
Chapter 1

TRIO: A SYSTEM FOR DATA,
UNCERTAINTY, AND LINEAGE

Jennifer Widom
Dept. of Computer Science

Stanford University

widom@cs.stanford.edu

Abstract
This chapter covers theTrio database management system. Trio is a robust

prototype that supportsuncertain dataanddata lineage, along with the standard
features of a relational DBMS. Trio’s newULDB data model is an extension
to the relational model capturing various types of uncertainty along with data
lineage, and itsTriQL query language extends SQL with a new semantics for
uncertain data and new constructs for querying uncertaintyand lineage. Trio’s
data model and query language are implemented as a translation-based layer on
top of a conventional relational DBMS, with some stored procedures for func-
tionality and increased efficiency. Trio provides both an API and a full-featured
graphical user interface.

Acknowledgments. Contributors to the Trio project over the years include
(alphabetically) Parag Agrawal, Omar Benjelloun, Ashok Chandra, Julien Chau-
mond, Anish Das Sarma, Alon Halevy, Chris Hayworth, Ander deKeijzer,
Raghotham Murthy, Michi Mutsuzaki, Tomoe Sugihara, MartinTheobald, and
Jeffrey Ullman. Funding has been provided by the National Science Foundation
and the Boeing and Hewlett-Packard Corporations.

Introduction

Trio is a new kind of database management system (DBMS): one in which
data, uncertaintyof the data, and datalineageare all first-class citizens. Com-
bining data, uncertainty, and lineage yields a data management platform that
is useful for data integration, data cleaning, informationextraction systems,

2

scientific and sensor data management, approximate and hypothetical query
processing, and other modern applications.

The databases managed by Trio are calledULDBs, for Uncertainty-Lineage
Databases. ULDBs extend the standard relational model. Queries are ex-
pressed usingTriQL (pronounced “treacle”), a strict extension to SQL. We
have built a robust prototype system that supports a substantial fraction of the
TriQL language over arbitrary ULDBs. The remainder of this Introduction
briefly motivates the ULDB data model, the TriQL language, and the proto-
type system. Details are then elaborated in the rest of the chapter.

Examples in this chapter are based on a highly simplified “crime-solver”
application, starting with twobase tables:

Saw(witness,color,car)contains (possibly uncertain) crime ve-
hicle sightings.

Drives(driver,color,car) contains (possibly uncertain) infor-
mation about cars driven.

We will derive additional tables by posing queries over these tables.

The ULDB Data Model. Uncertainty is captured by tuples that may
include severalalternativepossible values for some (or all) of their attributes,
with optionalconfidencevalues associated with each alternative. For example,
if a witness saw a vehicle that was a blue Honda with confidence0.5, a red
Toyota with confidence 0.3, or a blue Mazda with confidence 0.2, the sight-
ing yields one tuple in tableSaw with three alternative values for attributes
color, car. Furthermore, the presence of tuples may be uncertain, again
with optionally specified confidence. For example, another witness may have
0.6 confidence that she saw a crime vehicle, but if she saw one it was definitely
a red Mazda. Based on alternative values and confidences, each ULDB repre-
sents multiplepossible-instances(sometimes calledpossible-worlds), where a
possible-instance is a regular relational database.

Lineage, sometimes calledprovenance, associates with a data item infor-
mation about its derivation. Broadly, lineage may beinternal, referring to
data within the ULDB, orexternal, referring to data outside the ULDB, or to
other data-producing entities such as programs or devices.As a simple exam-
ple of internal lineage, we may generate a tableSuspects by joining tables
Saw andDrives on attributescolor, car. Lineage associated with a value
in Suspects identifies theSaw andDrives values from which it was de-
rived. A useful feature of internal lineage is that the confidence of a value in
Suspects can be computed from the confidence of the data in its lineage
(Section 4). If we generate further tables—HighSuspects, say—by issu-
ing queries involvingSuspects (perhaps together with other data), we get
transitive lineage information: data inHighSuspects is derived from data

Trio: A System for Data,Uncertainty, and Lineage 3

in Suspects, which in turn is derived from data inSaw andDrives. Trio
supports arbitrarily complex layers of internal lineage.

As an example of external lineage, tableDrives may be populated from
various car registration databases, and lineage can be usedto connect the data
to its original source. Although Trio supports some preliminary features for
external lineage, this chapter describes internal lineageonly.

The TriQL Query Language. Section 1.5 specifies a precise generic
semantics for any relational query over a ULDB, and Section 2provides an
operational description of Trio’s SQL-based query language that conforms to
the generic semantics. Intuitively, the result of a relational queryQ on a ULDB
U is a resultR whose possible-instances correspond to applyingQ to each
possible-instance ofU . Internal lineage connects the data in resultR to the
data from which it was derived, as in theSuspects join query discussed
above. Confidence values in query results are, by default, defined in a standard
probabilistic fashion.

In addition to adapting SQL to Trio’s possible-instances semantics in a
straightforward and natural manner, TriQL includes a number of new features
specific to uncertainty and lineage:

Constructs for querying lineage, e.g., “find all witnesses contributing to
Jimmy being a high suspect.”

Constructs for querying uncertainty, e.g., “find all high-confidence sight-
ings,” or “find all sightings with at least three different possible cars.”

Constructs for querying lineage and uncertainty together.e.g., “find all
suspects whose lineage contains low-confidence sightings or drivers.”

Special types of aggregation suitable for uncertain databases, e.g., “find
the expected number of distinct suspects.”

Query-defined result confidences, e.g., combine confidence values of
joining tuples usingmaxinstead of multiplication.

Extensions to SQL’s data modification commands, e.g., to addnew al-
ternative values to an existing tuple, or to modify confidence values.

Constructs for restructuring a ULDB relation, e.g, “flatten” or reorganize
alternative values.

The Trio Prototype. The Trio prototype system is primarily layered on
top of a conventional relational DBMS. From the user and application stand-
point, the Trio system appears to be a “native” implementation of the ULDB
model, TriQL query language, and other features. However, Trio encodes the

4

Figure 1.1. TrioExplorer Screenshot.

uncertainty and lineage in ULDB databases in conventional relational tables,
and it uses a translation-based approach for most data management and query
processing. A small number of stored procedures are used forspecific func-
tionality and increased efficiency.

