Chapter 1

TRIO: A SYSTEM FOR DATA,
UNCERTAINTY, AND LINEAGE

Jennifer Widom

Dept. of Computer Science
Stanford University

widom@cs.stanford.edu

Abstract

This chapter covers therio database management system. Trio is a robust
prototype that supportsncertain dataanddata lineage along with the standard
features of a relational DBMS. Trio's neWLDB data model is an extension
to the relational model capturing various types of uncetyaalong with data
lineage, and itriQL query language extends SQL with a new semantics for
uncertain data and new constructs for querying uncertaintylineage. Trio's
data model and query language are implemented as a transkatsed layer on
top of a conventional relational DBMS, with some stored pohaes for func-
tionality and increased efficiency. Trio provides both arl ARd a full-featured
graphical user interface.

Acknowledgments. Contributors to the Trio project over the years include
(alphabetically) Parag Agrawal, Omar Benjelloun, Ashola@dira, Julien Chau-
mond, Anish Das Sarma, Alon Halevy, Chris Hayworth, Anderkasjzer,
Raghotham Murthy, Michi Mutsuzaki, Tomoe Sugihara, Maftheobald, and
Jeffrey Ullman. Funding has been provided by the Nation&r&e Foundation
and the Boeing and Hewlett-Packard Corporations.

Introduction

Trio is a new kind of database management system (DBMS): one ichwhi
data uncertaintyof the data, and datmeageare all first-class citizens. Com-
bining data, uncertainty, and lineage yields a data managepiatform that
is useful for data integration, data cleaning, informatéxtraction systems,

2

scientific and sensor data management, approximate andheyigal query
processing, and other modern applications.

The databases managed by Trio are cdlle®Bs for Uncertainty-Lineage
Databases ULDBs extend the standard relational model. Queries are ex
pressed usingriQL (pronounced “treacle”), a strict extension to SQL. We
have built a robust prototype system that supports a sufmténaction of the
TriQL language over arbitrary ULDBs. The remainder of thigréduction
briefly motivates the ULDB data model, the TriQL languaged &éme proto-
type system. Details are then elaborated in the rest of thpteh

Examples in this chapter are based on a highly simplifiechiersolver”
application, starting with twbase tables

= Saw(Wi t ness, col or, car) contains (possibly uncertain) crime ve-
hicle sightings.

m Drives(driver, col or, car) contains (possibly uncertain) infor-
mation about cars driven.

We will derive additional tables by posing queries over ¢éhebles.

The ULDB Data Model. Uncertainty is captured by tuples that may
include severahlternativepossible values for some (or all) of their attributes,
with optionalconfidencevalues associated with each alternative. For example,
if a witness saw a vehicle that was a blue Honda with confidénBea red
Toyota with confidence 0.3, or a blue Mazda with confidence & sight-

ing yields one tuple in tabl&aw with three alternative values for attributes
col or, car. Furthermore, the presence of tuples may be uncertainn agai
with optionally specified confidence. For example, anothiéness may have
0.6 confidence that she saw a crime vehicle, but if she sawt arasidefinitely

a red Mazda. Based on alternative values and confidencds|&d2B repre-
sents multiplepossible-instancesometimes callegdossible-worlds where a
possible-instance is a regular relational database.

Lineage, sometimes callggtovenance associates with a data item infor-
mation about its derivation. Broadly, lineage may ib&rnal, referring to
data within the ULDB, orexternal referring to data outside the ULDB, or to
other data-producing entities such as programs or devigga. simple exam-
ple of internal lineage, we may generate a tfhlspect s by joining tables
SawandDr i ves on attributesol or, car . Lineage associated with a value
in Suspect s identifies theSawandDr i ves values from which it was de-
rived. A useful feature of internal lineage is that the cosrfice of a value in
Suspect s can be computed from the confidence of the data in its lineage
(Section 4). If we generate further tablebi~ghSuspect s, say—by issu-
ing queries involvingSuspect s (perhaps together with other data), we get
transitive lineage information: data i ghSuspect s is derived from data

Trio: A System for Data, Uncertainty, and Lineage 3

in Suspect s, which in turn is derived from data iBawandDr i ves. Trio
supports arbitrarily complex layers of internal lineage.

As an example of external lineage, tallei ves may be populated from
various car registration databases, and lineage can beasednect the data
to its original source. Although Trio supports some pretiany features for
external lineage, this chapter describes internal linesdye

The TriQL Query Language. Section 1.5 specifies a precise generic
semantics for any relational query over a ULDB, and Sectigm®ides an
operational description of Trio's SQL-based query langutgat conforms to
the generic semantics. Intuitively, the result of a relaiajuery on a ULDB
U is a resultR whose possible-instances correspond to applgntp each
possible-instance dfi’. Internal lineage connects the data in redglto the
data from which it was derived, as in tl®ispect s join query discussed
above. Confidence values in query results are, by defadihetkin a standard
probabilistic fashion.

In addition to adapting SQL to Trio’s possible-instancemanetics in a
straightforward and natural manner, TriQL includes a nuntbe@ew features
specific to uncertainty and lineage:

= Constructs for querying lineage, e.g., “find all withessastdbuting to
Ji nmry being a high suspect.”

= Constructs for querying uncertainty, e.g., “find all highh@idence sight-
ings,” or “find all sightings with at least three differentgsible cars.”

m Constructs for querying lineage and uncertainty togetbay., “find all
suspects whose lineage contains low-confidence sightingsvers.”

m Special types of aggregation suitable for uncertain datyee.g., “find
the expected number of distinct suspects.”

» Query-defined result confidences, e.g., combine confideabesy of
joining tuples usingnaxinstead of multiplication.

= Extensions to SQL's data modification commands, e.g., torexsid al-
ternative values to an existing tuple, or to modify confidenalues.

m Constructs for restructuring a ULDB relation, e.g, “flattenreorganize
alternative values.

The Trio Prototype. The Trio prototype system is primarily layered on
top of a conventional relational DBMS. From the user and iappbn stand-
point, the Trio system appears to be a “native” implemeatatf the ULDB
model, TriQL query language, and other features. Howewdés, dhcodes the

g I:\ @ |., http:/fcrab.stanford, edu: 8080 relations ;] © o |E
Trio
& System for Data, Uncertainty, and Lineage ird

[ease table () Derived table
Certain [Green| Uncertain [Orange| Uncertain with confidences

Click on a table to see its contents.

ACCOMPLICES HIGH_SUSPECT
name1 suspect
name2 crime
SUSPECT_D SUSPECT_S
suspect suspect
crime crime
PERSON SAWPERSON
DRIVES SAWCAR CRIME WITNESS
name witness
person witness type name
d hair hair
car car sector sector
clothes clothes

Figure 1.1. TrioExplorer Screenshot.

uncertainty and lineage in ULDB databases in conventioglattional tables,
and it uses a translation-based approach for most data e@esag and query
processing. A small number of stored procedures are usespéaific func-

tionality and increased efficiency.

The Trio system offers three interfaces: a typical DBMS3esAPI for appli-
cations, a command-line interface callBdbPlus and a a full-featured graph-
ical user interface calledrioExplorer. A small portion of the TrioExplorer in-
terface is depicted in Figure 1.1. (The screenshot shaghema-level lineage
graph—discussed in Section 5—for a somewhat more elaborate oiver
application than the running example in this chapter.) The prototype is
described in more detail in Section 6.

1. ULDBs: Uncertainty-Lineage Databases

The ULDB model is presented primarily through examples. Aearformal
treatment appears in [2]. ULDBs extend the standard SQLt{setil relational
model with:

1. alternative valuesrepresenting uncertainty about the contents of a tuple

2. maybe(‘?’) annotations, representing uncertainty about thegmee of
atuple

Trio: A System for Data, Uncertainty, and Lineage)

3. numericakonfidencevalues optionally attached to alternatives

4. lineage connecting tuple-alternatives to other tuple-altexmeati from
which they were derived.

Each of these four constructs is specified next, followed bpexification of
the semantics of relational queries on ULDBs.

1.1 Alternatives

ULDB relations have a set afertain attributes and a set afncertain at-
tributes, designated as part of the schema. Each tuple inGzBUElation has
one value for each certain attribute, and a set of possithlesdor the uncer-
tain attributes. In tabl&aw, letwi t ness be a certain attribute whileol or
andcar are uncertain. If withess Amy saw either a blue Honda, a rg@tip
or a blue Mazda, then in tabBawwe have:

| witness | (color, car) |
| Any [(blue, Honda) || (red, Toyota) [[(bl ue, Mazda)]

This tuple logically yields three possible-instances &i¢ Saw, one for each
set of alternative values for the uncertain attributes. dnegal, the possible-
instances of a ULDB relatio®® correspond to all combinations of alternative
values for the tuples irR. For example, if a second tuple Baw had four
alternatives for(col or, car), then there would be 12 possible-instances
altogether.

Designating certain versus uncertain attributes in a ULEIBtion is impor-
tant for data modeling and efficient implementation. Howgf@ presenta-
tion and formal specifications, sometimes it is useful taiass all attributes
are uncertain (without loss of expressive power). For examp terms of
possible-instances, tfgawrelation above is equivalent to:

| (witness, color, car) |
| (Any, bl ue, Honda) || (Any, red, Toyota) [(Any, bl ue, Mazda) |

When treating all attributes as uncertain, we refer to therrdtive values for
each tuple asuple-alternativesor alternativesfor short. In the remainder of
the chapter we often use tuple-alternatives when the dt&iimbetween certain
and uncertain attributes is unimportant.

