
How To Safeguard Your Sensitive Data

Bob Mungamuru
Department of Computer Science

Stanford University
Stanford, CA, USA
bobji@stanford.edu

Hector Garcia-Molina
Department of Computer Science

Stanford University
Stanford, CA, USA

hector@cs.stanford.edu

Subhasish Mitra
Department of Electrical Engineering

Stanford University
Stanford, CA, USA
subh@stanford.edu

Abstract

In order to safeguard a sensitive database, we must en-
sure both its privacy and its longevity. However, privacy
and longevity tend to be competing objectives. We show
how to design a system that provides both good privacy
and good longevity simultaneously. Systems are modelled
as compositions of two basic operators,Copy and Split.
We propose metrics with which to evaluate the privacy,
longevity and performance offered by such systems. The
search for the “best” system under these metrics is then
formulated as a constrained optimization problem. Solv-
ing the optimization problem exactly turns out to be in-
tractable, so we propose techniques for efficiently finding
an approximate solution.

1 Introduction

“Keep it secret, keep it safe!”
–Gandalf

Suppose we have a critically important database that
must be safeguarded both against unauthorized access
and against data loss. This database could contain, say,
credit card numbers for our customers, patient records at
a hospital, or financial records at a bank. To safeguard
such data we probably want to use both replication (for
longevity) and encryption-like operations (for preventing
theft or unauthorized access).

For example, Figure 1 graphically shows how we might
protect a root databaser from unauthorized access and
data loss. TheSplit operatorS represents a “split” of the
database into a materialized (i.e., physically stored)termi-
nal objecta, and a non-materialized (i.e., transient) object
f that is to be processed further. Here, botha andf are
needed to reconstructr (e.g.,S might encryptr into ci-

phertexta using keyf ). Because we are concerned that
the “key” f could be lost, we make two copies,b ande,
using theCopyoperatorC. One copy off is stored as ter-
minal b, perhaps inside the desk of the company’s CEO.
Since we do not trust anyone else at the company to by
themselves hold the other copye, we splite further into
terminalsc andd. This way,c andd (e.g., held by the
CFO and the CIO) are both needed to reconstructf .

Figure 1. Example of a configuration.

There are of course many other ways one can compose
Copy and Split operators – each composition results in
a configurationwith different levels of protection against
break-ins and data loss. A configuration may also have
other desirable or undesirable properties. In particular,
some configurations will turn out to beunimplementable
because they compose Split and Copy operators in a way
that does not “make sense”. For example, there may be
a circularity in Split operators: the key needed by a Split
may somehow depend on the value of the ciphertext it is
supposed to generate.

Split and Copy operators (which will be defined pre-
cisely in Section 2) may not be the only mechanisms for
safeguarding data, but they are by far the most popu-

1



lar. And even with just these two operators, there is a
huge number of possible configurations – many unimple-
mentable, many mediocre, and a small number of very
good ones that provide the right (application-dependent)
balance between longevity and privacy. In this paper, we
address the problem of searching for these very good con-
figurations. To do so, we formally define the concepts that
have been introduced here via examples. We define met-
rics to evaluate configurations, and we present algorithms
that efficiently search for the very good configurations.

Our work is distinguished from most of the existing
literature, since we simultaneously consider both privacy
and longevity. There is a large body of work on sys-
tems that ensure longevity of data. This ranges from work
on fault tolerance and failure statistics to error correction
schemes and RAID [1]. However, in this body of work,
privacy issues are rarely considered. On the other hand,
there is a sizable literature on data privacy and security,
ranging from encryption schemes (e.g., [2]) to secure data
storage methods (e.g., [3]). However, in the privacy lit-
erature, there is little consideration of data longevity and
fault tolerance. There is some work attempting to inte-
grate longevity and privacy [4], which describes how cer-
tain encryption schemes might be used to build survivable,
secure storage systems. Our work, however, takes a more
quantitative approach than [4], by searching for solutions
to specific optimization problems over the space of possi-
ble systems.

In summary, in this paper we make the following con-
tributions:

• We define metrics for evaluating systems that safe-
guard data. The metrics quantify the provided levels
of privacy and longevity, as well as the semantic cor-
rectness and physical realizability of the protection
schemes.

• Using these metrics, we formulate the search for a
good safeguarding system as a constrained optimiza-
tion problem.

• We suggest a two-stage strategy for solving this opti-
mization problem. The first stage finds a family of
systems that are optimum with respect to a subset
of the metrics. The second stage picks out a system
from this family, which performs well under the re-
maining metrics.

• The first-stage problem is itself difficult to solve for
large instances. We therefore propose both exact and
approximate techniques for its solution.

• We present an experimental evaluation that answers
some of the questions about our approach. Are the
privacy and longevity gains achieved by our opti-
mization algorithms significant? (Yes.) Are many
configurations that provide good protection unimple-
mentable? (Yes.) How well does our approximate
scheme do against an exhaustive search? (Very well,
in many cases.)

Figure 2. A configuration with sharing.

2 Configurations

We begin with two operators,Copy and Split, from
which safeguarding systems will be built up. Akth-order
Copy operator produces as its outputk identical copies of
its input. A kth-order Split operator breaks its input into
k output pieces, such that allk pieces are necessary and
sufficient to reconstruct the input.

There are several ways to implement akth-order Split
operator. One way would be to use encryption, where the
input is plaintext and the output is ciphertext along with
k − 1 keys. Another option is to randomly generatek − 1
bit-sequences of length equal to the input, and output these
k − 1 sequences along with the input XOR’ed with all of
these sequences. In both of these examples, allk outputs
are needed to reconstruct the input. We use Split operators
as abstractions of these and other splitting operations.

Systems for safeguarding data can be built by compos-
ing Split and Copy operators in interesting ways. Such
compositions are referred to asconfigurations. An exam-
ple was given in Section 1 (see Figure 1). The data we
are trying to safeguard is at the root,r. The root is en-
crypted, say, and the ciphertext is stored ata and the key at
f . Two copies,b ande, are made of this key. One of these
copies,e, is XOR’ed with a random bit-sequence stored
at c, and the result is stored atd. Only the terminal ver-
ticesa, b, c andd are actually materialized and physically
stored. The non-terminal verticese, f andr are transient
data elements that are by-products of recursively splitting
and copying the original data. In particular, observe that
the rootr is not stored anywhere. Therefore, there is no
single terminal vertex that an attacker can “steal” that will
allow him to reconstruct the original data.

In general, configurations can be rooted directed
acyclic graphs (DAGs). For example, consider Figure 2,
whered ande are copies of the root datar. Here, the ver-
tex b is sharedby bothd ande – it represents a single key
that is used to encrypt bothd ande.

Formally, a configurationΘ is composed of a set of
verticesV . This setV is partitioned intoT , the set of
terminal vertices, andN , the set of non-terminal vertices.
Note that the dependence onΘ of V , T andN has been
notationally suppressed. In what follows, we assume that
the elements ofT are labelleda, b, c, . . . and so on. We
also assume that the root is labelledr. The power set2T

is the set of all subsets ofT .