The Trio system offers three interfaces: a typical DBMS-style API for appli-
cations, a command-line interface calledTrioPlus, and a a full-featured graph-
ical user interface calledTrioExplorer. A small portion of the TrioExplorer in-
terface is depicted in Figure 1.1. (The screenshot shows aschema-level lineage
graph—discussed in Section 5—for a somewhat more elaborate crime-solver
application than the running example in this chapter.) The Trio prototype is
described in more detail in Section 6.

1. ULDBs: Uncertainty-Lineage Databases

The ULDB model is presented primarily through examples. A more formal
treatment appears in [2]. ULDBs extend the standard SQL (multiset) relational
model with:

1. alternative values, representing uncertainty about the contents of a tuple

2. maybe(‘?’) annotations, representing uncertainty about the presence of
a tuple

Trio: A System for Data,Uncertainty, and Lineage 5

3. numericalconfidencevalues optionally attached to alternatives

4. lineage, connecting tuple-alternatives to other tuple-alternatives from
which they were derived.

Each of these four constructs is specified next, followed by aspecification of
the semantics of relational queries on ULDBs.

1.1 Alternatives

ULDB relations have a set ofcertain attributes and a set ofuncertainat-
tributes, designated as part of the schema. Each tuple in a ULDB relation has
one value for each certain attribute, and a set of possible values for the uncer-
tain attributes. In tableSaw, letwitness be a certain attribute whilecolor
andcar are uncertain. If witness Amy saw either a blue Honda, a red Toyota,
or a blue Mazda, then in tableSaw we have:

witness (color, car)

Amy (blue,Honda) || (red,Toyota) || (blue,Mazda)

This tuple logically yields three possible-instances for tableSaw, one for each
set of alternative values for the uncertain attributes. In general, the possible-
instances of a ULDB relationR correspond to all combinations of alternative
values for the tuples inR. For example, if a second tuple inSaw had four
alternatives for(color,car), then there would be 12 possible-instances
altogether.

Designating certain versus uncertain attributes in a ULDB relation is impor-
tant for data modeling and efficient implementation. However, for presenta-
tion and formal specifications, sometimes it is useful to assume all attributes
are uncertain (without loss of expressive power). For example, in terms of
possible-instances, theSaw relation above is equivalent to:

(witness, color, car)

(Amy,blue,Honda) || (Amy,red,Toyota) || (Amy,blue,Mazda)

When treating all attributes as uncertain, we refer to the alternative values for
each tuple astuple-alternatives, or alternativesfor short. In the remainder of
the chapter we often use tuple-alternatives when the distinction between certain
and uncertain attributes is unimportant.

1.2 ‘?’ (Maybe) Annotations

Suppose a second witness, Betty, thinks she saw a car but is not sure. How-
ever, if she saw a car, it was definitely a red Mazda. In ULDBs, uncertainty
about the existence of a tuple is denoted by a ‘?’ annotation on the tuple.
Betty’s observation is thus added to tableSaw as:

6

witness (color, car)

Amy (blue,Honda) || (red,Toyota) || (blue,Mazda)
Betty (red,Mazda) ?

The ‘?’ on the second tuple indicates that this entire tuple may or may not be
present (so we call it amaybe-tuple). Now the possible-instances of a ULDB
relation include not only all combinations of alternative values, but also all
combinations of inclusion/exclusion for the maybe-tuples. ThisSaw table has
six possible-instances: three choices for Amy’s(color,car) times two
choices for whether or not Betty saw anything. For example, one possible-
instance ofSaw is the two tuples(Amy,blue,Honda),(Betty,red,
Mazda), while another instance is just(Amy,blue,Mazda).

1.3 Confidences

Numericalconfidencevalues may be attached to the alternative values in a
tuple. Suppose Amy’s confidence in seeing the Honda, Toyota,or Mazda is
0.5, 0.3, and 0.2 respectively, and Betty’s confidence in seeing a vehicle is 0.6.
Then we have:

witness (color, car)

Amy (blue,Honda):0.5 ||(red,Toyota):0.3 ||(blue,Mazda):0.2
Betty (red,Mazda):0.6 ?

Reference [2] formalizes an interpretation of these confidence values in terms
of probabilities. (Other interpretations may be imposed, but the probabilistic
one is the default for Trio.) Thus, ifΣ is the sum of confidences for the alter-
native values in a tuple, then we must haveΣ ≤ 1, and ifΣ < 1 then the tuple
must have a ‘?’. Implicitly, ‘?’ is given confidence(1 − Σ) and denotes the
probability that the tuple is not present.

Now each possible-instance of a ULDB relation itself has a probability, de-
fined as the product of the confidences of the tuple-alternatives and ‘?”s com-
prising the instance. It can be shown (see [2]) that for any ULDB relation:

1. The probabilities of all possible-instances sum to 1.

2. The confidence of a tuple-alternative (respectively a ‘?’) equals the sum
of probabilities of the possible-instances containing this alternative (re-
spectively not containing any alternative from this tuple).

An important special case of ULDBs is when every tuple has only one alter-
native with a confidence value that may be< 1. This case corresponds to the
traditional notion ofprobabilistic databases.

Trio: A System for Data,Uncertainty, and Lineage 7

In Trio each ULDB relationR is specified at the schema level as eitherwith
confidences, in which caseR must include confidence values on all of its data,
or without confidences, in which caseR has no confidence values. However,
it is permitted to mix relations with and without confidence values, both in a
database and in queries.

1.4 Lineage

Lineage in ULDBs is recorded at the granularity of alternatives: lineage
connects a tuple-alternative to those tuple-alternativesfrom which it was de-
rived. (Recall we are discussing only internal lineage in this chapter. External
lineage also can be recorded at the tuple-alternative granularity, although for
some lineage types coarser granularity is more appropriate; see [12] for a dis-
cussion.) Specifically, lineage is defined as a functionλ over tuple-alternatives:
λ(t) is a boolean formula over the tuple-alternatives from whichthe alternative
t was derived.