1.2 “?” (Maybe) Annotations

Suppose a second witness, Betty, thinks she saw a car butssimeo How-
ever, if she saw a car, it was definitely a red Mazda. In ULDBgeutainty
about the existence of a tuple is denoted by a ‘?’ annotatiothe tuple.
Betty's observation is thus added to taBi@w as:

| witness | (color, car) |
Any (bl ue, Honda) || (red, Toyota) || (bl ue, Mazda)
Betty (red, Mazda) ?

The '?’ on the second tuple indicates that this entire tupds or may not be
present (so we call it maybe-tuple Now the possible-instances of a ULDB
relation include not only all combinations of alternativalues, but also all
combinations of inclusion/exclusion for the maybe-tuplElis Sawtable has
six possible-instances: three choices for Amftsol or, car) times two
choices for whether or not Betty saw anything. For examptes possible-
instance ofSaw is the two tuples(Ay, bl ue, Honda) ,(Betty, r ed,
Mazda) , while another instance is juéiany, bl ue, Mazda) .

1.3 Confidences

Numericalconfidencevalues may be attached to the alternative values in a
tuple. Suppose Amy's confidence in seeing the Honda, Toyotdazda is
0.5, 0.3, and 0.2 respectively, and Betty’s confidence imgegvehicle is 0.6.
Then we have:

| witness | (color, car) |
Any |(bl ue, Honda): 0.5 ||(red, Toyota): 0.3 ||(bl ue, Mazda): 0. 2
Betty (red, Mazda): 0.6 ?

Reference [2] formalizes an interpretation of these confidevalues in terms
of probabilities. (Other interpretations may be imposad,the probabilistic
one is the default for Trio.) Thus, K is the sum of confidences for the alter-
native values in a tuple, then we must have< 1, and ifX < 1 then the tuple
must have a ‘?’. Implicitly, “?’ is given confidencg — ¥) and denotes the
probability that the tuple is not present.

Now each possible-instance of a ULDB relation itself hasabapbility, de-
fined as the product of the confidences of the tuple-alteegménd ‘?”"s com-
prising the instance. It can be shown (see [2]) that for an{pBlelation:

1. The probabilities of all possible-instances sum to 1.

2. The confidence of a tuple-alternative (respectively péguals the sum
of probabilities of the possible-instances containing Hiternative (re-
spectively not containing any alternative from this tuple)

An important special case of ULDBs is when every tuple hag onk alter-
native with a confidence value that may &el. This case corresponds to the
traditional notion ofprobabilistic databases

Trio: A System for Data, Uncertainty, and Lineage 7

In Trio each ULDB relationR is specified at the schema level as eitivéh
confidencesin which casek must include confidence values on all of its data,
or without confidencesn which caseR has no confidence values. However,
it is permitted to mix relations with and without confidencdues, both in a
database and in queries.

1.4 Lineage

Lineage in ULDBs is recorded at the granularity of altewegti lineage
connects a tuple-alternative to those tuple-alternatik@® which it was de-
rived. (Recall we are discussing only internal lineage ia thapter. External
lineage also can be recorded at the tuple-alternative Gty although for
some lineage types coarser granularity is more appropsate[12] for a dis-
cussion.) Specifically, lineage is defined as a funchiaver tuple-alternatives:
A(t) is a boolean formula over the tuple-alternatives from wiiighalternative
t was derived.

Consider again the join @awandDr i ves on attributesol or, car , fol-
lowed by a projection odr i ver to produce atabl8uspect s(person).
Assume all attributes ibr i ves are uncertain. (Although not shown in the
tiny sample data below, we might be uncertain what car somelires, or
for a given car we might be uncertain who drives it.) Let catul® contain
a unique identifier for each tuple, and (¢t;) denote thejth tuple-alternative
of the tuple with identifier. (That is,(7, j) denotes the tuple-alternative com-
prised ofi's certain attributes together with thigh set of alternative values
for its uncertain attributes.) Here is some sample datalfdhi@e tables, in-
cluding lineage formulas for the derived dateSuspect s. For example, the
lineage of the Jimmy tuple-alternative in tal8aspect s is a conjunction of
the second alternative &awtuple 11 with the second alternativedfi ves
tuple 21.

Saw
| ID | witness | (color, car) |
| 11 [Cathy | (blue, Honda) || (red, Mazda) |
Drives
| ID] Drives (driver, color, car) |
21 | (Jimmy, red, Honda) || (Ji my, red, Mazda) |?
22 (Billy, bl ue, Honda)
23 (Hank, red, Mazda)

Suspect s
31 | Jimy |? A(3L,1)= (11,2 (21,2)
32 [Billy |2 A(32,1)=(11,1 (22,1)

33 | Hank |? A (33,1)= (11,2 (23,1)

An interesting and important effect of lineage is that it maps restrictions
on the possible-instances of a ULDB: A tuple-alternativéhvineage can be
present in a possible-instance only if its lineage formalaatisfied by the
presence (or, in the case of negation, absence) of othematltees in the same
possible-instance. Consider the derived téls pect s. Even though there
is a “?’” on each of its three tuples, not all combinations aesgple. If Jimmy
is present inrSuspect s then alternative 2 must be chosen for tuple 11, and
therefore Hank must be present as well. Billy is preser8uspect s only if
alternative 1 is chosen for tuple 11, in which case neithrandy nor Hank can
be present.

Thus, once a ULDB relatioi® has lineage to other relations, it is possible
that not all combinations of alternatives and ‘?’ choicedhiirtorrespond to
valid possible-instances. The above ULDB has six possitg&nces, deter-
mined by the two choices for tuple 11 times the three choiceguding ‘?’)
for tuple 21.

Now suppose we have an additional base tabié,m nal s, containing a
list of known criminals, shown below. Joinirguspect s with Cri m nal s
yields theHi ghSuspect s table on the right:

Crimnals H ghSuspects

(1D | person |

s F'rm 51 [Jimy |? A(51,1)= (31,1 (41,1)
? =

e 52 | Hank |? A(52,1)=(33,1) (43,1)

Now we have multilevel (transitive) lineage relationshigsg., A(51,1) =
(31,1)A(41,1) andA(31,1) = (11,2) A (21, 2). Lineage formulas specify di-
rect derivations, but when the alternatives in a lineagmida are themselves
derived from other alternatives, it is possible to recuglyivexpand a lineage
formula until it specifies base alternatives only. (Sincease not consider-
ing external lineage, base data has no lineage of its own.x Yexry simple
example A(51,1)’s expansion i§(11,2) A (21,2)) A (41,1).

Note that arbitrary lineage formulas may not “work” under ooodel—
consider for example a tuple with one alternative and no ‘Hose lineage
(directly or transitively) includes the conjunction of twiifferent alternatives
of the same tuple. The tuple must exist because it doesrét&e®/, but it can't
exist because its lineage formula can't be satisfied. Reéer§2] formally de-
fineswell-behavedineage (which does not permit, for example, the situation
just described), and shows that internal lineage genehsteelational queries
is always well-behaved. Under well-behaved lineage, ttssipte-instances
of an entire ULDB correspond to the possible-instances ebtse data (data
with no lineage of its own), as seen in the example above. Wiibehaved
lineage our interpretation of confidences carries overctirecombining con-
fidences on the base data determines the probabilities pbdsble-instances,

Trio: A System for Data, Uncertainty, and Lineage 9

ULDBs @ :>
(actual) algorithm

Possible Instances

(logical) — (Q(D4), Q(Dy), ..., Q(Dn)

Figure 1.2. Relational Queries on ULDBs.

just as before. The confidence values associated with dedata items are
discussed later in Section 4.

Finally, note that lineage formulas need not be conjuncti¥s one ex-
ample, supposBr i ves tuple 23 containedi | | y instead ofHank, and the
Suspect s query performed duplicate-eliminating projection. Thiea guery
result is:

(1D | person |
61 | Ji my |? A (61,1)= (11,2 (21,2)
62 [Billy | A(62,1)=((11,1n (22,1)V ((11,2)A (23,1)

Note that the lineage formula for tuple 62 is always satisfiede one alter-
native of base tuple 11 must always be picked. Thus, there I8 non the
tuple.

1.5 Relational Queries

In this section we formally define the semantics of any retei query over
a ULDB. Trio’s SQL-based query language will be presente8dantion 2. The
semantics for relational queries over ULDBs is quite stifayward but has
two parts: (1) the possible-instances interpretation; @)dineage in query
results.

Refer to Figure 1.2. Consider a ULDB whose possible-instances are

D1,D,,...,D,, as shown on the left side of the figure. If we evaluate a
query @ on D, the possible-instances in the result@fshould beQ(D,),
Q(D3),..., Q(Dy), as shown in the lower-right corner. For example, if a

query(joins tablesSawandDr i ves, then logically it should join all of the
possible-instances of these two ULDB relations. Of coursewsuld never
actually generate all possible-instances and operateemn,tBo a query pro-
cessing algorithm follows the top arrow in Figure 1.2, pradg a query result
Q(D) that represents the possible-instances.