Require: Θ
1: FΘ ← r

2: while ∃y ∈ support(FΘ) s.t.y ∈ N do
3: let {x1, x2 . . . xk} be the children ofy
4: if y is a Copy vertexthen
5: replacey in FΘ by (x1 + x2 + · · ·+ xn)
6: else ify is a Split vertexthen
7: replacey in FΘ by (x1 · x2 · · · · · xn)
8: end if
9: end while

10: returnFΘ

Figure 3. Pseudocode for constructing the
access formula FΘ.

Corresponding to any configurationΘ is a Boolean ex-
pressionFΘ, referred to as itsaccess formula. FΘ may
include parentheses (i.e., it is a particular factorization)
and is always monotone (i.e., no negation). Thesatisfying
assignmentsof FΘ, denotedS(Θ) ⊆ 2T , tell us which ter-
minals an attacker has to break into in order to reconstruct
the sensitive data at the root,r. Conversely, thefalsify-
ing assignmentsof FΘ, denotedF(Θ) ⊆ 2T , are those
subsets of terminals that, if destroyed, would make our
sensitive data unrecoverable.

The pseudocode in Figure 3 describes how to construct
the access formulaFΘ from the configurationΘ. For ex-
ample, for the configuration in Figure 1,FΘ = a(b + cd).
In this case, an attacker can reconstruct the data atr by
breaking into terminala in addition to eitherb alone or
both c and d. Thus, {a, b} and {a, c, d} are satisfying
assignments ofFΘ. Similarly, {a} and{b, c} are exam-
ples of falsifying assignments. The algorithm in Figure 3
is also “invertible” – givenFΘ, we can reconstructΘ by
starting at the terminals and recursively replacing disjunc-
tions and conjunctions by Copy and Split vertices, respec-
tively. Thus, the correspondence between a configuration
and its access formula is one-to-one. As such, we will of-
ten represent a configurationΘ directly by its access for-
mulaFΘ.

Additional details on our model are given in [5]. In
particular, it is shown that not all possible configurations
are semantically correct, or even physically realizable.
As an example of incorrect semantics, the configuration
FΘ = (a + b)(b + c)d uses a third-order Split operator,
but as discussed in [5], we can reconstruct its data using
just two of its children. The main contribution of [5] was
a taxonomy over the space of configurations, comprised
of four nested classes:implementable, proper, simpleand
read-once. The most general property (implementability)
captures what is required for a configuration to be phys-
ically realizable with respect to a broad class of copying
and splitting primitives. Thus, in this paper, we will al-
ways restrict our attention to those configurations that are
implementable, at the very least.

3 Evaluating Configurations

The purpose behind modeling and classifying config-
urations is to find systems that safeguard our data effec-
tively. However, it is presently unclear how we might eval-
uate the effectiveness of a given configuration. In particu-
lar, how might we quantify the privacy and longevity pro-
vided by a configuration? In Section 3.1, we suggest prob-
abilities of failure as a unifying metric to measure both the
privacy and longevity offered by a configuration. Then, in
Section 3.2, we suggest and motivate other metrics such
as depth and class as quantities of possible interest in our
search for a good configuration.

3.1 Probabilities of Failure

One approach to quantifying privacy and longevity is to
usefailure probabilities, namely the probability of break-
in and the probability of data loss. Theprobability of
break-in, P (Θ), is the probability that an attacker breaks
into enough terminals to be able to reconstruct the root,r.
Similarly, theprobability of data loss, Q(Θ), is the proba-
bility that enough terminals are lost that we cannot recover
the data atr.

We use the term “break-in” to generally refer to an at-
tacker gaining unauthorized access to our data. For exam-
ple, if the terminalb in Figure 1 was stored on a disk in the
CEO’s desk, then a “break-in” might simply mean that the
disk is physically stolen. Alternatively, ifb is a password-
protected network node, then a “break-in” might refer to a
cracked or leaked password. Similarly, “data loss” refers
to any event causing data to no longer be accessible to us.

We illustrate the concept of failure probabilities using
an example. ConsiderFΘ = ab + bc, illustrated in Figure
2. Let us assume that each terminal is broken into with
probability 1

4 , independent of all other terminals. An at-
tacker wishing to reconstructr must do one of three things
– he must either break into terminalsa andb only, or ter-
minalsb andc only, or all three ofa, b andc. Thus, the
probability of data loss will be the sum of probabilities of
these three mutually exclusively outcomes i.e.,P (Θ) =

2
(

1
4

)2 3
4 +

(

1
4

)3
= 7

64 . Similarly, an attacker must de-
stroy any of the following sets of terminals to causer to
be lost: {b}, {a, b}, {b, c}, {a, c} or {a, b, c}. Assum-
ing the attacker destroys each terminal independently with
probability 1

4 , we sum over the probabilities of these five

outcomes to findQ(Θ) = 1
4

(

3
4

)2
+3

(

1
4

)2 3
4 +

(

1
4

)3
= 19

64 .
The notion of failure probabilities is formalized as fol-

lows. Define a pair of independent probability spaces
(ΩP , P) and (ΩQ, Q), which represent an attacker’s at-
tempts to reconstruct and destroy our sensitive data, re-
spectively.ΩP andΩQ are referred to assample spaces.
The elementary outcomesω ∈ ΩP are subsets of termi-
nals that the attacker manages to break into. Elementary
outcomesω ∈ ΩQ are subsets of terminals that are de-
stroyed by the attacker. Thus,ΩP = ΩQ = 2T . P

and Q are discrete probability measures over events in
ΩP andΩQ, respectively, so that

∑

ω∈ΩP
P(ω) = 1 and



∑

ω∈ΩQ
Q(ω) = 1. From the preceding discussion, we

haveP (Θ) ≡ P({ω ∈ S(Θ)}) andQ(Θ) ≡ Q({ω ∈
F(Θ)}).

The physical meaning ofP and Q is as follows. P

andQ describe an experiment that lasts a fixed period of
time, say, ten years. We wish to answer questions such as:
what is the probability that our data will still be available
ten years from now? Or, how likely is it that no break-
ins occur over the next ten years? The answers to these
questions (i.e.,P (Θ) andQ(Θ)) depend on the ten-year
security and reliability characteristics (i.e.,P andQ) of
the terminals across which our data is distributed. In Sec-
tions 4-6, we will solve the following problem: givenT ,
P andQ, find the “best”Θ. That is, given a set of physical
resources, and knowledge of their failure characteristics,
what is the configuration that best utilizes these resources?

Finally, although we have assumed in our examples
that failures of individual terminals are independent, this
assumption is not at all essential. The definitions ofP and
Q are general enough to capture correlations between the
failures of terminals. For example, we can capture a sit-
uation wherein, say, terminala being destroyed implies
thatb will also be destroyed (perhapsa andb are sitting in
the same server room). We can also describe negative cor-
relation – say, terminala being broken-into implies that
with high probabilityb will not be broken-into (maybe the
sysadmin receives an alarm, and disconnectsb from the
network).

3.2 Other Metrics

The failure probabilitiesP (Θ) andQ(Θ) are the most
important metrics that will guide our search for good con-
figurations. However, there are others that may be of im-
portance to the designer. We describe some of these met-
rics here.

3.2.1 Depth

A configuration’sdepth, D(Θ) is defined as the maximum
number of vertices between the root and any of the ter-
minals. The depth is a measure of the processing time
needed to compute the terminal data elements from the
original data. For example, the configuration in Figure 2
hasD(Θ) = 2.

