that every remaining input has a logical path

to every remaining output. The process of marking nodes \faulty" is important
to the eÆcient functioning of a CAN after an adversarial attack. It tells every
node the set of nodes it should not forward a query and restricts the earlier
choice of d nodes it had at each level. While the algorithm above gives an o�-
line (centralized) algorithm to label nodes faulty what we require is an online
algorithm that lets us do this without requiring a central authority. It was shown
in [4] that such an algorithm exists. In other words we can recon�gure a faulty
network in an online manner with just the live nodes talking to each other. This
recon�guration step requires O(logn) time and O(n logn) messages are sent.
Please refer to [4] for details. It is required that we do this recon�guration after
an adversarial attack. Since we cannot �gure out when the attack has occurred,
we suggest that the network does this recon�guration at regular intervals. During
the time interval after an adversary attack and before the recon�guration is done,
it may happen that a node may forward a query to another node that is \faulty",
but not yet so marked, and consequently the query may not reach the destination.
In such a case the node can retry forwarding the query through another node
hoping that it is not faulty, after waiting for a \timeout". However such retry's
can take a lot of time and we may end up sending a lot of messages. This
temporary lack in query routing eÆciency of the network should be contrasted
with the advantage that it has of requiring fewer messages per query.

One possible choice of parameters we may choose for our network are as fol-
lows: Choose the multiplicity d such that �(��1) � 2=3 and � � 3. Substituting
these values in the Thm. 1 gives us that no matter which f nodes are made faulty,
there are at least n� 3f

2 nodes that can each reach n� 3f
2 nodes through a logical

path. Note that the guarantee above is deterministic as opposed to whp, as in
case of CRN([1]). Moreover we can characterize the \loss" smoothly in our case.

Thus if we loose f =
p
n nodes we know that all but n� 3

p
n

2 nodes can reach

all but n� 3
p
n

2 nodes. Such guarantees are not given in the case of CRN, which
does not characterize the behavior when the number of faults is sublinear.
Enhancement: Theorem 1 guarantees that no matter which n=2 nodes are
made faulty by the adversary, there are n=4 remaining nodes (call this set I) that



are each connected by logn length logical paths to n=4 nodes (call this set O).
However, this by itself is not suÆcient to give us a censorship resistant network.
We achieve censorship resistance by further enhancing the network as follows:
Every node in the network is additionally connected to k1(�) (a constant that is
function of the error parameter �) random nodes in the network. Moreover, every
data item is maintained at k2(�) nodes in the network, which are speci�ed by
k2(�) independent hash functions. First step increases the degree of every node
by an additive constant, while the second step makes the data replication factor
k2(�) (a constant) instead of 1.

Routing takes place as follows: A node x that is looking for a data item y
computes the k2(�) nodes (call this set O

0) that the data item will be maintained
at, using to the di�erent hash functions. Let I 0 denote the set of k1(�) random
nodes that the node x is connected to as above. For every pair of nodes (a; b) 2
I 0 � O0, from the cross product of I 0 and O0, the node uses a as a proxy to
route the query to b. Note that the cross product I 0 � O0 has a constant size.
Using Lemma 4.1 from [1] it is easy to see that for all but � fraction of the
nodes the set I 0 contains a node from I , i.e. I 0

T
I 6= �. Similarly all but �

fraction of the data items are maintained at some node in O, i.e O0TO 6= �.
The above two conditions guarantee a successful query. However, the guarantees
in this extension are not deterministic. We can summarize the properties of the
network in the following theorem.

Theorem 2. For a �xed number of participating nodes n, we can build a MBN
such that:

{ Every node has indegree and outdegree equal to d logn.
{ The data replication factor is O(1).
{ Query routing requires no more than logn hops and no more than logn

messages are sent.
{ Even if f nodes are deleted (made faulty) by any adversary at least n� 3f

2

nodes can still reach at least n� 3f
2 nodes using logn length paths.

{ This network can be enhanced so that as long as the number of faults is less
than n=2, whp (1� �) fraction of the live nodes can access (1� �) fraction of
the data items.

4 Dynamic Multi-Butter
y Network

In this section we will describe how to dynamically maintain the MBN described
in the earlier section in an \approximate" manner, as n changes over time. The
network that we build has the following properties:

{ Every node will be connected toO(logn) other nodes. Query requiresO(logn)
time and O(logn) messages are sent during each query.

{ The fault tolerance of the network will be similar to that of MBN. Namely, if
at any time there are f adversarial faults, n�O(f) nodes still have O(logn)
length path to n�O(f) of the nodes.



{ We assume that there are no adversarial faults while the network builds.
While at every instance the network that is built is fault tolerant to adver-
sarial faults, we cannot add more nodes to the network once adversarial faults
happen. In other words our network admits only one round of an adversarial
attack. We do however allow random faults as the network builds.