A ULDB query resultQ (D) contains the original relations dp, together
with a newresult relation R. Lineage fromR into the relations ofD reflects

10

the derivation of the data iR. This approach is necessary Q¢ D) to repre-
sent the correct possible-instances in the query resultiaanable consistent
further querying of the original and new ULDB relations. ¢haically, the
possible-instances in the lower half of Figure 1.2 also@ioriineage, but this
aspect is not critical here; formal details can be found]r [Ehe example in
the previous subsection, wiBuspect s as the result of a query joininGaw
andDr i ves, demonstrates the possible-instances interpretatiah/iseage
from query result to original data.

The ULDB model and the semantics of relational queries dvieas been
shown (see [2]) to exhibit two desirable and important props:

m CompletenessAny finite set of possible-instances conforming to a sin-
gle schema can be represented as a ULDB database.

m Closure: The result of any relational query over any ULDB database
can be represented as a ULDB relation.

2. TriQL: The Trio Query Language

This section describeEiQL, Trio’s SQL-based query language. Except for
some additional features described later, TriQL uses tmesyntax as SQL.
However, the interpretation of SQL queries must be modifeedeflect the
semantics over ULDBs discussed in the previous section.

As an example, the join query produciByispect s is written in TriQL
exactly as expected:

SELECT Drives.driver as person | NTO Suspects
FROM Saw, Drives
WHERE Saw. col or = Drives.color AND Saw.car = Drives. car

If this query were executed as regular SQL over each of thsilglesinstances
of SawandDr i ves, as in the lower portion of Figure 1.2, it would produce
the expected set of possible-instances in its result. Mopoitantly, follow-
ing the operational semantics given next, this query presle result table
Suspect s, including lineage to tableSawandDr i ves, that correctly rep-
resents those possible-instances.

This section first specifies an operational semantics foicl QL query
blocks over arbitrary ULDB databases. It then introducesimber of addi-
tional TriQL constructs, with examples and explanationgfach one.

2.1 Operational Semantics

We provide an operational description of TriQL by specifyttirect evalua-
tion of a generic TriQL query over a ULDB, corresponding te tipper arrow
in Figure 1.2. We specify evaluation of single-block querie

Trio: A System for Data, Uncertainty, and Lineage 11

SELECT attr-list [| NTO newtable]
FROM T1, T2, ..., Tn
WHERE pr edi cat e

The operational semantics of additional constructs areudged later, when
the constructs are introduced. Note that in TriQL, the testia query has
confidence values only if all of the tables in the quelyROM clause have
confidence values. (Sections 2.8 and 2.9 introduce constitiat can be used
in the FROMclause to logically add confidence values to tables thataike
don’t have them.)

Consider the generic TriQL query block above; caljit Let schemé&))
denote the compositiosthemél'l) W schem@él2) v - - - w schemérn) of the
FROMrelation schemas, just as in SQL query processing. piredi cat e
is evaluated over tuples ischem&)), and theattr-1i st is a subset of
schem&)) or the symbol *”, again just as in SQL.

The steps below are an operational description of evalyétie above query
block. As in SQL database systems, a query processor worgly rexecute
the simplest operational description since it could be wibefnefficient, but
any guery plan or execution technique (such as our traoslsed approach
described in Section 6) must produce the same result asahdsigtion.

1 Consider every combination, ¢, ... ,t, of tuples inT1, T2,..., Tn,
one combination at a time, just as in SQL.

2 Form a“super-tupleT whose tuple-alternatives have schesnhem§&?).
T has one alternative for each combination of tuple-altérestin ¢,
to, .. tn.

3 Ifany ofty,ts,...,t, hasa'?’, add a ‘?’' td".

4 Set the lineage of each alternativeTirto be the conjunction of the al-
ternativesty, to, . . ., t, from which it was constructed.

5 Retain fromT" only those alternatives satisfying tipe edi cat e. If
no alternatives satisfy the predicate, we're finished WithIf any al-
ternative does not satisfy the predicate, add a “?T'tib it is not there
already.

6 If T1, T2,..., Tn are all tables with confidence values, then either
compute the confidence values fBis remaining alternatives and store
them {mmediate confidence computafipor set the confidence values
to NULL (lazy confidence computatipnSee Sections 2.8 and 4 for fur-
ther discussion.

7 Project each alternative @f onto the attributes iattr-11i st, gener-
ating a tuple in the query result. If there islaNTOclause, inseri’ into
tablenew-t abl e.

12

It can be verified easily that this operational semanticdyices th&Suspect s
result table shown with example data in Section 1.4. Moreegaly it con-
forms to the “square diagram” (Figure 1.2) formal semargigen in Section
1.5. Later we will introduce constructs that do not confoonhte square dia-
gram because they go beyond relational operations.

Note that this operational semantics generates resukgaahl which, by
default, all attributes are uncertain—it constructs retudles from full tuple-
alternatives. In reality, it is fairly straightforward teduce statically, based
on a query and the schemas of its input tables (specificallghndttributes are
certain and which are uncertain), those result attribltasdre guaranteed to
be certain. For example, if we joingsaw andDr i ves without projection,
attributewi t ness in the result would be certain.

2.2 Querying Confidences

TriQL provides a built-in functionConf () for accessing confidence val-
ues. Suppose we want oBuspect s query to only use sightings having
confidence> 0.5 and drivers having confidence 0.8. We write:

SELECT Drives.driver as person | NTO Suspects

FROM Saw, Drives

WHERE Saw. col or = Drives.color AND Saw. car = Drives. car
AND Conf (Saw) > 0.5 AND Conf (Drives) > 0.8

In the operational semantics, when we evaluatepthedi cat e over the al-
ternatives inT" in step 6,Conf (Ti) refers to the confidence associated with
the t; component of the alternative being evaluated. Note thatftinction
may trigger confidence computations if confidence value$airey computed
lazily (recall Section 2.1).

FunctionConf () is more general than as shown by the previous example—
it can take any number of the tables appearing irflR@Mclause as arguments.
For exampleConf (T1, T3, T5) would return the “joint” confidence of the
t1, t3, andts components of the alternative being evaluatedi Jft3, and
t5 are independent, their joint confidence is the product oif timelividual
confidences. If they are nonindependent—typically due tresh lineage—
then the computation is more complicated, paralleling cemfte computation
for query results discussed in Section 4 below. As a speas#,Conf (*) is
shorthand foiConf (T1, T2, ..., Tn), which normally corresponds to the
confidence of the result tuple-alternative being constiaict

2.3 Querying Lineage

For querying lineage, TriQL introduces a built-in predeakesigned to be
used as a join condition. If we include predicdteneage(77,73) in the
WHERE clause of a TriQL query with ULDB table$; and 75 in its FROM

Trio: A System for Data, Uncertainty, and Lineage 13

clause, then we are constraining the joirigdand7; tuple-alternatives to be
connected, directly or transitively, by lineage. For exéampuppose we want
to find all witnesses contributing to Hank being a high suspée can write:

SELECT S. wi t ness
FROM Hi ghSuspects H, Saw S
WHERE Li neage(H, S) AND H. person = ' Hank’

In theWHERE clauseLi neage(H, S) evaluates to true for any pair of tuple-
alternativest; andt, from Hi ghSuspect s andSaw such thatt;’s lineage
directly or transitively includes,. Of course we could write this query directly
on the base tables if we remembered hdivghSuspect s was computed, but
theLi neage() predicate provides a more general construct that is insensi
to query history.

Note that the theLi neage() predicate does not take into account the
structure of lineage formulagd:i neage(71, 13) is true for tuple-alternatives
to andt, if and only if, when we expanth’s lineage formula using the lineage
formulas of its components; appears at some point in the expanded formula.
Effectively, the predicate is testing whethgthad any effect on; .

Here is a query that incorporates both lineage and confidé@radiso demon-
strates the ==>" shorthand for theLi neage() predicate. The query finds
persons who are suspected based on high-confidence drivinganda:

SELECT Drives.driver
FROM Suspects, Drives
WHERE Suspects ==> Drives
AND Drives.car = 'Honda’ AND Conf(Drives) > 0.8

2.4 Duplicate Elimination

In ULDBSs, duplicates may appear “horizontally"—when mpié alterna-
tives in a tuple have the same value—and “vertically"—whaeuitiple tuples
have the same value for one or more alternatives. As in SMETI NCT is
used to merge vertical duplicates. A new keywbMERGED is used to merge
horizontal duplicates. In both cases, merging can be thafgis an additional
final step in the operational evaluation of Section 201. T NCT subsumes
MERGED, so the two options never co-occur.)

As a very simple example of horizontal merging, considergihery:

SELECT MERGED Saw. wi t ness, Saw. col or FROM Saw

The query result on our sample data with confidences (reeatiéh 1.3) is:

| witness | color |

Ay blue:0.7||red: 0.3
Betty red: 0.6 ?

14

Without merging, the first result tuple would have thvbue alternatives with
confidence values 0.5 and 0.2. Note that confidences are suinviren hori-
zontal duplicates are merged. In terms of the formal sersinti Section 1.5,
specifically the square diagram of Figure 1.2, merging looitial duplicates in
the query answer on the top-right of the square correspdedslyg to merging
duplicate possible-instances on the bottom-right.