3.2.2 Class

As discussed in Section 2, within the space of all possible
configurations, we can identifyclassesthat have desirable
properties.Implementableandproper configurations are
guaranteed to be physically realizable and irredundant, re-
spectively. Simpleand read-onceconfigurations provide
further structural properties. In [5], algorithms are pre-
sented for checking whether a configuration is a member
of a given class. For example, the configuration in Figure
4 is shown to be unimplementable. Terminalsa andb must
be equal since they are copies ofc, which implies thatd

is being split into two identical components. However,
the latter does not make sense, because it forces to use a
“divide-by-2” split, which is not secure. We will always
require a configuration to be at least implementable, but
sometimes we may wish to impose a stronger restriction.
We denote byC(Θ) the class of a given configuration.

Figure 4. Unimplementable configuration.

3.2.3 Terminals

Thenumber of terminal vertices, M(Θ), is a measure of
the physical storage required to deploy the configuration.
When we search for good configurations, we will always
impose an upper bound onM(Θ). Recall that in a con-
figuration, only the data at the terminal vertices are mate-
rialized. Thus, a bound onM(Θ) can be thought of as a
resource constraint.

3.2.4 Non-Terminals

Thenumber of non-terminal vertices, N(Θ), is a measure
of the computational resources required in computing the
terminal data elements. It is similar in spirit to measur-
ing depth, although not exactly the same. A Split operator
with, say, six children all of whom are Split or Copy op-
erators would have a small depth (i.e.,D(Θ) = 2), but
would still require seven operators total. Measuring depth
alone would not capture this.

3.2.5 Groups

Finally, we may stipulate that certaingroupsmust be al-
lowed to reconstruct the data. We refer to these asallow
groups. For example, we may require terminalsa andb to
be together sufficient to reconstruct the data. Such a state-
ment is equivalent to requiring that{a, b} ∈ S(Θ). We
may also stipulate that certain groups, referred to asdeny
groups, be denied the ability to reconstruct the data. For
example, breaking intoc andd should not be sufficient
to reconstruct the root. Such a statement is equivalent to
specifying thatT \ {c, d} ∈ F(Θ) is a falsifying assign-
ment (the ‘\’ denotes set difference). As an illustration,
one possible configuration that meets these requirements
is shown in Figure 1. We assume that the specification of
allow and deny groups have no redundancies (e.g., both
{a} and{a, b} are listed as allow groups) and no conflicts
(e.g.,{a} is an allow group but{a, b, c} is a deny group).



4 Optimization

We now return to the problem of searching for good
configurations. It does not make sense to simply search for
the “best” configuration. The best possible configuration
for privacy is simply ak-way Split, but it is the worst for
longevity. Conversely, the best configuration for longevity
is a Copy, but it is worst for privacy. Moreover, we can do
arbitrarily well along either of these dimensions by simply
using unbounded numbers of terminals! Therefore, a bet-
ter question to ask would be: subject to some minimum
level of privacy, and an upper bound on the number of
terminals, which is the configuration that provides us the
most longevity? Using the metrics introduced in Section
3, we can write down the following optimization problem:

min
Θ

Q(Θ)

s.t. P (Θ) ≤ P0

{ωs
0, ω

s
1, . . . } ⊆ S(Θ)

{ωf
0 , ω

f
1 , . . . } ⊆ F(Θ)

M(Θ) ≤M0

N(Θ) ≤ N0

D(Θ) ≤ D0

C(Θ) ∈ C0 (1)

Here,P0 is an upper bound onP (Θ) that indicates the
highest probability of break-in we are willing to tolerate.
M0, N0 andD0 are our constraints on the various metrics
introduced in Section 3.2. The sets{ωs

i } and{ωf
i } are

the allow and deny groups, respectively, as described in
Section 3.2.5.C0 is the class that we require our config-
uration to fall into, as discussed in Section 3.2.2. The set
of physical terminalsT and their failure characteristicsP
andQ (which are needed to computeP (Θ) andQ(Θ)) are
known beforehand.

In (1), we are maximizing longevity by minimizing
Q(Θ), the probability of data loss. Note that we could
have, instead, maximized privacy (i.e., by minimizing
P (Θ)) subject to some minimum longevity requirement.
In order to simplify the exposition, we will focus on (1) in
this paper.

In principle, this completes the task of finding an op-
timal configuration. If we could solve (1) exactly, then
we would be done. Of course, the solving (1) exactly
is extremely difficult. To get a rough idea of how diffi-
cult, recall from Section 2 that configurations are in one-
to-one correspondence with factored monotone Boolean
expressions. Thus, we must exhaustively search through
the space of factored monotone Boolean expressions to
find a global optimum. Now, even ignoring factorizations,
the space of monotone DNF Boolean expressions alone is
enormous [6]. For example, forM0 = 8, there are on
the order of1022 expressions to consider! Therefore, we
must resort to approximate methods to find good solutions
to the optimization problem in (1).

A key observation will allow us to devise a strategy for
finding approximate solutions to (1). But first, we need

a pair of definitions. Two configurationsΘ1 andΘ2 are
said to belogically equivalentif FΘ1

can be transformed
to FΘ2

by applying the laws of Boolean algebra. We write
Θ1 ≈ Θ2. Then, we say that a given metric islogically
invariant if any set of logically equivalent configurations
must have the same value for that metric. That is, the
value of a logically invariant metric is preserved across
logical transformations ofFΘ. For example, the depth
D(Θ) of a configuration is not logically invariant. To
see this, consider the logically equivalent configurations
FΘ1

= a+ b+ cd andFΘ2
= a+(c+ b)(b+ d), depicted

in Figure 5.Θ1 ≈ Θ2, butD(Θ1) = 2 andD(Θ2) = 3.

(a) FΘ1
= a + b + cd

(b) FΘ2
= a + (c + b)(b + d)

Figure 5. Two logically equivalent config-
urations, Θ1 ≈ Θ2, with D(Θ1) = 2 and
D(Θ2) = 3.

The key observation is this:P (Θ) andQ(Θ) are log-
ically invariant metrics. It is easy to see why. Suppose
Θ1 ≈ Θ2. P (Θ1) is the probability that enough termi-
nals in Θ1 are stolen for an attacker to reconstruct the
root, r. By definition,P (Θ) = P({ω ∈ S(Θ)}). How-
ever,FΘ1

andFΘ2
are equivalent according to the rules of

Boolean logic, which, by definition of satisfying assign-
ments impliesS(Θ1) = S(Θ2). Therefore, we conclude
thatP (Θ1) = P({ω ∈ S(Θ1)}) = P({ω ∈ S(Θ2)}) =
P (Θ2). An identical argument implies thatQ(Θ1) =
Q({ω ∈ F(Θ1)}) = Q({ω ∈ F(Θ2)}) = Q(Θ2).