Consider again the join ofSaw andDrives on attributescolor,car, fol-
lowed by a projection ondriver to produce a tableSuspects(person).
Assume all attributes inDrives are uncertain. (Although not shown in the
tiny sample data below, we might be uncertain what car someone drives, or
for a given car we might be uncertain who drives it.) Let column ID contain
a unique identifier for each tuple, and let(i, j) denote thejth tuple-alternative
of the tuple with identifieri. (That is,(i, j) denotes the tuple-alternative com-
prised ofi’s certain attributes together with thejth set of alternative values
for its uncertain attributes.) Here is some sample data for all three tables, in-
cluding lineage formulas for the derived data inSuspects. For example, the
lineage of the Jimmy tuple-alternative in tableSuspects is a conjunction of
the second alternative ofSaw tuple 11 with the second alternative ofDrives
tuple 21.

Saw
ID witness (color, car)

11 Cathy (blue,Honda) || (red,Mazda)

Drives
ID Drives (driver, color, car)

21 (Jimmy,red,Honda) || (Jimmy,red,Mazda)
22 (Billy,blue,Honda)
23 (Hank,red,Mazda)

?

Suspects
ID person

31 Jimmy
32 Billy
33 Hank

? λ (31,1) = (11,2)∧ (21,2)
? λ (32,1) = (11,1)∧ (22,1)
? λ (33,1) = (11,2)∧ (23,1)

8

An interesting and important effect of lineage is that it imposes restrictions
on the possible-instances of a ULDB: A tuple-alternative with lineage can be
present in a possible-instance only if its lineage formula is satisfied by the
presence (or, in the case of negation, absence) of other alternatives in the same
possible-instance. Consider the derived tableSuspects. Even though there
is a ‘?’ on each of its three tuples, not all combinations are possible. If Jimmy
is present inSuspects then alternative 2 must be chosen for tuple 11, and
therefore Hank must be present as well. Billy is present inSuspects only if
alternative 1 is chosen for tuple 11, in which case neither Jimmy nor Hank can
be present.

Thus, once a ULDB relationR has lineage to other relations, it is possible
that not all combinations of alternatives and ‘?’ choices inR correspond to
valid possible-instances. The above ULDB has six possible-instances, deter-
mined by the two choices for tuple 11 times the three choices (including ‘?’)
for tuple 21.

Now suppose we have an additional base table,Criminals, containing a
list of known criminals, shown below. JoiningSuspectswith Criminals
yields theHighSuspects table on the right:

Criminals HighSuspects
ID person

41 Jimmy
42 Frank
43 Hank

ID person

51 Jimmy
52 Hank

? λ (51,1) = (31,1)∧ (41,1)
? λ (52,1) = (33,1)∧ (43,1)

Now we have multilevel (transitive) lineage relationships, e.g., λ(51, 1) =
(31, 1)∧ (41, 1) andλ(31, 1) = (11, 2)∧ (21, 2). Lineage formulas specify di-
rect derivations, but when the alternatives in a lineage formula are themselves
derived from other alternatives, it is possible to recursively expand a lineage
formula until it specifies base alternatives only. (Since weare not consider-
ing external lineage, base data has no lineage of its own.) Asa very simple
example,λ(51, 1)’s expansion is((11, 2) ∧ (21, 2)) ∧ (41, 1).

Note that arbitrary lineage formulas may not “work” under our model—
consider for example a tuple with one alternative and no ‘?’ whose lineage
(directly or transitively) includes the conjunction of twodifferent alternatives
of the same tuple. The tuple must exist because it doesn’t have a ‘?’, but it can’t
exist because its lineage formula can’t be satisfied. Reference [2] formally de-
fineswell-behavedlineage (which does not permit, for example, the situation
just described), and shows that internal lineage generatedby relational queries
is always well-behaved. Under well-behaved lineage, the possible-instances
of an entire ULDB correspond to the possible-instances of the base data (data
with no lineage of its own), as seen in the example above. Withwell-behaved
lineage our interpretation of confidences carries over directly: combining con-
fidences on the base data determines the probabilities of thepossible-instances,

Trio: A System for Data,Uncertainty, and Lineage 9

Figure 1.2. Relational Queries on ULDBs.

just as before. The confidence values associated with derived data items are
discussed later in Section 4.

Finally, note that lineage formulas need not be conjunctive. As one ex-
ample, supposeDrives tuple 23 containedBilly instead ofHank, and the
Suspects query performed duplicate-eliminating projection. Then the query
result is:

ID person

61 Jimmy
62 Billy

? λ (61,1) = (11,2)∧ (21,2)
λ (62,1) = ((11,1)∧ (22,1))∨ ((11,2)∧ (23,1))

Note that the lineage formula for tuple 62 is always satisfiedsince one alter-
native of base tuple 11 must always be picked. Thus, there is no ‘?’ on the
tuple.

1.5 Relational Queries

In this section we formally define the semantics of any relational query over
a ULDB. Trio’s SQL-based query language will be presented inSection 2. The
semantics for relational queries over ULDBs is quite straightforward but has
two parts: (1) the possible-instances interpretation; and(2) lineage in query
results.

Refer to Figure 1.2. Consider a ULDBD whose possible-instances are
D1,D2, . . . ,Dn, as shown on the left side of the figure. If we evaluate a
query Q on D, the possible-instances in the result ofQ should beQ(D1),
Q(D2), . . ., Q(Dn), as shown in the lower-right corner. For example, if a
queryQ joins tablesSaw andDrives, then logically it should join all of the
possible-instances of these two ULDB relations. Of course we would never
actually generate all possible-instances and operate on them, so a query pro-
cessing algorithm follows the top arrow in Figure 1.2, producing a query result
Q(D) that represents the possible-instances.

A ULDB query resultQ(D) contains the original relations ofD, together
with a newresult relationR. Lineage fromR into the relations ofD reflects

10

the derivation of the data inR. This approach is necessary forQ(D) to repre-
sent the correct possible-instances in the query result, and to enable consistent
further querying of the original and new ULDB relations. (Technically, the
possible-instances in the lower half of Figure 1.2 also contain lineage, but this
aspect is not critical here; formal details can be found in [2].) The example in
the previous subsection, withSuspects as the result of a query joiningSaw
andDrives, demonstrates the possible-instances interpretation, and lineage
from query result to original data.

The ULDB model and the semantics of relational queries over it has been
shown (see [2]) to exhibit two desirable and important properties:

Completeness:Any finite set of possible-instances conforming to a sin-
gle schema can be represented as a ULDB database.

Closure: The result of any relational query over any ULDB database
can be represented as a ULDB relation.