A query with vertical duplicate-elimination was discussgthe end of Sec-
tion 1.4, whereDl STI NCT was used to motivate lineage with disjunction.

2.5 Aggregation

For starters, TriQL supports standard SQL grouping andegggion fol-
lowing the relational possible-instances semantics ofi@et.5. Consider the
following query over thébr i ves data in Section 1.4:

SELECT car, COUNT(*) FROM Drives GROUP BY car

The query result is:

[ID] car [count] A711)=(22,1) A~ (21,1)
71 | Honda | 1112 | AM712) f(217 1) A (22,1)
72 Mazda 112)\(72,1) —(237 1) A\~ (21, 2)

A(72,2) =(21,2) A (23,1)

Note that attributecar is a certain attribute, since we're grouping by it. Also
observe that lineage formulas in this example include nagat

In general, aggregation can be an exponential operationDB$ (and in
other data models for uncertainty): the aggregate resujtbaalifferent in ev-
ery possible-instance, and there may be exponentially passible-instances.
(Consider for exampl&UMover a table comprised of 10 maybe-tuples. The
result ha2'® possible values.) Thus, TriQL includes three additionaions
for aggregate functions: law bound, ahigh bound, and arexpectedvalue;
the last takes confidences into account when present. Gurfsidexample
the following two queries over th8aw data with confidences from Section
1.3. Aggregate functiolitCOUNT asks for the expected value of tROUNT
aggregate.

SELECT col or, COUNT(*) FROM Saw GROUP BY car
SELECT col or, ECOUNT(*) FROM Saw GROUP BY car

The answer to the first query (omitting lineage) considdnsaasible-instances:

| color | count |

bl ue 1:0.7 ?
red | 1:0.54(/2:0.18 |?

Trio: A System for Data, Uncertainty, and Lineage 15

The *?' on each tuple intuitively corresponds to a possildaent of 0. (Note
that zero counts never appear in the result of a SRBDOUP BY query.) The
second query returns just one expected value for each group:

bl ue 0.7
red 0.9

It has been shown (see [9]) that expected aggregates akalkstito taking
the weighted average of the alternatives in the full aggeegesult (also taking
zero values into account), as seen in this example. Siyilexv and high
bounds for aggregates are equivalent to the lowest and stigh&les in the
full aggregate result.

In total, Trio supports 20 different aggregate functiormurfversions fill,
low, high, andexpectel for each of the five standard functionso(nt min,
max sum avg).

2.6 Reorganizing Alternatives

TriQL has two constructs for reorganizing the tuple-aliives in a query
result:

m Flattenturns each tuple-alternative into its own tuple.

= GroupAltsregroups tuple-alternatives into new tuples based on afset o
attributes.

As simple examples, and omitting lineage (which in both sase straight-
forward one-to-one mapping from result alternatives torsewalternatives),
“SELECT FLATTEN* FROMSaw’ over the simple one-tupl8awtable from
Section 1.4 gives:

| witness | color | car |

Cathy | blue | Honda |?
Cathy | red | Mazda |?

and “SELECT GROUPALTS(color,car)* FROMDr i ves” gives:

| color [car | person |
red Honda Ji mmy ?
red | Mazda | Ji my || Hank
bl ue | Honda Billy

With GROUPALTS, the specified grouping attributes are certain attributes i
the answer relation. For each set of values for these attgbthe correspond-
ing tuple in the result contains the possible values for éneaining (uncertain)

16

attributes as alternatives. ‘?’ is present whenever alhefttiple-alternatives
contributing to the result tuple are uncertain.

FLATTENI s primarily a syntactic operation—if lineage is retainee.(if
the query does not also specioLi neage, discussed below), then there
is no change to possible-instances as a result of incluBIDGTTEN in a
guery. GROUPALTS, on the other hand, may drastically change the possible-
instances; it does not fit cleanly into the formal semantfcSextion 1.5.

2.7 Horizontal Subqueries

“Horizontal” subqueries in TriQL enable querying acrose #iternatives
that comprise individual tuples. As a contrived example,car select from
table Saw all Honda sightings where it's also possible the sighting wacar
other than a Honda (i.e., all Honda alternatives with a nomdé alternative
in the same tuple).

SELECT * FROM Saw
WHERE car = 'Honda’ AND EXI STS [car <> 'Honda’]

Over the simple one-tupl8aw table from Section 1.4, the query returns just
the first tuple-alternativeg, Cat hy, bl ue, Honda) , of tuple 11.

In general, enclosing a subquery|[if instead of() causes the subquery
to be evaluated over the “current” tuple, treating its aliives as if they are
a relation. Syntactic shortcuts are provided for commorgasuch as simple
filtering predicates as in the example above. More compleg o$ horizontal
subqueries introduce a number of subtleties; full detait mumerous exam-
ples can be found in [11]. By their nature, horizontal subgsequery “across”
possible-instances, so they do not follow the square diagfd-igure 1.2; they
are defined operationally only.

2.8 Query-Defined Result Confidences

A query result includes confidence values only if all of tHelea in itsSFROM
clause have confidence values. To assign confidences toedltédn the pur-
pose of query processingJNl FORMT” can be specified in thEROMclause,
in which case confidence values are logically assigned a¢hesalternatives
and '"?' in each off"s tuples using a uniform distribution.

Result confidence values respect a probabilistic inteapost, and they are
computed by the system on-demand. (BOMPUTE CONFI DENCES” clause
can be added to a query to force confidence computation asfguery exe-
cution.) Algorithms for confidence computation are disedstiter in Section
4. A query can override the default result confidence valoeadd confidence
values to a result that otherwise would not have them, byasgj values in
its SELECT clause to the reserved attribute naocwnf . Furthermore, a spe-
cial “value” UNI FORMmay be assigned, in which case confidence values are

Trio: A System for Data, Uncertainty, and Lineage 17

assigned uniformly across the alternatives and '?" (if entsof each result
tuple.

As an example demonstrating query-defined result confideasewnell as
UNI FORMin the FROM clause, suppose we generate suspects by joining the
Saw table with confidences from Section 1.3 with tBei ves table from
Section 1.4. We decide to add uniform confidences to tBbleves, and we
prefer result confidences to be the lesser of the two inpuidmmces, instead
of their (probabilistic) product. Assuming a built-in fufen | esser, we
write:

SELECT person, |esser(Conf(Saw), Conf(Drives)) AS conf
FROM Saw, UNI FORM Dri ves
WHERE Saw. col or = Drives.color AND Saw.car = Drives.car

Let the two tuples in tabl&aw from Section 1.3 have IDs 81 and 82. The
query result, including lineage, is:

| ID] person |

91 | Billy:0.5 |? A(91,1)=(81,1) (22,1)
92 | Jimy: 0. 333 |? A(92,1) = (82,1 (21,2)
93 | Hank: 0.6 |2 A(93,1)= (82,1 (23,1)

With probabilistic confidences)i ntry would instead have confidence 0.2.
Had we usedyr eat er () instead ofl esser (), the three confidence val-
ues would have been 1.0, 0.6, and 1.0 respectively.

With the “AS Conf ” feature, it is possible to create confidence values in
a tuple whose sum exceeds 11 ("1 AS Conf ,” assigning confidence value
1.1 to each result tuple-alternative, is a trivial exanjplalthough the Trio
prototype does not forbid this occurrence, a warning issdsand anomalous
behavior with respect to confidence values—either the nevdgated values,
or later ones that depend on them—may subsequently occur.

2.9 Other TriQL Query Constructs

TriQL contains a number of additional constructs not elatest in detail in
this chapter, as follows. For comprehensive coverage ofti@L language,
see [11].

m TriQL is a strict superset of SQL, meaning that (in theoryeast) every
SQL construct is available in TriQL: subqueries, set opgsal | ke
predicates, and so on. Since SQL queries are relationaketmantics
of any SQL construct over ULDBs follows the semantics foatiehal
queries given in Section 1.5.

= One SQL construct not strictly relational@ der By. TriQL includes
Or der By, but only permits ordering by certain attributes and/or the

18

3.

special “attribute”Conf i dences, which for ordering purposes corre-
sponds to the total confidence value (excluding ‘?") in easult tuple.

In addition to built-in functionConf () and predicateli neage(),
TriQL offers a built-in predicatdvaybe() . In a queryMaybe(T) re-
turns true if and only if the tuple-alternative from tabléeing evaluated
is part of a maybe-tuple, i.e., its tuple has a ‘?".

Horizontal subqgueries (Section 2.7) are most useful irFlR@Mclause,
but they are permitted in th8ELECT clause as well. For example, the
query “SELECT [COUNT(*)] FROMSaw’ returns the number of al-
ternatives in each tuple of tfgawtable.

As discussed in Section 2.8, preceding a tabile the FROMclause with
keyword UNI FORM logically assigns confidence values to the tuple-
alternatives inT for the duration of the query, using a uniform distri-
bution. Similarly, ‘UNI FORMAS conf " in the SELECT clause assigns
confidence values to query results using a uniform disiobutAnother
option for both uses is keywor8CALED. In this case, tabl& (respec-
tively result tuples) must already have confidence valuaesihey are
scaled logically for the duration of the query (respectiviel the query
result) so each tuple’s total confidence is 1 (i.e., ?'s aneokezd). For
example, if a tuple has two alternatives with confidencee&l.3 and
0.2, theSCALED confidences would be 0.6 and 0.4.