Moreover, as mentioned in Section 3.2.5, the allow
groups{ωs

0, ω
s
1, . . . } and deny groups{ωf

0 , ω
f
1 , . . . } are

simply requirements that certainω ∈ 2T be elements
of S(Θ), and certainω ∈ 2T be elements ofF(Θ), re-



spectively. Again, sinceS(Θ) andF(Θ) are preserved
through logical transformations of the access formula, we
conclude that the satisfaction of allow and deny group
constraints is logically invariant. Finally, ifΘ1 ≈ Θ2

andM(Θ1) ≤ M0, thenM(Θ2) ≤ M0 since the logi-
cal transformation fromFΘ1

to FΘ2
would not introduce

any new literals.
To summarize, the objective function and the first four

constraints in (1) are all logically invariant. So, our strat-
egy for finding approximate solutions to (1) will be to
break the problem into two separate stages. In the first
stage, we solve the following problem:

min
Θ

Q(Θ)

s.t. P (Θ) ≤ P0

{ωs
0, ω

s
1, . . . } ⊆ S(Θ)

{ωf
0 , ω

f
1 , . . . } ⊆ F(Θ)

M(Θ) ≤M0 (2)

We denote byΘ∗ the solution to the first-stage problem
(2). In the second stage, we search for a configuration that
is logically equivalent toΘ∗, which satisfies the remainder
of the constraints in (1). The second-stage problem is,
therefore:

find Θ

s.t. Θ ≈ Θ∗

N(Θ) ≤ N0

D(Θ) ≤ D0

C(Θ) ∈ C0 (3)

Observe that the first-stage problem (2) involves an ob-
jective function and constraint set involving only logically
invariant metrics. As such, given a solutionΘ∗ to (2),
any configurationΘ′ such thatΘ′ ≈ Θ∗ will also solve
(2). Therefore, without any loss of generality, we can as-
sume thatFΘ∗ is a formula in disjunctive normal form
(DNF). This assumption reduces the complexity of prob-
lem (1) greatly since, in the first stage, we no longer have
to worry about the different factorizations of a candidate
solution. We only need to consider factorizations in the
second-stage problem, by which point we have already
found aΘ∗. As we will see, our two-stage strategy is a
greedy approach to solving (1), so we are not guaranteed
to find the globally optimum solution.

5 Solving the First-Stage Problem

To summarize, in the first stage we are trying to find
a monotone DNF formulaFΘ that solves (2). However,
we can equivalently search for a monotone truth table that
solves (2), since any DNF formula (monotone or other-
wise) can be recovered from its corresponding truth table.
To recover the DNF formula, we simply form a single dis-
junction whose subclauses are the satisfying assignments
(true rows) in the truth table, and then eliminate redun-
dant subclauses. Of course, going in the other direction,

a b c F

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 6. Truth table for FΘ = b + ac.

we can always recover a truth table from any Boolean ex-
pression. For example, consider the truth table in Figure
6. The resulting disjunction is̄abc̄+ ābc+ab̄c+abc̄+abc.
Simplifying this expression givesF = b + ac.

For the remainder of this paper, we adopt the fol-
lowing notation. The elements of2T are labelledωi,
wherei = 0 . . . 2M0 − 1, and the binary representation
of i indicates the subset ofT that ωi represents. For
example, withM0 = 4, we haveω0110 = {b, c} and
ω1111 = {a, b, c, d}. Thecomplementof ωi is denoted by
ωi ≡ T \ ωi. For example, again withM0 = 4, we have
ω0110 = ω1001 = {a, d} andω1111 = ω0000 = ∅. We
then definepi ≡ P(ωi) andqi ≡ Q(ωi), respectively, as
the probabilities of an attacker successfully breaking-into
and destroying exactly the subset of terminalsωi. Simi-
larly, we writepi ≡ P(ωi) andqi ≡ Q(ωi).

For our purposes, a truth table is a list of2M0 Boolean
values indicating whether each subsetω ∈ 2T is sufficient
to reconstruct the rootr. Formally, atruth tableis defined
as a functionT : 2T → {0, 1} whereT (ωi) = 1 if and
only if ωi ∈ S(Θ). We write Ti ≡ T (ωi) and Ti ≡
T (ωi). Note that an equivalent definition ofT would be:
Ti = 0 if and only if ωi ∈ F(Θ). The intuition behind
T is as follows. Suppose there is an input combinationωi

that causesFΘ to evaluate to true (i.e., ifTi = 1). Then,
an attacker can attempt to break-in to the set of terminals
ωi in order to reconstructr. On the other hand, suppose
the input combinationωi causesFΘ to be false, (i.e., if
Ti = 0). Then, an attacker can instead attempt to destroy
the terminals inωi, causing our sensitive data atr to be
lost. The optimization problem (2), therefore, amounts to
selecting the value ofTi, for everyωi ∈ 2T .

5.1 LP Formulation

We now show how to formulate (2) as a linear program
(LP). An LP formulation allows us to solve the first-stage
problem efficiently, using well-known techniques (e.g.,
the simplex algorithm).

Our first step is to cast (2) as an integer program (IP),
as follows. First, observe thatP (Θ) =

∑

ωi∈S(Θ) pi =
∑

i piTi, sinceTi = 1 for ωi ∈ S(Θ) andTi = 0 other-
wise. Thus, we rewrite the first constraint in (2) as:

∑

i

piTi ≤ P0 (4)



Second, also observe thatQ(Θ) =
∑

ωi∈F(Θ) qi =
∑

i qi(1 − Ti), sinceTi = 0 for ωi ∈ F(Θ) andTi = 1
otherwise. The objective function in (2) can therefore be
rewritten as:

min
{Ti}

∑

i

qi(1− Ti) (5)

The specifications of allow and deny groups are en-
coded as follows. We require that each allow groupωs

i

is a satisfying assignment. Thus,T (ωs
i ) = 1. We require

the each deny groupωf
j is a falsifying assignment. Thus,

T (T \ ω
f
j ) = 0.

Finally, recall thatT represents a monotone Boolean
function. The implication of monotonicity is that, for
every pair of sets(ωi, ωj) such thatωi ⊂ ωj , we have
the constraintTi ≤ Tj . That is, if T is monotone and
ωi ⊂ ωj , the only valid values for the ordered pair(Ti, Tj)
are(0, 0), (0, 1) and(1, 1), but not(1, 0). The physical
meaning of monotonicity is that by breaking into more ter-
minals than he needs, an attacker does not somehow lose
the ability to reconstruct the rootr. Thus, the following
IP results:

min
{Ti}

∑

i

qi(1− Ti)

s.t.
∑

i

piTi ≤ P0

T (ωs
i ) = 1 ∀ωs

i ∈ S(Θ)

T (T \ ω
f
j ) = 0 ∀ωf

j ∈ F(Θ)

Ti ≤ Tj ∀(i, j) s.t.ωi ⊂ ωj

Ti ∈ {0, 1} ∀i (6)

Note that any solutionT ∗ to the problem in (6) is exact.
It will find a global optimum for the first-stage problem.