2. TriQL: The Trio Query Language

This section describesTriQL, Trio’s SQL-based query language. Except for
some additional features described later, TriQL uses the same syntax as SQL.
However, the interpretation of SQL queries must be modified to reflect the
semantics over ULDBs discussed in the previous section.

As an example, the join query producingSuspects is written in TriQL
exactly as expected:

SELECT Drives.driver as person INTO Suspects
FROM Saw, Drives
WHERE Saw.color = Drives.color AND Saw.car = Drives.car

If this query were executed as regular SQL over each of the possible-instances
of Saw andDrives, as in the lower portion of Figure 1.2, it would produce
the expected set of possible-instances in its result. More importantly, follow-
ing the operational semantics given next, this query produces a result table
Suspects, including lineage to tablesSaw andDrives, that correctly rep-
resents those possible-instances.

This section first specifies an operational semantics for basic SQL query
blocks over arbitrary ULDB databases. It then introduces a number of addi-
tional TriQL constructs, with examples and explanation foreach one.

2.1 Operational Semantics

We provide an operational description of TriQL by specifying direct evalua-
tion of a generic TriQL query over a ULDB, corresponding to the upper arrow
in Figure 1.2. We specify evaluation of single-block queries:

Trio: A System for Data,Uncertainty, and Lineage 11

SELECT attr-list [INTO new-table]
FROM T1, T2, ..., Tn
WHERE predicate

The operational semantics of additional constructs are discussed later, when
the constructs are introduced. Note that in TriQL, the result of a query has
confidence values only if all of the tables in the query’sFROM clause have
confidence values. (Sections 2.8 and 2.9 introduce constructs that can be used
in theFROM clause to logically add confidence values to tables that otherwise
don’t have them.)

Consider the generic TriQL query block above; call itQ. Let schema(Q)
denote the compositionschema(T1) ⊎ schema(T2) ⊎ · · · ⊎ schema(Tn) of the
FROM relation schemas, just as in SQL query processing. Thepredicate
is evaluated over tuples inschema(Q), and theattr-list is a subset of
schema(Q) or the symbol “*”, again just as in SQL.

The steps below are an operational description of evaluating the above query
block. As in SQL database systems, a query processor would rarely execute
the simplest operational description since it could be woefully inefficient, but
any query plan or execution technique (such as our translation-based approach
described in Section 6) must produce the same result as this description.

1 Consider every combinationt1, t2, . . . , tn of tuples inT1, T2,. . . , Tn,
one combination at a time, just as in SQL.

2 Form a “super-tuple”T whose tuple-alternatives have schemaschema(Q).
T has one alternative for each combination of tuple-alternatives in t1,
t2, . . ., tn.

3 If any of t1, t2, . . . , tn has a ‘?’, add a ‘?’ toT .

4 Set the lineage of each alternative inT to be the conjunction of the al-
ternativest1, t2, . . ., tn from which it was constructed.

5 Retain fromT only those alternatives satisfying thepredicate. If
no alternatives satisfy the predicate, we’re finished withT . If any al-
ternative does not satisfy the predicate, add a ‘?’ toT if it is not there
already.

6 If T1, T2,. . . , Tn are all tables with confidence values, then either
compute the confidence values forT ’s remaining alternatives and store
them (immediate confidence computation), or set the confidence values
to NULL (lazy confidence computation). See Sections 2.8 and 4 for fur-
ther discussion.

7 Project each alternative ofT onto the attributes inattr-list, gener-
ating a tuple in the query result. If there is anINTO clause, insertT into
tablenew-table.

12

It can be verified easily that this operational semantics produces theSuspects
result table shown with example data in Section 1.4. More generally it con-
forms to the “square diagram” (Figure 1.2) formal semanticsgiven in Section
1.5. Later we will introduce constructs that do not conform to the square dia-
gram because they go beyond relational operations.

Note that this operational semantics generates result tables in which, by
default, all attributes are uncertain—it constructs result tuples from full tuple-
alternatives. In reality, it is fairly straightforward to deduce statically, based
on a query and the schemas of its input tables (specifically which attributes are
certain and which are uncertain), those result attributes that are guaranteed to
be certain. For example, if we joinedSaw andDrives without projection,
attributewitness in the result would be certain.

2.2 Querying Confidences

TriQL provides a built-in functionConf() for accessing confidence val-
ues. Suppose we want ourSuspects query to only use sightings having
confidence> 0.5 and drivers having confidence> 0.8. We write:

SELECT Drives.driver as person INTO Suspects
FROM Saw, Drives
WHERE Saw.color = Drives.color AND Saw.car = Drives.car

AND Conf(Saw) > 0.5 AND Conf(Drives) > 0.8

In the operational semantics, when we evaluate thepredicate over the al-
ternatives inT in step 6,Conf(Ti) refers to the confidence associated with
the ti component of the alternative being evaluated. Note that this function
may trigger confidence computations if confidence values arebeing computed
lazily (recall Section 2.1).

FunctionConf() is more general than as shown by the previous example—
it can take any number of the tables appearing in theFROM clause as arguments.
For example,Conf(T1,T3,T5) would return the “joint” confidence of the
t1, t3, and t5 components of the alternative being evaluated. Ift1, t3, and
t5 are independent, their joint confidence is the product of their individual
confidences. If they are nonindependent—typically due to shared lineage—
then the computation is more complicated, paralleling confidence computation
for query results discussed in Section 4 below. As a special case,Conf(*) is
shorthand forConf(T1,T2,...,Tn), which normally corresponds to the
confidence of the result tuple-alternative being constructed.

2.3 Querying Lineage

For querying lineage, TriQL introduces a built-in predicate designed to be
used as a join condition. If we include predicateLineage(T1, T2) in the
WHERE clause of a TriQL query with ULDB tablesT1 and T2 in its FROM

Trio: A System for Data,Uncertainty, and Lineage 13

clause, then we are constraining the joinedT1 andT2 tuple-alternatives to be
connected, directly or transitively, by lineage. For example, suppose we want
to find all witnesses contributing to Hank being a high suspect. We can write:

SELECT S.witness
FROM HighSuspects H, Saw S
WHERE Lineage(H,S) AND H.person = ’Hank’

In theWHERE clause,Lineage(H,S) evaluates to true for any pair of tuple-
alternativest1 and t2 from HighSuspects andSaw such thatt1’s lineage
directly or transitively includest2. Of course we could write this query directly
on the base tables if we remembered howHighSuspectswas computed, but
theLineage()predicate provides a more general construct that is insensitive
to query history.