Finally, three query qualifierd\oLi neage, NoConf , andNoMaybe
may be used to signal that the query result should not indingage,
confidence values, or ?’s, respectively.

Data Modifications in Trio

Data maodifications in Trio are initiated using TriQUINSERT, DELETE,

and UPDATE commands, which are in large part analogous to those in SQL.
Additional modifications specific to the ULDB model are sugipd by ex-
tensions to these commands. The three statement typesemented in the
following three subsections, followed by a discussion affAwio incorporates
versioningto support data modifications in the presence of derivedioek
with lineage.

3.1

Inserting entirely new tuples into a ULDB poses no unusualas#ic issues.

Inserts

(Inserting new alternatives into existing tuples is achikthrough thé&JPDATE
command, discussed below.) Trio supports both types of BREERT com-
mands:

Trio: A System for Data, Uncertainty, and Lineage 19

I NSERT | NTO t abl e- name VALUES t upl e-spec
I NSERT | NTO t abl e- name subquery

Thet upl e- spec uses a designated syntax to specify a complete Trio tu-
ple to be inserted, including certain attributes, altéweatalues for uncertain
attributes, confidence values, and/or ‘?; but no lineaghe Jubquery is

any TriQL query whose result tuples are inserted, togethtr their lineage
(unlessNoLi neage is specified in the subquery; Section 2.9).

3.2 Deletes
Deletion also follows standard SQL syntax:
DELETE FROM t abl e- name WHERE predi cate

This command deletes each tuple-alternative satisfyirgypthedi cat e.
(Deleting a tuple-alternative is equivalent to deleting @iternative for the
uncertain attributes; Section 1.1.) If all alternativesadtiple are deleted, the
tuple itself is deleted. A special qualifieAdj Conf " can be used to redis-
tribute confidence values on tuples after one or more aliggzaare deleted,;
without Adj Conf , deleted confidence values implicitly move to '?.

3.3 Updates

In addition to conventional updates, the TriQPDATE command supports
updating confidence values, adding and removing ‘?’s, ageriimg new al-
ternatives into existing tuples. Consider first the stath@&@L UPDATE com-
mand:

UPDATE t abl e-name SET attr-list = expr-list WHERE predicate

This command updates every tuple-alternative satisfyiegt edi cat e, set-
ting each attribute in thattr-1i st to the result of the corresponding ex-
pression in thexpr-1i st .

There is one important restriction regarding the combimatf certain and
uncertain attributes. Consider as an example the followomgmand, intended
to rename as “Doris” every witness who saw a blue Honda:

UPDATE Saw SET witness = 'Dori s’
VWHERE col or = 'blue’ AND car = ' Honda’

In the Saw table of Section 1.1, th®\HERE predicate is satisfied by some
but not all of the(col or, car) alternatives for withesény. Thus, it isn't
obvious whetheAmny should be be modified. Perhaps the best solution would
be to converir t ness to an uncertain attribute:

| (witness,color, car) |
| (Doris, bl ue, Honda) || (Any, red, Toyota) || (Any, bl ue, Mazda) |

20

However, Trio treats attribute types (certain versus uag®r as part of the
fixed schema, declared 8REATE TABLE time. A similar ambiguity can
arise if the expression on the right-hand-side of$B& clause for a certain at-
tribute produces different values for different altermesi. Hence UPDATE
commands are permitted to modify certain attributes onlgllifreferences
to uncertain attributes, functioBonf (), and predicatd.i neage() in the
WHERE predicate, and in ever$ET expression corresponding to a certain at-
tribute, occur within horizontal subqueries. This resivic ensures that the
predicate and the expression always evaluate to the sami¢ fiazsall alter-
natives of a tuple. For our example, the following similaoking command
updates every witness wimosayhave seen a blue Honda to be named “Doris”:

UPDATE Saw SET witness = 'Doris’
WHERE [col or = *blue’ AND car = 'Honda’]

To update confidence values, the special attrilmgaf may be specified
intheattr-1ist of the UPDATE command. As with query-defined result
confidences (Section 2.8), there is no guarantee after giogitonf that
confidence values in a tuple sum<o1; a warning is issued when they don't,
and anomalous behavior may subsequently occur. Finallyspecial key-
words UNI FORMor SCALED may be used as the expression corresponding
to attributeconf in the SET clause, to modify confidence values across each
tuple using uniform or rescaled distributions—analogaushe use of these
keywords with ‘AS Conf ” (Sections 2.8 and 2.9).

A variation on theUPDATE command is used to add alternatives to existing
tuples:

UPDATE t abl e- nane ALTI NSERT expressi on WHERE predi cate

To ensure ther edi cat e either holds or doesn't on entire tuples, once again
all references to uncertain attribut€&nf (), andLi neage() must occur
within horizontal subqueries. For each tuple satisfying phedicate, alterna-
tives are added to the tuple, based on the result of evadpidie x pr essi on.
Like the | NSERT command (Section 3.1), the expression can ALUES

t upl e- spec”to specify a single alternative, or a subquery producing oe
more alternatives. Either way, the schema of the alterestiv add must match
the schema of the table’s uncertain attributes only. If agidilternatives to an
existing tuple creates duplicates, by default horizontgblidate-elimination
does not occur, but it can be triggered by specifyisigDATE MERGED. As
with other constructs that affect confidence values, argdtiples whose con-
fidences sum to- 1 results in a warning.

Finally, the following self-explanatoriyPDATE commands can be used to
add and remove ?'s. These commands may only be applied &stafithout
confidences, and once again, in heedi cat e all references to uncertain
attributes,Conf () , andLi neage() must be within horizontal subqueries.

Trio: A System for Data, Uncertainty, and Lineage 21

UPDATE t abl e- name ADDMAYBE WHERE pr edi cat e
UPDATE t abl e- name DELMAYBE WHERE predi cate

3.4 Data Modifications and Versioning

Trio query results include lineage identifying the inputaditom which the
results were derived. Lineage is not only a user-level feattit is needed for
on-demand confidence computation, and it is critical fortwdpg the correct
possible-instances in a query result (Section 1.4).

Suppose we run oususpect s query, store the result, then modifications
occur to some alternatives in tal#awthat are referenced by lineage in table
Suspect s. There are two basic options for handling such modifications

(1) Propagatemodifications to all derived tables, effectively turningegy
results into materialized views.

(2) Don't propagatemodifications, allowing query results to become “stale”
with respect to the data from which they were derived origjma

Option (1) introduces a variation on the well-knowraterialized view main-
tenance problemit turns out Trio’s lineage feature can be used here fordroa
applicability and easy implementation of the most effickembwn techniques;
see [6].

With option (2), after modifications occur, lineage fornmalaay contain
incorrect or “dangling” pointers. Trio’s solution to thisgiblem is to introduce
a lightweightversioningsystem: Modified data is never removed, instead it
remains in the database as part of a previous version. Thadaformula
for a derived tuple-alternativemay refer to alternatives in the current version
and/or previous versions, thus accurately reflecting the flam whicht was
derived. Details of Trio's versioning system and how it ratgs with data
modifications and lineage can be found in [6].

4. Confidence Computation

Computing confidence values for query results is one of thet mteresting
and challenging aspects of Trio. In general, efficient catajien of correct
result confidence values in uncertain and probabilisti@ludes is known to
be a difficult problem. Trio uses two interrelated technigjoe address the
problem:

1. By default, confidence values are not computed duringycgseluation.
Instead, they are computed on demand: when requested thomegof
Trio’s interfaces, or as needed for further queries. Thipagch has two
benefits: (a) Computing confidence values as part of queryatian
constrains how queries may be evaluated, while lazy cortipntérees

22

the system to select any valid relational query executiam.p(See [7]
for detailed discussion.) (b) If a confidence value is nevesded, its
potentially expensive computation is never performed.

2. On-demand confidence computation is enabled by Tricéatje feature.
Specifically, the confidence of an alternative in a query ltesan be
computed through lineage, as described below. Furtherraanember
of optimizations are possible to speed up the computatlea,discussed
below.

Suppose a query is executed producing a result taldle and consider
tuple-alternativet in T'. Assume all tables in quer§ have confidence values
(perhaps not yet computed), sshould have a confidence value as well. For-
mally, the confidence value assigned &hould represent the total probability
of the possible-instances of result talfléhat contain alternative(recall Sec-

tion 1.3). It has been shown (see [7]) that this probabildgp be computed as
follows:

1. Expand’s lineage formula recursively until it refers to base altdives
only: If \(¢) refers to base alternatives only, stop. Otherwise, pickipne
in A(¢) that is not a base alternative, replacwith (A(¢;)), and continue
expanding.

2. Let f be the expanded formula from step 1. fifcontains any sets
t1,...,t, of two or more alternatives from the same tuple (a possible
but unlikely case), then,, ..., t,'s confidence values are modified for
the duration of the computation, and clauses are addgdtéoencode
their mutual exclusion; details are given in [7].

3. The confidence value for alternatives the probability of formulaf
computed using the confidence values for the base alteesatmpris-
ing f.

It is tempting to expand formula(t¢) in step 1 only as far as needed to
obtain confidence values for all of the alternatives memtibm the formula.
However, expanding to the base alternatives is requireddoectness in the
general case. Consider for example the following scenari®rets, ¢4, and
ts are base alternatives.