Recall that when we formulated (1), we assumed that
P andQ were known probability measures. Knowledge of
P andQ implies that the coefficientspi andqi in (6) are
known constants. As such, the objective function and all
constraints in (6) are, in fact, linear in the variables{Ti}.
We can therefore form theLP relaxationof the IP (6) (see
p.194 in [7]), by letting eachTi take on real values on the
unit interval. The following LP results:

min
{Ti}

∑

i

qi(1− Ti)

s.t.
∑

i

piTi ≤ P0

T (ωs
i ) = 1 ∀ωs

i ∈ S(Θ)

T (T \ ω
f
j ) = 0 ∀ωf

j ∈ F(Θ)

Ti ≤ Tj ∀(i, j) s.t.ωi ⊂ ωj

0 ≤ Ti ≤ 1 , Ti ∈ R ∀i (7)

For moderate numbers of terminals, the LP (7) can be
solved very efficiently. There is the issue that a feasible

solutionT ′ to (7) can be non-integral. That is, there may
be someT ′

i that is equal to neither 0 nor 1. The question
is, how do we interpret suchT ′

i? A detailed treatment of
this issue is beyond the scope of this paper, so we give
only the important details here.

It can be shown that, for an optimum solutionT ∗ of
(7), mostT ∗

i values will in fact be either 0 or 1. These
T ∗

i ’s typically account for the bulk of
∑

i qi(1 − Ti) and
∑

i piTi at the optimum. Of the fewT ∗
i ’s that are strictly

between zero and one, some should be rounded up to one
and the rest should be rounded down to zero. The key
point is that it does not matter which specificT ∗

i ’s we
choose to round up and which ones we round down. It
only matters how many we round up and down. For exam-
ple, suppose fiveT ∗

i values are non-integral, and as many
as two can be rounded up without violating the bound on
P (Θ). Then, there are

(

5
2

)

= 10 possible combinations of
T ∗

i ’s that can be rounded up, each of which corresponds to
a different optimal solution of (7). As such, if more than
oneT ∗

i turns out to be non-integral, then there are multiple
optimum truth tables. Note that the set of optimum truth
tables will be very “close” to each other, in that they will
only differ by a small numberT ∗

i ’s, since the vast majority
of T ∗

i values will be 0 or 1.

5.2 Graphical Interpretation

The search for a monotone Boolean formula has a nice
graphical interpretation. Consider theM0-dimensional
hypercube,[0, 1]M0 ⊂ RM0 . We can represent each
ωi ∈ 2T as a vertex of this hypercube. For example, sup-
poseM0 = 3. Thenω111 (i.e., the set{a, b, c}) would
map to the point(1, 1, 1) andω010 would map to(0, 1, 0).
We then associate the real numberspi andqi with each
vertexi of the hypercube.

In such a setting, it can be shown that any monotone
truth tableT can be represented by aseparating hyper-
plane that cuts through the volume of this hypercube.
This implication is a direct result of the monotonicity con-
straints in (7), namelyTi ≤ Tj ∀(i, j) s.t.ωi ⊂ ωj . A
complete proof is given in [8], but Figure 7 conveys the
important intuitions. The normal to the separating hyper-
plane lies in the non-negative orthant,R

M0

+ . On one side
of the hyperplane (the side further away from the origin)
areωi for which Ti = 1. We call this thetrue sideof
the hyperplane. On the other side (the side closer to the
origin) are theωi for whichTi = 0. We call this thefalse
side. Thus, the truth table depicted in Figure 7 hasT11 = 1
andTi = 0 ∀i 6= 11.

Moreover, the points closest to the hyperplane on the
true side are themintermsof T , and the points closest on
the false side are themaxtermsof T . For our purposes,
we define a minterm ofT to be an elementωi ∈ 2T that
is minimally positivei.e.,Ti = 1 andTj = 0 ∀ ωj ⊂ ωi.
We define a maxterm ofT to be an elementωi ∈ 2T that
is maximally negativei.e., Ti = 0 andTj = 1 ∀ ωj ⊃
ωi. We are interested in minterms (maxterms) because the
unique reduced DNF (CNF) representation of a monotone



Figure 7. Example of a monotone truth table
represented as a hyperplane.

truth tableT is simply a disjunction (conjunction) of its
minterms (maxterms). Thus, the minterms and maxterms
are like “support vectors” for our separating hyperplane.

Using this graphical interpretation, the objective func-
tion

∑

i qi(1−Ti) that we are trying to minimize is simply
the sum of theqi values for all points on the false side. The
constraint

∑

i piTi ≤ p0 is just an upper bound on the sum
of thepi values for all points on the true side. The allow
groups are requirements that the{ωs

i } lie on the true side,
and the deny group constraints are requirements that the
{ωf

i } be on the false side. Finally, the upper bound on the
number of terminals,M0, determines the dimensionality
of the hypercube we work in.

In summary, the problem of finding an optimal
monotone truth table has the following graphical interpre-
tation. We are searching for the separating hyperplane that
minimizes the sum ofqi values for the hypercube vertices
on the false side, while limiting the sum of thepi values
on the true side, and obeying the constraints that certain
vertices lie on certain sides of the hyperplane. In our case,
of course, the hypercube vertices correspond to elements
of 2T . The visualization in Figure 7 generalizes directly
to higher dimensions.

5.3 Iterative Solution

The LP in (7) can be solved very efficiently for mod-
erate numbers of terminal vertices, using widely avail-
able LP solvers. However, for larger sets of terminals,
the number of constraints in (7) becomes large. In par-
ticular, forM0 terminals, there areM02

M0−1 monotonic-
ity constraints in2M0 variables, which, beyond roughly
M0 = 20, is too many constraints for even the most ad-
vanced LP solvers (K2K−1 is the number of edges in a
K-dimensional hypercube). As such, solving the LP be-
comes very difficult, even with the more advanced LP
solvers.

In large problem instances, therefore, we must settle for
an approximate solution to the first-stage problem. The
graphical interpretation described in Section 5.2 leads us

to a simple iterative algorithm for finding approximate so-
lutions. The feature of the monotone truth tables that we
rely on is that maxterms are the closest points to the hy-
perplane on the false side, and minterms are the closest on
the true side. Formally, supposeT is a monotone truth ta-
ble and letωi be one of the maxterms ofT . By definition,
Ti = 0. LetT ′ be another truth table identical toT , except
thatTi = 1. Then,T ′ is also a monotone truth table, and
ωi is now a minterm ofT ′.

Suppose for simplicity that there were no allow or deny
groups specified. The idea behind the iterative algorithm
is that, starting with the all-zeros truth table, we make a se-
quence of small perturbations to the current truth table to
arrive at a solution of (2). Each perturbation is simply se-
lecting one of the maxterms of the current truth table and
converting it to a minterm i.e., choosing one of the points
closest to the hyperplane on the false side, and shifting the
hyperplane slightly so that the point ends up on the true
side. After each perturbation,

∑

i piTi is slightly higher
and

∑

i qi(1−Ti) is slightly lower, and most importantly,
we still have a monotone truth table. We then continue
perturbing until we can no longer do so without violating
the constraint

∑

i piTi ≤ P0.
A graphical intuition for the iterative procedure can be

developed through an example inR2, as shown in Figure
8. The sequence of maxterms chosen isω11, ω10 andω01.
The hyperplane (i.e., truth table) that results after step 3
represents the formulaF = a + b.

Figure 8. Example of iterative algorithm for
finding the optimal monotone truth table.