Note that the theLineage() predicate does not take into account the
structure of lineage formulas:lineage(T1, T2) is true for tuple-alternatives
t2 andt2 if and only if, when we expandt1’s lineage formula using the lineage
formulas of its components,t2 appears at some point in the expanded formula.
Effectively, the predicate is testing whethert2 had any effect ont1.

Here is a query that incorporates both lineage and confidence; it also demon-
strates the “==>” shorthand for theLineage() predicate. The query finds
persons who are suspected based on high-confidence driving of a Honda:

SELECT Drives.driver
FROM Suspects, Drives
WHERE Suspects ==> Drives

AND Drives.car = ’Honda’ AND Conf(Drives) > 0.8

2.4 Duplicate Elimination

In ULDBs, duplicates may appear “horizontally”—when multiple alterna-
tives in a tuple have the same value—and “vertically”—when multiple tuples
have the same value for one or more alternatives. As in SQL,DISTINCT is
used to merge vertical duplicates. A new keywordMERGED is used to merge
horizontal duplicates. In both cases, merging can be thought of as an additional
final step in the operational evaluation of Section 2.1. (DISTINCT subsumes
MERGED, so the two options never co-occur.)

As a very simple example of horizontal merging, consider thequery:

SELECT MERGED Saw.witness, Saw.color FROM Saw

The query result on our sample data with confidences (recall Section 1.3) is:

witness color

Amy blue:0.7 || red:0.3
Betty red: 0.6 ?

14

Without merging, the first result tuple would have twoblue alternatives with
confidence values 0.5 and 0.2. Note that confidences are summed when hori-
zontal duplicates are merged. In terms of the formal semantics in Section 1.5,
specifically the square diagram of Figure 1.2, merging horizontal duplicates in
the query answer on the top-right of the square corresponds cleanly to merging
duplicate possible-instances on the bottom-right.

A query with vertical duplicate-elimination was discussedat the end of Sec-
tion 1.4, whereDISTINCTwas used to motivate lineage with disjunction.

2.5 Aggregation

For starters, TriQL supports standard SQL grouping and aggregation fol-
lowing the relational possible-instances semantics of Section 1.5. Consider the
following query over theDrives data in Section 1.4:

SELECT car, COUNT(*) FROM Drives GROUP BY car

The query result is:

ID car count

71 Honda 1 || 2
72 Mazda 1 || 2

λ(71,1) =(22, 1) ∧ ¬ (21, 1)
λ(71,2) =(21, 1) ∧ (22, 1)
λ(72,1) =(23, 1) ∧ ¬ (21, 2)
λ(72,2) =(21, 2) ∧ (23, 1)

Note that attributecar is a certain attribute, since we’re grouping by it. Also
observe that lineage formulas in this example include negation.

In general, aggregation can be an exponential operation in ULDBs (and in
other data models for uncertainty): the aggregate result may be different in ev-
ery possible-instance, and there may be exponentially manypossible-instances.
(Consider for exampleSUM over a table comprised of 10 maybe-tuples. The
result has210 possible values.) Thus, TriQL includes three additional options
for aggregate functions: alow bound, ahigh bound, and anexpectedvalue;
the last takes confidences into account when present. Consider for example
the following two queries over theSaw data with confidences from Section
1.3. Aggregate functionECOUNT asks for the expected value of theCOUNT
aggregate.

SELECT color, COUNT(*) FROM Saw GROUP BY car
SELECT color, ECOUNT(*) FROM Saw GROUP BY car

The answer to the first query (omitting lineage) considers all possible-instances:

color count

blue 1:0.7
red 1:0.54 || 2:0.18

?
?

Trio: A System for Data,Uncertainty, and Lineage 15

The ‘?’ on each tuple intuitively corresponds to a possible count of 0. (Note
that zero counts never appear in the result of a SQLGROUP BY query.) The
second query returns just one expected value for each group:

color ecount

blue 0.7
red 0.9

It has been shown (see [9]) that expected aggregates are equivalent to taking
the weighted average of the alternatives in the full aggregate result (also taking
zero values into account), as seen in this example. Similarly, low and high
bounds for aggregates are equivalent to the lowest and highest values in the
full aggregate result.

In total, Trio supports 20 different aggregate functions: four versions (full,
low, high, andexpected) for each of the five standard functions (count, min,
max, sum, avg).

2.6 Reorganizing Alternatives

TriQL has two constructs for reorganizing the tuple-alternatives in a query
result:

Flatten turns each tuple-alternative into its own tuple.

GroupAltsregroups tuple-alternatives into new tuples based on a set of
attributes.

As simple examples, and omitting lineage (which in both cases is a straight-
forward one-to-one mapping from result alternatives to source alternatives),
“SELECT FLATTEN * FROM Saw” over the simple one-tupleSaw table from
Section 1.4 gives:

witness color car

Cathy blue Honda
Cathy red Mazda

?
?

and “SELECT GROUPALTS(color,car)* FROM Drives” gives:

color car person

red Honda Jimmy
red Mazda Jimmy || Hank
blue Honda Billy

?

With GROUPALTS, the specified grouping attributes are certain attributes in
the answer relation. For each set of values for these attributes, the correspond-
ing tuple in the result contains the possible values for the remaining (uncertain)

16

attributes as alternatives. ‘?’ is present whenever all of the tuple-alternatives
contributing to the result tuple are uncertain.
FLATTEN is primarily a syntactic operation—if lineage is retained (i.e., if

the query does not also specifyNoLineage, discussed below), then there
is no change to possible-instances as a result of includingFLATTEN in a
query. GROUPALTS, on the other hand, may drastically change the possible-
instances; it does not fit cleanly into the formal semantics of Section 1.5.

2.7 Horizontal Subqueries

“Horizontal” subqueries in TriQL enable querying across the alternatives
that comprise individual tuples. As a contrived example, wecan select from
tableSaw all Honda sightings where it’s also possible the sighting was a car
other than a Honda (i.e., all Honda alternatives with a non-Honda alternative
in the same tuple).