At)=ti At At) =tsAts At2) =tz Ats
Conf (t3) = Conf (t4) = Conf (t5) = 0.5

Based on the specified confidences, we Hawef (¢;) = Conf (¢2) = 0.25.

If we computedConf (¢) usingt; A t2 we would get 0.0625, whereas the cor-
rect value expanding to the base alternatives is 0.125. iAexample demon-
strates, lineage formulas must be expanded all the way te alsrnatives
because derived alternatives may not be probabilistitatigpendent.

Trio: A System for Data, Uncertainty, and Lineage 23

Trio incorporates some optimizations to the basic confidesmwmnputation
algorithm just described:

= Whenever confidence values are computed, theynaraoizedor future
use.

m There are cases when it is not necessary to expand a lineageldcall
the way to its base alternatives. At any point in the expamsi@ll of the
alternatives in the formula are known to be independent tiagid confi-
dences have already been computed (and therefore memdizexd is
no need to go further. Even when confidences have not beenutedip
independence allows the confidence values to be computedasely
and then combined, typically reducing the overall compiexhlthough
one has to assume nonindependence in the general casesriddape
is common and often can be easy to deduce and check, fregaetiie
level of entire tables.

= We have developed algorithms fbatch confidence computation that
are implemented through SQL queries. These algorithmspgmpriate
and efficient when confidence values are desired for a signifjgortion
of a result table.

Reference [7] provides detailed coverage of the confideonoasutation prob-
lem, along with our algorithms, optimizations, implemeiata in the Trio pro-
totype.

5. Additional Trio Features

TriQL queries and data modifications are the typical way tdracting with
Trio data, just as SQL is used in a standard relational DBM&véver, uncer-
tainty and lineage in ULDBs introduce some interesting ez beyond just
gueries and modifications.

Lineage. As TriQL queries are executed and their results are storebad-
ditional queries are posed over previous results, compieage relationships
can arise. Data-level lineage is used for confidence cortipntéSection 4)
andLi neage() predicates; it is also used fepexistence checlksdextra-
neous data removatliscussed later in this section. TheoExplorergraphical
user interface supports data-level lineage tracing thramecial buttons next
to each displayed alternative; the textual and API inteaprovide corre-
sponding functionality.

Trio also maintains a schema-level lineage graph (spekyfi@dDAG), with
tables as nodes and edges representing lineage relatiensiihis graph is
used when translating queries withneage() predicates (Section 6.7), and

24

for determining independence to optimize confidence coatjout (Section 4).
This graph also is helpful for for users to understand théetaim a database
and their interrelationships. A schema-level lineage lgnaps depicted in the
Figure 1.1 screenshot showing theoExplorerinterface.

Coexistence Checks. A user may wish to select a set of alternatives from
one or more tables and ask whether those alternatives caoexist. Two
alternatives from the same tuple clearly cannot coexidt thel general case
must take into account arbitrarily complex lineage relalips as well as tuple
alternatives. For example, if we asked about alternati¥és?§ and (32,1) in
our sample database of Section 1.4, the system would tdilese talternatives
cannot coexist.

Checking coexistence is closely related to confidence ctatipn. To check
if alternativest; andt¢, can coexist, we first expand their lineage formulas to
reference base alternatives only, as in step 1 of confidemmgutation (Sec-
tion 4). Call the expanded formulgs and f5. Let f3 be an additional formula
that encodes mutual exclusion of any alternatives from éineestuple appear-
ing in f1 and/or f5, as in step 2 of confidence computation. Theandt, can
coexist if and only if formulafy, A fo A f3 is satisfiable. Note that an equiv-
alent formulation of this algorithm creates a “dummy” tupleshose lineage
is t1 A to. Thent; and¢, can coexist if and only iConf (¢) > 0. This for-
mulation shows clearly the relationship between coexisteand confidence
computation, highlighting in particular that our optimiimas for confidence
computation in Section 4 can be used for coexistence checkelh

Extraneous Data Removal. The natural execution of TriQL queries
can generatextraneous dataan alternative is extraneous if it can never be
chosen (i.e., its lineage requires presence of multipksradtives that cannot
coexist); a *?’ annotation is extraneous if its tuple is g&/gresent. It is
possible to check for extraneous alternatives and ?’s imatedg after query
execution (and, sometimes, as part of query execution)chetking can be
expensive. Because we expect extraneous data and ?’s tiatieehg uncom-
mon, and users may not be concerned about them, by defaals@ipports
extraneous data removal as a separate operation, simgartiage collection.
Like coexistence checking, extraneous data detectioroseb}t related to
confidence computation: An alternativis extraneous if and only @onf (¢) =
0. A‘?" on atuplew is extraneous if and only if the confidence values for all
of u’s alternatives sum to 1.

6. The Trio System

Figure 1.3 shows the basic three-layer architecture of tleesiystem. The
core system is implemented in Python and mediates betweemtterlying re-

Trio: A System for Data, Uncertainty, and Lineage 25

| TrioExplorer
Command-line .
[mand j (GUIcllent)]

Trio API and translator
(Python)

Standard SQL

Standard relational DBMS

Encoded Trio
Data Tables Metadata

Trio Stored

Lineage
Procedures

Tables

Figure 1.3. Trio Basic System Architecture.

lational DBMS and Trio interfaces and applications. ThenBwtlayer presents
a simple Trio API that extends the standard Python DB 2.0 APdhtabase
access (Python’s analog of JDBC). The Trio APl accepts TriQkries and
modification commands in addition to regular SQL, and quesuits may be
ULDB tuples as well as regular tuples. The API also exposesther Trio-
specific features described in Section 5. Using the Trio Melbuilt a generic
command-line interactive clienfl(ioPlug similar to that provided by most
DBMS'’s, and theTrioExplorer graphical user interface shown earlier in Fig-
ure 1.1.

Trio DDL commands are translated via Python to SQL DDL comasan
based on the encoding to be described in Section 6.1. Theldtam is fairly
straightforward, as is the corresponding translatiohNSERT statements and
bulk load.

Processing of TriQL queries proceeds in two phases. Intrdrgslation
phase, a TriQL parse tree is created and progressivelyforamsd into a tree
representing one or more standard SQL statements, basée dath encod-
ing scheme. In thexecutionphase, the SQL statements are executed against
the relational database encoding. Depending on the ohigin@L query,
Trio stored procedures may be invoked and some post-piogessy occur.
For efficiency, most additional runtime processing executithin the DBMS
server. Processing of TriQL data modification commandsnislai, although
a single TriQL command often results in a larger number of S@itements,
since several relational tables in the encoding (SectibprBay all need to be
madified.

TriQL query results can either moredor transient Stored query results
(indicated by anh NTOclause in the query) are placed in a new persistent table,

26

and lineage relationships from the query’s result data ta tethe query’s in-
put tables also is stored persistently. Transient quemnjtseéiol NTOclause)
are accessed through the Trio APl in a typical cursor-ogigrfidshion, with an
additional method that can be invoked to explore the linexgesach returned
tuple. For transient queries, query result processing imedde creation oc-
curs in response to cursfatchcalls, and neither the result data nor its lineage
are persistent.

TrioExplorer offers a rich interface for interacting with the Trio systein
implements a Python-generated, multi-threaded web seisiag CherryPy
and it supports multiple users logged into private and/aresth databases. It
accepts Trio DDL and DML commands and provides numerousifestfor
browsing and exploring schema, data, uncertainty, andgjeelt also enables
on-demand confidence computation, coexistence checksxdraheous data
removal. Finally, it supports loading of scripts, commaedall, and other user
conveniences.

It is not possible to cover all aspects of Trio’s system impatation in
this chapter. Section 6.1 describes how ULDB data is encadeaegular
relations. Section 6.2 demonstrates the basic query &timslscheme for
SELECT-FROWWHERE statements, while Sections 6.3—6.9 describe transla-
tions and algorithms for most of TriQL's additional constis

6.1 Encoding ULDB Data

We now describe how ULDB databases are encoded in reguksiorehl
tables. For this discussion we usduple to refer to a tuple in the ULDB
model, i.e., a tuple that may include alternatives, ‘?’, andfidence values,
andtupleto denote a regular relational tuple.

LetT(44,...,A,) be aULDB table. We store the data portiorofn two
relational tables]- andTy . TableT contains one tuple for each u-tupledin
T¢'s schema consists of the certain attribute§ ofllong with two additional
attributes:

= Xi d contains a unique identifier assigned to each u-tuplg.in

= numcontains a number used to track efficiently whether or notuple
has a ‘?’, wheri” has no confidence values. (See Section 6.2 for further
discussion.)

TableTy contains one tuple for each tuple-alternativdinits schema consists
of the uncertain attributes @f, along with three additional attributes:

= ai d contains a unigue identifier assigned to each alternatiié in

= Xi d identifies the u-tuple that this alternative belongs to.

m conf stores the confidence of the alternativeNok_L if this confidence
value has not (yet) been computed, dfihas no confidences.