Computing the maxterms of a monotone truth table
T is just themonotone CNF-DNF dualizationproblem,
which has been well studied (e.g., [9]). The only other
issue to resolve, then, is how we select between the max-
terms at each step. We must base our selection on a heuris-
tic decision rule. For example, we might choose the max-
term with the largestqi value (which corresponds to the
largest gain in longevity), or instead the smallestpi value
(resp., smallest loss in privacy). We found, through our
experiments, that the most effective heuristic was actually



Require: P0, M0, {ωs
i }, {ω

f
i }, {pi} and{qi}

1: T ← all-zeroes truth table
2: for i = 0 to 2M0−1 do
3: if ∃ω ∈ {ωs

0, ω
s
1, . . . } s.t.ωi ⊆ ω then

4: Ti ← 1
5: end if
6: end for
7: P (Θ)←

∑

i piTi

8: while P (Θ) < P0 do
9: L← maxterms(T ) \ {ωf

0 , ω
f
1 , . . . }

10: for all ωi ∈ L do
11: zi ←

pi

qi

12: end for
13: L′ ← L sorted byzi value in descending order
14: k← first element ofL′

15: OK ← false

16: while OK = false do
17: if P (Θ) + pk > P0, or settingTk ← 1 would

causeT to be unimplementablethen
18: if there are more elements inL′ then
19: k ← next element ofL′

20: else
21: returnT

22: end if
23: else
24: OK ← true

25: end if
26: end while
27: Tk ← 1
28: P (Θ)← P (Θ) + pk

29: end while
30: returnT

Figure 9. Pseudocode for iterative algorithm
for solving the first-stage problem (2).

the ratio of these two values. That is, we choose the max-
term of the current truth table that maximizesqi

pi
. We just

greedily select the highest gain in longevity at each step
for the lowest amount of proportional privacy loss.

Now, if we had group constraints, we would only need
to modify the iterative algorithm slightly. Rather than
starting withTi = 0 ∀i, we begin by settingT (ω) = 1
for each allow groupω ∈ {ωs

0, ω
s
1 . . . }. To ensure that

we start with a monotoneT , we also setT (ω) = 1 for
any ω ⊃ ωs

i . Then, as the iterations progress, if we
are ever presented with the option of adding a maxterm
ω ∈ {ωf

0 , ω
f
1 . . . }, we do not do so (since we require

T (ωf
i ) = 0). We instead choose the next best maxterm

instead (according to our heuristic).

Pseudocode for our iterative algorithm is given in Fig-
ure 9. The iterative algorithm is suboptimal because our
choice of maxterm at each perturbation step is greedy.
However, as we will show in our experiments, in cer-
tain circumstances our iterative algorithm actually finds
the global optimum.

The iterative technique allows us to find a solution in
O(2M0) iterations (one iteration per truth table entry),
which is far better than solving an LP, which in our ex-
periments was approximately quadratic in the number of
constraints,M02

M0−1 [7]. As we discuss in Section 6,
another benefit of the iterative technique is that we can ef-
ficiently handle the case where the second-stage problem
is infeasible (i.e., there is noΘ ≈ Θ∗ that meets all con-
straints in (3)). With the LP approach, on the other hand,
we may need to solve a whole new LP.

6 Solving the Second-Stage Problem

To begin solving the second-stage problem in (3), we
form a DNF expressionF ∗

Θ as a disjunction of the true
rows of the first-stage solutionT ∗. The second-stage
problem, then, is to find a configuration logically equiv-
alent toΘ∗ that satisfies the remainder of the constraints
in (3). This corresponds to finding a good factorization of
F ∗

Θ.
A brute-force approach to finding a good factorization

would be to exhaustively form all possible factorizations
of F ∗

Θ, and check if each factorization satisfies all of the
constraints in (3). However, it is unclear how to exhaus-
tively form all possible factorizations ofF ∗

Θ. Fortunately,
there exist techniques in the digital circuit design literature
(see [10] for a summary) that allow us to systematically
explore a portion of the space of possible factorizations
of F ∗

Θ (though not the entire space). Thus, our approach
will be to select a technique, and exhaustively check each
element of the space explored by that technique.

Algebraic factoringconsiders a Boolean expressionF

to be a polynomial, and applies polynomial factoriza-
tion laws toF . For example, the distributive law (i.e.,
ab + ac = a(b + c)) is within the scope of algebraic tech-
niques. Very fast algorithms exist for algebraic factoring.
Boolean factoringis a strictly more powerful technique
that adds in the rules of Boolean logic e.g.,aa = a and
ā + a = 1. Boolean factoring sometimes finds factor-
izations that algebraic factoring does not, since it uses a
larger set of factoring rules. However, Boolean factor-
ing is computationally very expensive.Graph partitioning
[11] is a graph-theoretic technique that is not as expensive
as Boolean factoring, but yields a larger set of factoriza-
tions than algebraic factoring.

For any given Boolean expressionF , its dual F ′ is
formed by replacing all conjunctions with disjunctions,
and vice versa (note that(F ′)′ = F ). In many cases, fac-
toringF ′ and dualizing the result yields factorizations that
we would not have found by factoringF directly. More-
over, in our problem, we have the advantage thatF ∗

Θ is
monotone. As such, some of the extra factoring rules
allowed by Boolean factoring simply do not apply e.g.,
a + ā = 1. As such, the set of factorizations produced
by algebraic factoring, Boolean factoring and graph par-
titioning will be very similar. Therefore, our strategy for
solving (3) will be to apply algebraic factoring to bothF ∗

Θ

and its dual, and check all resulting factorizations for fea-



sibility.
If we conclude that there is no factorization ofF ∗

Θ that
is feasible, we must “back-off” from our first-stage so-
lution, and find a newF ∗

Θ. There are multiple ways to
find a newF ∗

Θ. Each method amounts to finding the next-
bestT ∗ from the first-stage solution. For example, if the
LP solver we are using outputs a sequence of truth tables
which were considered as the solver converged uponT ∗,
we could use the next-to-last one in the sequence. Simi-
larly, if we used the iterative technique, we can undo our
final step and use the maxterm with the second bestqi

pi

ratio instead. Alternatively, we could modify one of the
first-stage constraints, and re-solve the LP, to get a whole
newT ∗. Whichever method we use to “back-off”, we use
a newT ∗ and retry the second-stage problem.

In our experiments, we found that whenever the first-
stage solutionΘ∗ was unimplementable, there would not
be any logically equivalent configurationsΘ′ ≈ Θ such
thatΘ′ was implementable (i.e., the second-stage was al-
ways infeasible). As such, we modified the iterative tech-
nique if Figure 9 (i.e., we added an extra condition to the
if-clause in line 17) such that if adding a maxterm ever
caused the configuration to become unimplementable, we
would simply choose the next best maxterm instead. In the
LP technique, we would simply lower the value ofP0, and
re-solve the LP. There do exist DNF formulasFΘ where
Θ is unimplementable, but an implementable factorization
exists. For example,(a + c)(a + d)(a + e)(b + c)(b +
d)(b + e) is unimplementable, but is logically equivalent
to (a+ b)(c+d+e), which is implementable (in fact, it is
read-once). However, in our experiments, such configura-
tions never arose as solutions to our optimization problem.