SELECT * FROM Saw
WHERE car = ’Honda’ AND EXISTS [car <> ’Honda’]

Over the simple one-tupleSaw table from Section 1.4, the query returns just
the first tuple-alternative,(Cathy,blue,Honda), of tuple 11.

In general, enclosing a subquery in[] instead of() causes the subquery
to be evaluated over the “current” tuple, treating its alternatives as if they are
a relation. Syntactic shortcuts are provided for common cases, such as simple
filtering predicates as in the example above. More complex uses of horizontal
subqueries introduce a number of subtleties; full details and numerous exam-
ples can be found in [11]. By their nature, horizontal subqueries query “across”
possible-instances, so they do not follow the square diagram of Figure 1.2; they
are defined operationally only.

2.8 Query-Defined Result Confidences

A query result includes confidence values only if all of the tables in itsFROM
clause have confidence values. To assign confidences to a tableT for the pur-
pose of query processing, “UNIFORM T” can be specified in theFROM clause,
in which case confidence values are logically assigned across the alternatives
and ’?’ in each ofT ’s tuples using a uniform distribution.

Result confidence values respect a probabilistic interpretation, and they are
computed by the system on-demand. (A “COMPUTE CONFIDENCES” clause
can be added to a query to force confidence computation as partof query exe-
cution.) Algorithms for confidence computation are discussed later in Section
4. A query can override the default result confidence values,or add confidence
values to a result that otherwise would not have them, by assigning values in
its SELECT clause to the reserved attribute nameconf. Furthermore, a spe-
cial “value” UNIFORM may be assigned, in which case confidence values are

Trio: A System for Data,Uncertainty, and Lineage 17

assigned uniformly across the alternatives and ’?’ (if present) of each result
tuple.

As an example demonstrating query-defined result confidences as well as
UNIFORM in theFROM clause, suppose we generate suspects by joining the
Saw table with confidences from Section 1.3 with theDrives table from
Section 1.4. We decide to add uniform confidences to tableDrives, and we
prefer result confidences to be the lesser of the two input confidences, instead
of their (probabilistic) product. Assuming a built-in function lesser, we
write:

SELECT person, lesser(Conf(Saw),Conf(Drives)) AS conf
FROM Saw, UNIFORM Drives
WHERE Saw.color = Drives.color AND Saw.car = Drives.car

Let the two tuples in tableSaw from Section 1.3 have IDs 81 and 82. The
query result, including lineage, is:

ID person

91 Billy:0.5
92 Jimmy:0.333
93 Hank:0.6

? λ (91,1) = (81,1)∧ (22,1)
? λ (92,1) = (82,1)∧ (21,2)
? λ (93,1) = (82,1)∧ (23,1)

With probabilistic confidences,Jimmy would instead have confidence 0.2.
Had we usedgreater() instead oflesser(), the three confidence val-
ues would have been 1.0, 0.6, and 1.0 respectively.

With the “AS Conf” feature, it is possible to create confidence values in
a tuple whose sum exceeds 1. (“1.1 AS Conf,” assigning confidence value
1.1 to each result tuple-alternative, is a trivial example.) Although the Trio
prototype does not forbid this occurrence, a warning is issued, and anomalous
behavior with respect to confidence values—either the newlycreated values,
or later ones that depend on them—may subsequently occur.

2.9 Other TriQL Query Constructs

TriQL contains a number of additional constructs not elaborated in detail in
this chapter, as follows. For comprehensive coverage of theTriQL language,
see [11].

TriQL is a strict superset of SQL, meaning that (in theory at least) every
SQL construct is available in TriQL: subqueries, set operators, like
predicates, and so on. Since SQL queries are relational, thesemantics
of any SQL construct over ULDBs follows the semantics for relational
queries given in Section 1.5.

One SQL construct not strictly relational isOrder By. TriQL includes
Order By, but only permits ordering by certain attributes and/or the

18

special “attribute”Confidences, which for ordering purposes corre-
sponds to the total confidence value (excluding ‘?’) in each result tuple.

In addition to built-in functionConf() and predicateLineage(),
TriQL offers a built-in predicateMaybe(). In a query,Maybe(T) re-
turns true if and only if the tuple-alternative from tableT being evaluated
is part of a maybe-tuple, i.e., its tuple has a ‘?’.

Horizontal subqueries (Section 2.7) are most useful in theFROM clause,
but they are permitted in theSELECT clause as well. For example, the
query “SELECT [COUNT(*)] FROM Saw” returns the number of al-
ternatives in each tuple of theSaw table.

As discussed in Section 2.8, preceding a tableT in theFROM clause with
keyword UNIFORM logically assigns confidence values to the tuple-
alternatives inT for the duration of the query, using a uniform distri-
bution. Similarly, “UNIFORM AS conf” in the SELECT clause assigns
confidence values to query results using a uniform distribution. Another
option for both uses is keywordSCALED. In this case, tableT (respec-
tively result tuples) must already have confidence values, but they are
scaled logically for the duration of the query (respectively in the query
result) so each tuple’s total confidence is 1 (i.e., ?’s are removed). For
example, if a tuple has two alternatives with confidence values 0.3 and
0.2, theSCALED confidences would be 0.6 and 0.4.

Finally, three query qualifiers,NoLineage, NoConf, andNoMaybe
may be used to signal that the query result should not includelineage,
confidence values, or ?’s, respectively.

3. Data Modifications in Trio

Data modifications in Trio are initiated using TriQL’sINSERT, DELETE,
andUPDATE commands, which are in large part analogous to those in SQL.
Additional modifications specific to the ULDB model are supported by ex-
tensions to these commands. The three statement types are presented in the
following three subsections, followed by a discussion of how Trio incorporates
versioningto support data modifications in the presence of derived relations
with lineage.

3.1 Inserts

Inserting entirely new tuples into a ULDB poses no unusual semantic issues.
(Inserting new alternatives into existing tuples is achieved through theUPDATE
command, discussed below.) Trio supports both types of SQLINSERT com-
mands:

Trio: A System for Data,Uncertainty, and Lineage 19

INSERT INTO table-name VALUES tuple-spec
INSERT INTO table-name subquery

The tuple-spec uses a designated syntax to specify a complete Trio tu-
ple to be inserted, including certain attributes, alternative values for uncertain
attributes, confidence values, and/or ‘?,’ but no lineage. The subquery is
any TriQL query whose result tuples are inserted, together with their lineage
(unlessNoLineage is specified in the subquery; Section 2.9).