We refer to our dynamic network as DMBN for Dynamic Multi-Butter
y
Network. Similar to Chord [11] and Viceroy [8] we hash the nodes and data
items onto a unit circle [0; 1) using their ip-address, keys etc. We refer to the
hash value as the identi�er for the node or data item. We assume that the pre-
cision of hashing is large enough to avoid collisions. For x 2 [0; 1), Successor(x)
is de�ned as the node whose identi�er is clockwise closest to x. A data item with
identi�er y is maintained at the node Successor(y). We also maintain successor
and predecessor edges similar to Chord and Viceroy. In these respects our net-
work is exactly similar to Chord. While Chord tries to maintain an approximate
hypercube we try to maintain an approximate multi-hypercube. In order to do
so we need to de�ne an appropriate notion of splitters and levels. Consider a
dyadic interval I = [z; z+ 1=2i) (i � 0). This interval is further broken into two
intervals Il = [z; z + 1=2i+1); Iu = z + 1=2i+1; z + 1=2i). Let S = Sl

S
Su be the

set of nodes whose identi�ers belong to the intervals I; Il; Iu respectively . The
sets of nodes Su; Sl along with the edges between them form a splitter in DMBN.
As in MBN, all nodes in Su, maintain outgoing edges with d random nodes from
Sl and vice versa. The index i that determines the width of the dyadic interval
de�nes the level to which this splitter belongs.

4.1 De�nitions and Preliminaries

We will refer to a node with identi�er x as node x. Let x = 0:x1x2x3 : : : xp be
the binary representation of x, where p is the precision length.

De�nition 1. A dyadic interval pair (DIP) for x (0 � x < 1) at level i
(i � 0) is de�ned as DIP (x; i) = f[0:x1x2 : : : xi; 0:x1x2 : : : xi1 = 0:x1x2 : : : xi +
1=2i+1); [0:x1x2 : : : xi1; 0:x1x2 : : : xi + 1=2i)g.
Thus DIP (x; i) are two consecutive intervals of length 1=2i+1 which agree on x
on the �rst i bits. The nodes that belong to DIP (x; i) form a level i splitter of
the multi-hypercube that we are trying to maintain in an approximate manner.
Every node in this interval pair maintains edges with d random nodes from the
other interval in the pair. This other interval is de�ned below.

De�nition 2. A dyadic interval (DI) for x (0 � x < 1) at level i (i � 0) is
de�ned as DI(x; i) = [0:x1x2 : : : xixi+1; 0:x1x2 : : : xixi+1 + 1=2i+1).

Lemma 3. For any x (0 � x < 1) and i � 0, let ku and kl be the number
of nodes whose identi�ers belong to the 2 intervals in the dyadic interval pair
DIP (x; i). If k = ku + kl � c logn for some constant c, then with probability at
least 1� 1=n2, max(ku

kl
; kl
ku
) < 2.



Proof. Observe that any node whose identi�er belongs to the interval pairDIP (x; i)
has an equal probability of getting hashed onto any of the two intervals, i.e.
E(ku) = E(kl) = k=2. It follows from a trivial application of Cherno� bounds
that if k is large enough (c logn), then whp (at least 1 � 1=n2), kl; ku will not
be o� by a factor more than 2.

The Lemma says that if the dyadic interval pair is fairly populated it will be
evenly balanced, up to a factor 2.

Every node x can get a crude estimate of the number of nodes in the system
as follows: Let n0 = 1=d(x; successor(x)), where d(x; successor(x)) is the dis-
tance between x and its successor. The following lemma about this estimate is
taken from [8](Lemma 4.3). It shows that every node can estimate logn within
a constant factor, whp.

Lemma 4. Let the system consist of n servers (nodes) whose identities (hash
values) are randomly distributed on the unit circle. Then w.h.p. we have that for
all nodes, the estimate n0 satis�es n�1

2 log n � no � n3.

4.2 Dynamic Construction

Node Join: Similar to Chord [11] a typical query in our network is of the form
successor(x) where given a value x we return the node successor(x). A node
that joins the network has access to some live node in the network, which it will
use to issue successor queries as it joins the network. The following steps are
executed by every new node with identi�er x that joins the network:

{ Similar to Chord it �nds successor(x) and establishes edges to successor and
predecessor nodes.

{ Similar to Chord, all data items that are currently held by successor(x), but
have identi�ers less than x are transferred to x.

{ i = 0; done = false
do
� Check if the total number of nodes in the interval DI(x; i) exceeds c logn
for some constant c (based on Lemma 3). This can be easily done us-
ing a single successor query and then following successor edges till we
encounter c logn nodes or overshoot the interval.

� If there are less than c logn nodes in DI(x; i) connect to all of them, set
done = true.