7 Experimental Results

A few questions arise naturally from our discussion
thus far, which are best answered through experiments.
Firstly, how does the performance of the various first-stage
solution techniques compare? Shown in Figures 10 and
11 is the probability of data loss,Q(Θ), for the solution
Θ to (1) that is output by the LP and the iterative tech-
niques, for various values of the bound on break-in proba-
bility, P0. TheQ(Θ) values for the global optimum, found
through a brute-force search, are also shown. Four termi-
nals were used, (i.e.,M0 = 4) and failures (i.e., break-ins
and data loss) at each terminal were assumed to occur in-
dependently of all other terminals.

In Figure 10, we assume that each terminal is broken-
into by an attacker with probabilityP t = 20%, and the
data at each terminal is destroyed with probabilityQt =
20%. The Q(Θ) achieved by the LP and iterative tech-
niques are both equal to the global optimum, in this case
(the three curves overlap). This result was found to apply
even when the values ofP t andQt were varied. In Figure
11, the independent failures assumption was retained, but
the terminals’ failure characteristics were heterogeneous.
We used a “strong” terminal (P t

a = 10% andQt
a = 10%),

a “weak” terminal (P t
b = 20% andQt

b = 20%), one that

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

−3

10
−2

10
−1

10
0

P
0
 − bound on probability of break−in

Q
(Θ

) 
−

 p
ro

ba
bi

lit
y 

of
 d

at
a 

lo
ss

LP
Iterative
Global optimum

Figure 10. Comparison of first-stage solu-
tion techniques, using four identical termi-
nals whose failures are independent.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

−3

10
−2

10
−1

10
0

P
0
 − bound on probability of break−in

Q
(Θ

) 
−

 p
ro

ba
bi

lit
y 

of
 d

at
a 

lo
ss

LP
Iterative
Global optimum

Figure 11. Comparison of first-stage solu-
tion techniques, using four heterogeneous
terminals whose failures are independent.

was strong against break-ins but weak against data loss
(P t

c = 10% andQt
c = 20%) and one that was the oppo-

site (P t
d = 20% andQt

d = 10%). We see in this case that
the outputs of the LP and iterative techniques are identi-
cal, but are both slightly worse than the global optimum
for someP0 values. Similar results were observed with
various settings of terminal failure probabilities.

The performance of the LP and iterative techniques dif-
fer when correlations are introduced between the failures
of terminals. Figure 12 shows the results usingM0 = 6
terminals,P t = 20% andQt = 20% for all terminals, and
the following two assumptions of correlated failure: when
a is broken-into, so isb, and data loss occurs simultane-
ously atc andd. In this case, theQ(Θ) achieved by the LP
is better than the iterative for mostP0 values. Results for
the global optimum were not computed, since even with
M0 = 6, a brute-force search was intractable.

There is a caveat to the experimental results thus far.
The configurations output by our first-stage solution tech-
niques were often not implementable. So, we ask, what is



0 0.05 0.1 0.15 0.2
10

−4

10
−3

10
−2

10
−1

P
0
 − bound on probability of break−in

Q
(Θ

) 
−

 p
ro

ba
bi

lit
y 

of
 d

at
a 

lo
ss

LP
Iterative

Figure 12. Comparison of first-stage solu-
tion techniques, using six identical termi-
nals whose failures are correlated.

0 0.05 0.1 0.15 0.2
10

−2

10
−1

10
0

P
0
 − bound on probability of break−in

Q
(Θ

) 
−

 p
ro

ba
bi

lit
y 

of
 d

at
a 

lo
ss

With back−off
Without back−off

Figure 13. Comparison of P (Θ) achieved
with four terminals, when implementability
is considered.

the impact of requiringΘ to be implementable? Figure 13
compares theQ(Θ) values achieved by the iterative tech-
nique when we are required to “back off” from unimple-
mentable solutions as described in Section 6, to the values
achieved when we do not “back off”. Here we assumed
M0 = 4 andP t = Qt = 20% – recall from Figure 10
that in this case the iterative technique found the global
optimum. We see that for someP0 values, we pay a large
Q(Θ) penalty for requiring implementability. However,
at the points where the two curves meet, the solution out-
put by the iterative technique is actually implementable.
From these results we see that implementability really is
a significant issue – if we ignore it, we are likely to end
up with an unimplementable configuration, whereas if we
consider it, we often get reduced levels of protection.

In every experiment, without exception, whenever
the first-stage solution was unimplementable, we found
no logically equivalent configurations that were imple-
mentable. This observation was the justification, in the it-
erative technique (see pseudocode in Figure 9), for reject-

FΘ D(Θ) N(Θ) C(Θ)
abc + bd + cd 2 4 P
(b + cd)(d + ac) 3 5 P
(c + bd)(d + ab) 3 5 P
b(ac + d) + cd 4 5 P
c(ab + d) + bd 4 5 P
abc + d(b + c) 3 4 P
(abc + d)(b + c) 3 4 I
(a + d)(b + c)(b + d)(c + d) 2 5 I
b(a + d)(c + d) + cd 3 5 U
c(a + d)(b + d) + bd 3 5 U
(b + cd)(a + d)(c + d) 3 5 U
(d + ac)(b + c)(b + d) 3 5 U
(c + bd)(d + a)(d + b) 3 5 U
(c + b)(c + d)(d + ab) 3 5 U

Figure 14. Results of algebraically factoring
FΘ = abc + bd + cd and its dual. In the fourth
column, P = proper, I = implementable and
U = unimplementable.

ing first-stage solutions that were unimplementable, with-
out ever proceeding to the second-stage. Note that reject-
ing solutions in the first-stage saves us a lot of computa-
tional effort, both in exploring the space of factorizations
in the second-stage, and checking the implementability of
each factorization (which is a costly procedure). We do
not incur the second-stage expense, only to be forced to
return to the first-stage.

A third question is concerns the space of factorizations
explored via algebraic factoring ofFΘ and its dualF ′

Θ.
Are there enough factorizations? We consider as an ex-
ample the configurationFΘ = abc + bd + cd, which is
the first-stage solution whenM0 = 4, P t = Qt = 20%
independently andP0 = 10% (same parameters as Figure
10). FΘ is implementable. Figure 14 lists configurations
logically equivalent toΘ that were found using algebraic
factoring, along with their depthD(Θ), number of non-
terminalsN(Θ) and classC(Θ). We see that even for a
relatively small number of terminals, there is a fairly rich
set of alternative factorizations for us to choose from.

Fourthly, the scalability of each first-stage technique is
of interest. As we mentioned, a brute-force search for a
global optimum is intractable beyond roughlyM0 = 5
terminals (withM0 = 6, there are more than 8 million
monotone truth tables to check). In our experiments, us-
ing a PC with a 1.4 GHz processor and 1 GB of memory,
we were able to run the LP technique for up toM0 = 12
terminals, and the iterative technique for up toM0 = 20
terminals, using “un-optimized” code in both cases. We
conclude that our techniques can be used for the approx-
imate solution of (1), with a reasonably large set of ter-
minals. Observe that we did not specify allow or deny
groups in our experiments – if we did, the problem size
could be reduced greatly since manyTi values would be
determined by these group constraints. Moreover, in the
special case of identical terminals that fail independently,



there are optimizations that can be made which would al-
low us to compute solution for much larger problem in-
stances.