Trio: A System for Data, Uncertainty, and Lineage 27

Clearly several optimizations are possible: Tables withficdence values can
omit the numfield, while tables without confidences can oroitnf . If a
tableT" with confidences has no certain attributes, then tdblés not needed
since it would contain onlxi d’'s, which also appear ifi;;. Conversely, ifl’
contains no uncertain attributes, then tableis not needed: attributai d is
unnecessary, and attributenf is added to tabl&~. Even when both tables
are present, the system automatically creates a virtual thiat joins the two
tables, as a convenience for query translation (Section 6.2

The system always creates indexesTenxi d, Ty.ai d, and7y.xi d. In
addition, Trio users may create indexes on any of the ofliglata attributes
Ay, ..., A, using standar€REATE | NDEX commands, which are translated
by Trio to CREATE | NDEX commands on the appropriate underlying tables.

The lineage information for each ULDB tablg is stored in a separate
relational table. Recall the lineag€t) of a tuple-alternative is a boolean
formula. The system represents lineage formulagdisjunctive normal form
(DNF), i.e., as a disjunction of conjunctive clauses, witmagations pushed
to the “leaves.” Doing so allows for a uniform representatibineage is stored
in a single tabld; (ai d,src_ai d,src_t abl e,fl ag), indexed orai d and
src_ai d. Atuple (t1,t2, 15, f) in Ty, denotes thal s alternativet; has alter-
nativet, from tableT in its lineage. Multiple lineage relationships for a given
alternative are conjunctive by default; special valued foag and (occasion-
ally) “dummy” entries are used to encode negation and dision. By far the
most common type of lineage is purely conjunctive, whictejsresented and
manipulated very efficiently with this scheme.

Example. Asone example that demonstrates many aspects of the egcodin
consider the aggregation query result from Section 2.9.t@&akresult tableR.
Recall that attributecar is certain while attributeeount is uncertain. The
encoding as relational tables follows, omitting the linedgr result tuple 72
since it parallels that for 71.

| aid [xid | count]

[xid | num [car | 711 | 71 1
RC.[71] 2 [Honda RU. [712 71 | 2
72 | 2 | Mazda 721 |72 | 1

722 | 72 | 2

| aid [src.aid | srctable [flag |
711 221 Drives | NULL
RL: [711 [211 | Drives | neg
712 211 Drives | NULL
712 221 Drives neg

28

For readability, uniquai d’s are created by concatenatirg d and alterna-
tive number. The values of 2 in attribuRC. numindicate no ‘?’s (see Sec-
tion 6.2), andR_U. conf is omitted since there are no confidence values. The
remaining attributes should be self-explanatory giverdiseussion of the en-
coding above. In addition, the system automatically ceeatevirtual view
joining tablesR CandR . Uonxi d.

6.2 Basic Query Translation Scheme

Consider theSuspect s query from the beginning of Section 2, first in its
transient form (i.e., withouCREATE TABLE). The Trio Python layer trans-
lates the TriQL query into the following SQL query, send®itlte underlying
DBMS, and opens a cursor on the result. The translated gafassrto the vir-
tual views joiningSaw_CandSaw_U, and joiningDr i ves_C, andDr i ves_U,
call these viewSaw_E andDr i ves_E (“E” for encoding) respectively.

SELECT Drives_E. driver,
Saw E. aid, Drives E. aid, Saw E. xid, Drives_ E. xid,
(Saw_E. num * Drives_E. nun) AS num
FROM Saw_E, Drives_E
WHERE Saw E.color = Drives_E.color AND Saw E.car = Drives_E. car
ORDER BY Saw_E. xid, Drives_E.xid

Let Tfetchdenote a cursor call to the Trio API for the original TriQL aque
and letDfetchdenote a cursor call to the underlying DBMS for the translate
SQL query. Each call tdfetchmust return a complete u-tuple, which may
entail several calls t®fetch Each tuple returned frorbfetchon the SQL
qguery corresponds to one alternative in the TriQL queryltesimd the set
of alternatives with the same return8dw_E. xi d andDr i ves_E. xi d pair
comprise a single result u-tuple (as specified in the oparatisemantics of
Section 2.1). Thus, offifetch Trio collects all SQL result tuples for a single
Saw_E. xi d/Dri ves_E. xi d pair (enabled by th©RDER BY clause in the
SQL query), generates a newd and newai d’s, and constructs and returns
the result u-tuple.

Note that the underlying SQL query also returns #iel’s from Saw E
andDr i ves _E. These values (together with the table names) are used to con
struct the lineage for the alternatives in the result uguBlecall that theum
field is used to encode the presence or absence of ‘?": Oumschaaintains
the invariant that an alternative’s u-tuple has a *?’ if amilyaf its numfield
exceeds the u-tuple’s number of alternatives, which tumist@ be efficient
to maintain for most queries. This example does not havdtresnfidence
values, however even if it did, result confidence values ligiudeare not com-
puted until they are explicitly requested (recall Sectipn®hen a ‘COVPUTE
CONFI DENCES’ clause is present,fetchinvokes confidence computation be-

Trio: A System for Data, Uncertainty, and Lineage 29

fore returning its result tuple. OtherwisEfetchreturns placeholdeMULLs for
all confidence values.

For the stored@REATE TABLE) version of the query, Trio first issues DDL
commands to create the new tables, indexes, and virtual thigtwill encode
the query result. Trio then executes the same SQL query shbave, except
instead of constructing and returning u-tuples one at a, tihgesystem directly
inserts the new alternatives and their lineage into thdtraad lineage tables,
already in their encoded form. All processing occurs withistored proce-
dure on the database server, thus avoiding unnecessarg-nips between
the Python module and the underlying DBMS.

The remaining subsections discuss how TriQL construct®tikysimple
SELECT- FROM WHERE statements are translated and executed. All transla-
tions are based on the data encoding scheme of Section 6ny; ana purely
“add-ons” to the basic translation just presented.

6.3 Duplicate Elimination

Recall from Section 2.4 that TriQL supports “horizontal’pliaate-elimi-
nation with theMERGED option, as well as convention&ll STI NCT. In gen-
eral, either type of duplicate-elimination occurs as thalfgtep in a query that
may also include filtering, joins, and other operations. S hafter duplicate-
elimination, the lineage of each result alternative is anfgia in DNF (recall
Section 6.1): disjuncts are the result of merged duplicatdxie conjunction
within each disjunct represents a tuple-alternative'sveéon prior to merg-
ing; a good example can be seen at the end of Section 1.4. Hovefdtodes
DNF formulas in lineage tables was discussed briefly in Sedil.

Merging horizontal duplicates and creating the correspandisjunctive
lineage can occur entirely within tiEetchmethod: All alternatives for each
result u-tuple, together with their lineage, already neede collected within
Tfetchbefore the u-tuple is returned. Thus, wHdERGED is specified,Tfetch
merges all duplicate alternatives and creates the disyentimeage for them,
then returns the modified u-tuple.

DI STI NCT is more complicated, requiring two phases. First, a traedla
SQL query is produced asiil STI NCT were not present, except the result is
ordered by the data attributes insteadkof’s; this query produces a tempo-
rary resultT. One scan througf is required to merge duplicates and create
disjunctive lineage, theff’ is reordered byi d’s to construct the correct u-
tuples in the final result.

6.4 Aggregation

Recall from Section 2.5 that TriQL supports 20 different rggtion func-
tions: four versionsf(ll, low, high, andexpectejifor each of the five standard

30

functions €ount min, max sum avg). All of the full functions and some of the
other options cannot be translated to SQL queries over tbedeqd data, and
thus are implemented as stored procedures. (One of thgpected average

is implemented as an approximation, since finding the exaswear based on
possible-instances can be extremely expensive [9].) Matiyemptions, how-

ever, can be translated very easily. Consider t8al&with confidence values.
Then the TriQL query:

SELECT col or, ECOUNT(*) FROM Saw GROUP BY car

is translated based on the encoding to:
SELECT col or, SUM conf) FROM Saw_E GROUP BY car

A full description of the implementation of Trio’s 20 aggegg functions can
be found in [9].

6.5 Reorganizing Alternatives

RecallFlattenand GroupAltsfrom Section 2.6. The translation scheme for
gueries withFlattenis a simple modification to the basic scheme in which each
result alternative is assigned its ownd. GroupAltsis also a straightforward
modification: Instead of the translated SQL query groupingibd’s from the
input tables to create result u-tuples, it groups by thebatis specified in
CGROUPALTS and generates nexi d’s.

6.6 Horizontal Subqueries

Horizontal subqueries are very powerful yet surprisinggyeto implement
based on our data encoding. Consider the example from &etfio

SELECT * FROM Saw
WHERE car = 'Honda’ AND EXI STS [car <> 'Honda’]

First, syntactic shortcuts are expanded. Inthe examhplar <> ' Honda']
is a shortcut fof SELECT * FROM Saw WHERE car <>’ Honda'] . Here,
Saw within the horizontal subquery refers to tBaw alternatives in the cur-
rent u-tuple being evaluated [11]. In the translation, thedontal subquery is
replaced with a standard SQL subquery that adds aliasesrfer tables and a
condition correlatingi d’s with the outer query:

. AND EXI STS (SELECT * FROM Saw_E S
VWHERE car <> 'Honda’ AND S.xid = Saw_E. xi d)

S. xi d=Saw.E. xi d restricts the horizontal subquery to operate on the data
in the current u-tuple. Translation for the general caselu@s a fair amount of
context and bookkeeping to ensure proper aliasing and aiitypichecks, but

all horizontal subqueries, regardless of their complexitiwe a direct transla-
tion to regular SQL subqueries with additionald equality conditions.