� Else choose d random values (ri1; r
i
2; : : : ; r

i
d) from the interval DI(x; i).

For every value z in this set issue the query successor(z) and maintain
an edge with this node.

� Increment i (Move to the next level splitter)
while(!done)

In short every node establishes edges with d random nodes from the dyadic
interval DI(x; i) for i � 0. It does so till the interval DI(x; i) becomes so small
(as i increases)that it contains only c logn nodes, at that point it maintains a



connection to all of them. It is easy to prove that in less than O(logn) levels
the number of nodes that fall into a dyadic interval reduce to O(1) whp. As
a result every node will maintain connections to O(logn) dyadic intervals and
have degree O(log n).
Continuous Update: We will describe in short how these edges are main-
tained (updated) over time as nodes leave and join. Choosing d random values
(ri1; r

i
2; : : : ; r

i
d) and maintaining connection with successor(rki ) (1 � k � d) is a

mechanism to guarantee that every node x maintains connection with d random
nodes from DI(x; i). As nodes join and leave successor(rik) may change. As a
result it is necessary for nodes to check if the node that it maintains an edge
to is indeed successor(rik). It is suÆcient to do this check whenever the number
of nodes reduce or grow by a factor 2, i.e. whenever a nodes estimate of logn
changes. A node should also check for other boundary conditions like \does the
smallest dyadic interval it maintains edges to have less than c logn nodes". We
could also follow a more pro-active strategy such that whenever a node leaves
or joins the network we adjust the connections corresponding to rki 's for other
nodes. We omit the details for lack of space.
Node Leave: Similar to Chord a node that wishes to leave transfers its data
items to its successor.

4.3 Routing:

Routing takes place along the usual bit-correcting logical path. At every level i
the ith bit of the query y (data identi�er) is compared with the ith bit of the node
x. If the two bits match the query enters the next level. Else it is forwarded to
one of the d random nodes that x connects to from DI(x; i), thereby \correcting"
the ith bit. Finally, as i increases the interval DI(x; i) becomes so small that it
has only c logn nodes, at which point x connects to all the nodes in that interval
and can forward the query to successor(y).

4.4 Fault Tolerance:

Consider a dyadic interval pair A;B that forms a splitter at some level i and
has more than c logn nodes4. We know, from Lemma 3, that the interval pair
is well balanced (up to a factor 2) whp. In our construction we maintain that
every node in A connects to d random edges in B and vice versa. It follows
from Lemma 4.1 in [1] that whp (at least 1� 1=n2), the splitter formed by the
interval pair A;B will have the crucial expansion property for parameters �; �
that satisfy 2�� < 1 5 The proof for fault tolerance follows exactly as in MBN.
We replace splitters with the dyadic intervals and the arguments follow. We have
to be slightly careful in our argument due to the slight imbalance in the number
of nodes in a dyadic interval pair (Lemma 3). We omit the details due to lack

4 If the number of nodes is less than c log n a complete bipartite graph is maintained
between A;B.

5 Factor 2 comes the slight imbalance in the number of nodes in the two intervals.



of space. We get the following theorem, which is the equivalent of Theorem 1.
Note, the guarantees are no more deterministic but instead probabilistic. The
phrase whp in the theorem is with respect to the random hashing of nodes and
the random connections maintained by nodes in di�erent splitters.

Theorem 3. No matter which f nodes are made faulty in the network, there are
at least n� �f

��1 nodes that still have a O(logn) length path to at least n� f

�( �
2
�1)

nodes whp.

Similar to the static case(MBN), DMBN must reorganize itself after an ad-
versary attack. In order to make the network censorship resistant we hash the
data items multiple times (k2(�)) and have every node connect to extra k1(�)
nodes, similar to the enhancements discussed in Sect. 3.1.

It is important to note that the dynamic construction wont work after an
adversarial attack. The construction assumes that all successor(x) queries will
be answered correctly. This is necessary for new nodes to establish their con-
nections. However once an adversarial attack has taken place such a guarantee
cannot be given. After the attack remaining nodes can still query for data and
they are guaranteed to have access to most of the data. This follows from the
fact that we maintained a fault tolerant network till the time of the attack.

5 Open Problems

Some open problems that remain to be addressed for fault tolerant CANs are:

{ Can we build an \eÆcient" dynamic CAN that is fault tolerant to adversarial
faults and allows dynamic maintenance even after an adversary attack, i.e.
allows multiple rounds of adversary attack.

{ Could multi-butter
ies be used in an eÆcient manner to construct a spam
resistant network.

{ Are there lower bounds for average degree of nodes, query path length etc.
for a network that is fault tolerant to linear number of adversarial faults.

Acknowledgment: The author would like to thank the anonymous referee for
various helpful suggestions.
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