Finally, we ask whether our techniques are actually
helping us. That is, how useful are the techniques that
we have developed compared to a “naive” strategy where
terminals are conncected in a simple structure? Given
M0 terminals, a reasonable strategy might be to make
M0

2 copies of the root datar (assumingM0 is even),
and split each copy into two pieces. It is easy to show
that, with P t = Qt = 20% and independent terminal

failures, this strategy achievesQ(Θ) = (0.36)
M0

2 and

P (Θ) = 1 − (0.96)
M0

2 . Figure 15 compares these val-
ues to theQ(Θ) andP (Θ) at the optimum found by the
iterative technique, forP0 fixed at 20% andM0 ranging
between 4 and 12. We see that the probability of data loss,
Q(Θ), achieved by the iterative technique is consistently
an order of magnitude smaller than the naive strategy, and
that this gap is gradually increasing with more terminals.
Moreover, beyond roughly 11 terminals, the naive tech-
nique violates our constraint thatP (Θ) < P0 = 20%,
whereas the iterative technique consistently makes effi-
cient use of our specified tolerance for break-in probabil-
ity, P (Θ). These results suggest that our techniques are,
indeed, offering significant advantages over a seemingly
reasonable (but naive) strategy.

4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

M
0
 − Number of terminals

A
ch

ie
ve

d 
fa

ilu
re

 p
ro

ba
bi

lit
ie

s

Q(Θ) − Naive
P(Θ) − Naive
Q(Θ) − Iterative
P(Θ) − Iterative

Figure 15. Comparison of P (Θ) achieved by
the iterative algorithm and a naive strategy,
using four terminals that fail independently.

8 Discussion

8.1 Dual Problem

All of the reasoning developed in this paper would ap-
ply directly to the “dual” problem of minimizingP (Θ)
subject to an upper bound onQ(Θ), with only minor mod-
ifications. For example, in the LP (7), we interchange
the inequality constraint and the objective function. In
the iterative technique, we start instead with the all-ones
truth table, and sequentially shift the hyperplane so that

minterms are converted to maxterms. There are other
minor changes, but all of the physical intuitions follow
through completely.

8.2 A Generalization

Thus far, we have taken(ΩP , P) and (ΩQ, Q) to be
independent probability spaces – terminals being broken-
into do not statistically affect data being lost. However, it
is straightforward to generalize our model and techniques
to the correlated case, by considering a single new prob-
ability space(ΩS , S), whereΩS = ΩP × ΩQ is a cross-
product sample space, andS is a new failure distribution
that accounts for arbitrary correlations between terminal
data loss and break-ins. With this model, we could model
a very malicious attacker, indeed e.g., one who destroys
every terminal that he breaks-into. The resulting changes
to our solution techniques are totally straightforward, al-
though we do not discuss them here.

8.3 Other Related Work

The taxonomy of configurations (see Section 3.2.2) and
related membership algorithms are developed in [5]. To
our knowledge, the only other work that simultaneously
addresses data privacy and longevity issues is [4]. They
make use of threshold security schemes [12, 13], which
split data intok shares – anyq < k shares can reconstruct
the data, and fewer thanq leak no information. Our Split
operator usesq = 1, and our Copy usesq = k. However,
configurations are compositions of simple primitives and
allow asymmetry (e.g., Figure 1), whereas a threshold op-
erator is symmetric and behaves as a single “black box”.

Other relevant work [14, 15, 16] considers privacy is-
sues when data is released for processing. They assume
that data stored within the database is safe from both
break-ins and data loss. Similarly, there is much work on
data longevity (e.g., [17, 18]) which focuses on replication
as a means of ensuring longevity.

9 Conclusions

Using our model of configurations, we defined met-
rics over the space of systems that safeguard data, and
presented an optimization problem whose solution is an
optimal configuration under specified tolerances and con-
straints. We have also presented a tractable solution
methodology for this problem. Experimental results sug-
gest that our techniques can yield significantly better so-
lutions than a naive strategy. Our results also highlight
the importance of properly dealing with unimplementable
configurations.
Acknowledgement: We gratefully acknowledge Sid-
dharth Joshi (sidj@stanford.edu) for his input during the
development of our LP-based solution technique.



References

[1] M. L. Shooman,Reliability of Computer Systems
and Networks: Fault Tolerance, Analysis, Design.
New York, NY, USA: John Wiley and Sons, 2002.

[2] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot,
Handbook of Applied Cryptography. Boca Raton,
FL, USA: CRC Press, 2001.

[3] E. Goh, H. Shacham, N. Modadugu, and D. Boneh,
“Sirius: Securing remote untrusted storage,” 2003.

[4] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kilic-
cote, and P. Khosla, “Survivable information storage
systems,”IEEE Computer, vol. 33, no. 8, pp. 61–68,
Aug. 2000.

[5] B. Mungamuru, H. Garcia-Molina, and C. Ol-
ston, “Security configuration management,”
Stanford InfoLab Technical Report, 2005,
http://dbpubs.stanford.edu/pub/2005-41.

[6] E. W. Weisstein, “Dedekind’s problem,”
MathWorld–A Wolfram Web Resource, 1999.

[7] S. Boyd and L. Vandenberghe,Convex Optimization.
New York, USA: Cambridge University Press, 2004.

[8] B. Mungamuru, H. Garcia-Molina, and S. Mi-
tra, “How to safeguard your sensitive data,”
Stanford InfoLab Technical Report, 2006,
http://dbpubs.stanford.edu/pub/2006-9.

[9] T. Eiter, G. Gottlob, and K. Makino, “New results
on monotone dualization and generating hypergraph
transversals,” in34th Symposium on Theory of Com-
puting, 2002.

[10] G. deMicheli,Synthesis and Optimization of Digital
Circuits. New York, USA: McGraw-Hill, 1994.

[11] A. Mintz and M. C. Golumbic, “Factoring boolean
functions using graph partitioning,”Discrete Appl.
Math., vol. 149, no. 1-3, pp. 131–153, 2005.

[12] G. R. Blakley and C. Meadows, “Security of ramp
schemes,” inProceedings of the CRYPTO ’84 Con-
ference on Advances in Cryptology, 1984.

[13] A. Shamir, “How to share a secret,”Communications
of the ACM, vol. 22, no. 11, pp. 612–613, Nov. 1979.

[14] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hip-
pocratic databases,” inProc. of the 28th Int’l Con-
ference on Very Large Databases, 2002.

[15] V. S. Verykios, E. Bertino, I. N. Fovino, L. P.
Provenza, Y. Saygin, and Y. Theodoridis., “State-of-
the-art in privacy preserving data mining,”SIGMOD
Record, vol. 33, no. 1, pp. 50–57, 2004.

[16] L. Sweeney, “k-anonymity: a model for protect-
ing privacy,” International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, vol. 10,
no. 5, pp. 557–570, 2002.

[17] B. Cooper and H. Garcia-Molina, “Peer-to-peer data
trading to preserve information,”ACM Transactions
on Information Systems, vol. 20, no. 2, pp. 133–170,
Apr. 2002.

[18] V. Reich and D. S. H. Rosenthal, “LOCKSS: Lots of
copies keeps stuff safe,” inProceedings of the 2000
Preservation Conference, Dec. 2000.