3.2 Deletes

Deletion also follows standard SQL syntax:

DELETE FROM table-name WHERE predicate

This command deletes each tuple-alternative satisfying the predicate.
(Deleting a tuple-alternative is equivalent to deleting one alternative for the
uncertain attributes; Section 1.1.) If all alternatives ofa tuple are deleted, the
tuple itself is deleted. A special qualifier “AdjConf” can be used to redis-
tribute confidence values on tuples after one or more alternatives are deleted;
withoutAdjConf, deleted confidence values implicitly move to ’?.’

3.3 Updates

In addition to conventional updates, the TriQLUPDATE command supports
updating confidence values, adding and removing ‘?’s, and inserting new al-
ternatives into existing tuples. Consider first the standard SQLUPDATE com-
mand:

UPDATE table-name SET attr-list = expr-list WHERE predicate

This command updates every tuple-alternative satisfying thepredicate, set-
ting each attribute in theattr-list to the result of the corresponding ex-
pression in theexpr-list.

There is one important restriction regarding the combination of certain and
uncertain attributes. Consider as an example the followingcommand, intended
to rename as “Doris” every witness who saw a blue Honda:

UPDATE Saw SET witness = ’Doris’
WHERE color = ’blue’ AND car = ’Honda’

In the Saw table of Section 1.1, theWHERE predicate is satisfied by some
but not all of the(color,car) alternatives for witnessAmy. Thus, it isn’t
obvious whetherAmy should be be modified. Perhaps the best solution would
be to convertwitness to an uncertain attribute:

(witness,color, car)

(Doris,blue,Honda) || (Amy,red,Toyota) || (Amy,blue,Mazda)

20

However, Trio treats attribute types (certain versus uncertain) as part of the
fixed schema, declared atCREATE TABLE time. A similar ambiguity can
arise if the expression on the right-hand-side of theSET clause for a certain at-
tribute produces different values for different alternatives. Hence,UPDATE
commands are permitted to modify certain attributes only ifall references
to uncertain attributes, functionConf(), and predicateLineage() in the
WHERE predicate, and in everySET expression corresponding to a certain at-
tribute, occur within horizontal subqueries. This restriction ensures that the
predicate and the expression always evaluate to the same result for all alter-
natives of a tuple. For our example, the following similar-looking command
updates every witness whomayhave seen a blue Honda to be named “Doris”:

UPDATE Saw SET witness = ’Doris’
WHERE [color = ’blue’ AND car = ’Honda’]

To update confidence values, the special attributeconf may be specified
in theattr-list of theUPDATE command. As with query-defined result
confidences (Section 2.8), there is no guarantee after modifying conf that
confidence values in a tuple sum to≤ 1; a warning is issued when they don’t,
and anomalous behavior may subsequently occur. Finally, the special key-
wordsUNIFORM or SCALED may be used as the expression corresponding
to attributeconf in theSET clause, to modify confidence values across each
tuple using uniform or rescaled distributions—analogous to the use of these
keywords with “AS Conf” (Sections 2.8 and 2.9).

A variation on theUPDATE command is used to add alternatives to existing
tuples:

UPDATE table-name ALTINSERT expression WHERE predicate

To ensure thepredicate either holds or doesn’t on entire tuples, once again
all references to uncertain attributes,Conf(), andLineage() must occur
within horizontal subqueries. For each tuple satisfying the predicate, alterna-
tives are added to the tuple, based on the result of evaluating theexpression.
Like the INSERT command (Section 3.1), the expression can be “VALUES
tuple-spec” to specify a single alternative, or a subquery producing zero or
more alternatives. Either way, the schema of the alternatives to add must match
the schema of the table’s uncertain attributes only. If adding alternatives to an
existing tuple creates duplicates, by default horizontal duplicate-elimination
does not occur, but it can be triggered by specifyingUPDATE MERGED. As
with other constructs that affect confidence values, creating tuples whose con-
fidences sum to> 1 results in a warning.

Finally, the following self-explanatoryUPDATE commands can be used to
add and remove ?’s. These commands may only be applied to tables without
confidences, and once again, in thepredicate all references to uncertain
attributes,Conf(), andLineage()must be within horizontal subqueries.

Trio: A System for Data,Uncertainty, and Lineage 21

UPDATE table-name ADDMAYBE WHERE predicate
UPDATE table-name DELMAYBE WHERE predicate

3.4 Data Modifications and Versioning

Trio query results include lineage identifying the input data from which the
results were derived. Lineage is not only a user-level feature—it is needed for
on-demand confidence computation, and it is critical for capturing the correct
possible-instances in a query result (Section 1.4).

Suppose we run ourSuspects query, store the result, then modifications
occur to some alternatives in tableSaw that are referenced by lineage in table
Suspects. There are two basic options for handling such modifications:

(1) Propagatemodifications to all derived tables, effectively turning query
results into materialized views.

(2) Don’t propagatemodifications, allowing query results to become “stale”
with respect to the data from which they were derived originally.

Option (1) introduces a variation on the well-knownmaterialized view main-
tenance problem. It turns out Trio’s lineage feature can be used here for broad
applicability and easy implementation of the most efficientknown techniques;
see [6].

With option (2), after modifications occur, lineage formulas may contain
incorrect or “dangling” pointers. Trio’s solution to this problem is to introduce
a lightweightversioningsystem: Modified data is never removed, instead it
remains in the database as part of a previous version. The lineage formula
for a derived tuple-alternativet may refer to alternatives in the current version
and/or previous versions, thus accurately reflecting the data from whicht was
derived. Details of Trio’s versioning system and how it interacts with data
modifications and lineage can be found in [6].

4. Confidence Computation

Computing confidence values for query results is one of the most interesting
and challenging aspects of Trio. In general, efficient computation of correct
result confidence values in uncertain and probabilistic databases is known to
be a difficult problem. Trio uses two interrelated techniques to address the
problem:

1. By default, confidence values are not computed during query evaluation.
Instead, they are computed on demand: when requested through one of
Trio’s interfaces, or as needed for further queries. This approach has two
benefits: (a) Computing confidence values as part of query evaluation
constrains how queries may be evaluated, while lazy computation frees

22

the system to select any valid relational query execution plan. (See [7]
for detailed discussion.) (b) If a confidence value is never needed, its
potentially expensive computation is never performed.