Trio: A System for Data, Uncertainty, and Lineage 31

6.7 Built-In Predicates and Functions

Trio has three built-in predicates and functio@sinf () introduced in Sec-
tion 2.2,Maybe() introduced in Section 2.9, anid neage() introduced in
Section 2.3.

FunctionConf () is implemented as a stored procedure. If it has just one
argumentl’, the procedure first examines the currénf.conf field to see if
avalue is present. (Recall from Section 6.1 thaE is the encoded data table,
typically a virtual view over table§- andTy.) If so, that value is returned.
If T_E.conf is NULL, on-demand confidence computation is invoked (see
Section 4); the resulting confidence value is stored pernthnin 7T'_FE and
returned.

The situation is more complicated wh&onf () has multiple arguments,
or the special argument” as an abbreviation for all tables in the query’s
FROMIist (recall Section 2.2). The algorithm for argumefits. .., Ty logi-
cally constructs a “dummy” tuple-alternativevhose lineage is the conjunc-
tion of the current tuple-alternatives frdm, . . . , T, being considered. It then
computeg’s confidence, which provides the correct result for theentrinvo-
cation ofConf (T1,...,T) . In the case o€Conf (*), the computed values
usually also provide confidence values for the query rewiithout a need for
on-demand computation.

TheMaybe() andLi neage() predicates are incorporated into the query
translation phase. Predicatitaybe() is straightforward: It translates to a
simple comparison between themattribute and the number of alternatives
in the current u-tuple. (One subtlety is tihdtybe() returnst r ue even when
a tuple’s question mark is “extraneous’—that is, the tupldact always has
an alternative present, due to its lineage. See Section&ldef discussion.)

PredicateLi neage(T7,13) is translated into one or more S(EXI STS
subqueries that check if the lineage relationship hold$ieB@a-level lineage
information is used to determine the possible table-lepatlis” from1; to 15.
Each path produces a subquery that joins lineage tableg #tan path, with
T, andT5 at the endpoints; these subqueries are IRd to replace predicate
Li neage(11,15) in the translated query.

As an example, recall tabldi ghSuspect s in Section 1.4, derived from
table Suspect s, which in turn is derived from tabl&aw. Then predicate
Li neage(H ghSuspects, Saw) would be translated into one subquery
as follows, recalling the lineage encoding described irtiGe®.1.

EXI STS (SELECT *
FROM Hi ghSuspects_L L1, Suspects_L L2
WHERE Hi ghSuspects.aid = L1.aid
AND L1.src_table = 'Suspects’ AND L1.src_aid = L2.aid
AND L2.src_table = "Saw AND L2.src_aid = Saw. aid)

32

6.8

Query-Defined Result Confidences

The default probabilistic interpretation of confidenceues in query results
can be overridden by includinggekpressiomAS conf ” in the SELECT clause
of a TriQL query (Section 2.8). Since Trio’s data encodinhesne uses a
column calledconf to store confidence valuesAS conf ” clauses simply
pass through the query translation phase unmodified.

6.9

Remaining Constructs

We briefly describe implementation of the remaining TriQlnsoucts and
features.

Rest of SQL.As mentioned in Section 2.9, since TriQL is a superset
of SQL, any complete TriQL implementation must handle alS6jL.

In our translation-based scheme, some constructs (eldE predi-
cates) can be passed through directly to the underlyintjort DBMS,
while others (e.g., set operators, some subqueries) calvingubstan-
tial rewriting during query translation to preserve TriQénsantics. At
the time of writing this chapter, the Trio prototype suppaatl of the
constructs discussed or used by examples in this chapterlhas set
operatordJNI ON, | NTERSECT, andEXCEPT.

Order By. Because ordering byi d’s is an important part of the ba-
sic query translation (Section 6.2)RDER BY clauses in TriQL require
materializing the result first, then ordering by the spedifidtributes.
When special “attributeConf i dences (Section 2.9) is part of the
ORDER BY list, “COVPUTE CONFI DENCES” (Section 2.8) is logically
added to the query, to ensure thenf field contains actual values, not
placeholdeNULLSs, before sorting occurs.

UNIFORM and SCALED. The keyworddJNI FORM(Section 2.8) and
SCALED (Section 2.9) can be used in a TrilROMclause to add or
modify confidences on an input table, or withS conf " to specify con-
fidences on the result. ThAS conf " usage is easy to implement within
the Tfetchprocedure (Section 6.2 fetchprocesses entire u-tuples one
at atime and can easily add or modify confidence values bedtuiening
them.

UNI FORMand SCALED in the FROMclause are somewhat more com-
plex: Confidence computation for the query result must ocluing
query processing (as opposed to on-demand), to ensurécesfitlence
values take into account the modifier(s) in flBROMclause. (Alterna-
tively, special flags could be set, then checked during ledefidence
computation, but Trio does not use this approach.) Spec@iess-

REFERENCES 33

ing again occurs iMfetch which logically adds or modifies confidence
values on input alternatives when computing confidenceegafar the
query result.

= NoLineage, NoConf, and NoMaybeThese TriQL options are all quite
easy to implementNoLi neage computes confidence values for the
query result as appropriate (since no lineage is maintdiyedahich to
compute confidences later), then essentially turns theyqesult into
a Trio base table.NoConf can only be specified in queries that oth-
erwise would include confidence values in the result; nowrdsailt is
marked as a Trio table without confidences (and, of courses dot
compute confidence values except as needed for query piragessi-
nally, NoMaybe can only be specified in queries that produce results
without confidences; all ?’s that otherwise would be inctlidethe re-
sult are removed by modifying theumfield in the encoding (Section
6.1).

= Data modifications and versioning.Recall from Section 3.4 that Trio
supports a lightweight versioning system, in order to albata modifi-
cations to base tables that are not propagated to derivied tathile still
maintaining “meaningful” lineage on the derived data. lempéntation
of the versioning system is quite straightforward: If a ULE#BleT is
versioned start-versionandend-versiorattributes are added to encoded
table Ty (Section 6.1). A query over versioned tables can produce a
versioned result with little overhead, thanks to the presesf lineage.
Alternatively, queries can requestapshotesults, as of the current or a
past version. Data modifications often simply manipulatsieas rather
than modify the data, again with little overhead. For examnpeleting
an alternative from a versioned tabl& translates to modifying's end-
versionin Ty. Reference [6] provides details of how the Trio system
implements versions, data modifications, and the propagafi modifi-
cations to derived query results when desired.

References

[1] P. Agrawal, O. Benijelloun, A. Das Sarma, C. Hayworth, Sbir, T. Sug-
ihara, and J. Widom. Trio: A system for data, uncertaintg imeage. In
Proc. of Intl. Conference on Very Large Databases (VLOBpes 1151—
1154, Seoul, Korea, September 20@&monstration description

[2] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. ULDB
Databases with uncertainty and lineage.Phoc. of Intl. Conference on

34

Very Large Databases (VLDB)ages 953—-964, Seoul, Korea, September
2006.

[3] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom.irtroduc-
tion to ULDBs and the Trio systemlEEE Data Engineering Bulletin,
Special Issue on Probabilistic Databas@9(1):5-16, March 2006.

[4] A. Das Sarma, P. Agrawal, S. Nabar, and J. Widom. Towapdzial-
purpose indexes and statistics for uncertain dataPrbe. of the Work-
shop on Management of Uncertain Da#uckland, New Zealand, Au-
gust 2008.

[5] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Wiogkmodels
for uncertain data. IProc. of Intl. Conference on Data Engineering
(ICDE), Atlanta, Georgia, April 2006.

[6] A. Das Sarma, M. Theobald, and J. Widom. Data modificatiand ver-
sioning in Trio. Technical report, Stanford University dhfab, March
2008. Available atht t p: // dbpubs. st anf or d. edu/ pub/ 2008- 5.

[7] A. Das Sarma, M. Theobald, and J. Widom. Exploiting ligedor con-
fidence computation in uncertain and probabilistic date®adnProc.
of Intl. Conference on Data Engineering (ICDE)ancun, Mexico, April
2008.

[8] A. Das Sarma, J.D. Ullman, and J. Widom. Schema desigmuficer-
tain databases. Technical report, Stanford Universitgllab, November
2007. Available atht t p: / / dbpubs. st anf or d. edu/ pub/ 2007- 36.

[9] R. Murthy and J. Widom. Making aggregation work in uneéantand
probabilistic databases. Froc. of the Workshop on Management of Un-
certain Datg pages 76-90, Vienna, Austria, September 2007.

[10] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom, P. rawal,
O. Benjelloun, A. Das Sarma, R. Murthy, , and T. Sugihara.o-One:
Layering uncertainty and lineage on a conventional DBMSPioc. of
Conference on Innovative Data Systems Research (CExR)fic Grove,
California, 2007.

[11] TriQL: The Trio Query Language. Available from:
http://i.stanford.edu/trio.

[12] J. Widom. Trio: A system for integrated management dgadaccuracy,
and lineage. IfProc. of Conference on Innovative Data Systems Research
(CIDR), Pacific Grove, California, 2005.