2. On-demand confidence computation is enabled by Trio’s lineage feature.
Specifically, the confidence of an alternative in a query result can be
computed through lineage, as described below. Furthermore, a number
of optimizations are possible to speed up the computation, also discussed
below.

Suppose a queryQ is executed producing a result tableT , and consider
tuple-alternativet in T . Assume all tables in queryQ have confidence values
(perhaps not yet computed), sot should have a confidence value as well. For-
mally, the confidence value assigned tot should represent the total probability
of the possible-instances of result tableT that contain alternativet (recall Sec-
tion 1.3). It has been shown (see [7]) that this probability can be computed as
follows:

1. Expandt’s lineage formula recursively until it refers to base alternatives
only: If λ(t) refers to base alternatives only, stop. Otherwise, pick oneti
in λ(t) that is not a base alternative, replaceti with (λ(ti)), and continue
expanding.

2. Let f be the expanded formula from step 1. Iff contains any sets
t1, . . . , tn of two or more alternatives from the same tuple (a possible
but unlikely case), thent1, . . . , tn’s confidence values are modified for
the duration of the computation, and clauses are added tof to encode
their mutual exclusion; details are given in [7].

3. The confidence value for alternativet is the probability of formulaf
computed using the confidence values for the base alternatives compris-
ing f .

It is tempting to expand formulaλ(t) in step 1 only as far as needed to
obtain confidence values for all of the alternatives mentioned in the formula.
However, expanding to the base alternatives is required forcorrectness in the
general case. Consider for example the following scenario,wheret3, t4, and
t5 are base alternatives.

λ(t) = t1 ∧ t2 λ(t1) = t3 ∧ t4 λ(t2) = t3 ∧ t5

Conf(t3) = Conf(t4) = Conf(t5) = 0.5

Based on the specified confidences, we haveConf(t1) = Conf(t2) = 0.25.
If we computedConf(t) usingt1 ∧ t2 we would get 0.0625, whereas the cor-
rect value expanding to the base alternatives is 0.125. As this example demon-
strates, lineage formulas must be expanded all the way to base alternatives
because derived alternatives may not be probabilisticallyindependent.

Trio: A System for Data,Uncertainty, and Lineage 23

Trio incorporates some optimizations to the basic confidence-computation
algorithm just described:

Whenever confidence values are computed, they arememoizedfor future
use.

There are cases when it is not necessary to expand a lineage formula all
the way to its base alternatives. At any point in the expansion, if all of the
alternatives in the formula are known to be independent, andtheir confi-
dences have already been computed (and therefore memoized), there is
no need to go further. Even when confidences have not been computed,
independence allows the confidence values to be computed separately
and then combined, typically reducing the overall complexity. Although
one has to assume nonindependence in the general case, independence
is common and often can be easy to deduce and check, frequently at the
level of entire tables.

We have developed algorithms forbatch confidence computation that
are implemented through SQL queries. These algorithms are appropriate
and efficient when confidence values are desired for a significant portion
of a result table.

Reference [7] provides detailed coverage of the confidence-computation prob-
lem, along with our algorithms, optimizations, implementation in the Trio pro-
totype.

5. Additional Trio Features

TriQL queries and data modifications are the typical way of interacting with
Trio data, just as SQL is used in a standard relational DBMS. However, uncer-
tainty and lineage in ULDBs introduce some interesting features beyond just
queries and modifications.

Lineage. As TriQL queries are executed and their results are stored, and ad-
ditional queries are posed over previous results, complex lineage relationships
can arise. Data-level lineage is used for confidence computation (Section 4)
andLineage() predicates; it is also used forcoexistence checksandextra-
neous data removal, discussed later in this section. TheTrioExplorergraphical
user interface supports data-level lineage tracing through special buttons next
to each displayed alternative; the textual and API interfaces provide corre-
sponding functionality.

Trio also maintains a schema-level lineage graph (specifically a DAG), with
tables as nodes and edges representing lineage relationships. This graph is
used when translating queries withLineage() predicates (Section 6.7), and

24

for determining independence to optimize confidence computation (Section 4).
This graph also is helpful for for users to understand the tables in a database
and their interrelationships. A schema-level lineage graph was depicted in the
Figure 1.1 screenshot showing theTrioExplorer interface.

Coexistence Checks. A user may wish to select a set of alternatives from
one or more tables and ask whether those alternatives can allcoexist. Two
alternatives from the same tuple clearly cannot coexist, but the general case
must take into account arbitrarily complex lineage relationships as well as tuple
alternatives. For example, if we asked about alternatives (11,2) and (32,1) in
our sample database of Section 1.4, the system would tell us these alternatives
cannot coexist.

Checking coexistence is closely related to confidence computation. To check
if alternativest1 andt2 can coexist, we first expand their lineage formulas to
reference base alternatives only, as in step 1 of confidence computation (Sec-
tion 4). Call the expanded formulasf1 andf2. Let f3 be an additional formula
that encodes mutual exclusion of any alternatives from the same tuple appear-
ing in f1 and/orf2, as in step 2 of confidence computation. Thent1 andt2 can
coexist if and only if formulaf1 ∧ f2 ∧ f3 is satisfiable. Note that an equiv-
alent formulation of this algorithm creates a “dummy” tuplet whose lineage
is t1 ∧ t2. Thent1 andt2 can coexist if and only ifConf(t) > 0. This for-
mulation shows clearly the relationship between coexistence and confidence
computation, highlighting in particular that our optimizations for confidence
computation in Section 4 can be used for coexistence checks as well.

Extraneous Data Removal. The natural execution of TriQL queries
can generateextraneous data: an alternative is extraneous if it can never be
chosen (i.e., its lineage requires presence of multiple alternatives that cannot
coexist); a ‘?’ annotation is extraneous if its tuple is always present. It is
possible to check for extraneous alternatives and ?’s immediately after query
execution (and, sometimes, as part of query execution), butchecking can be
expensive. Because we expect extraneous data and ?’s to be relatively uncom-
mon, and users may not be concerned about them, by default Trio supports
extraneous data removal as a separate operation, similar togarbage collection.

Like coexistence checking, extraneous data detection is closely related to
confidence computation: An alternativet is extraneous if and only ifConf(t) =
0. A ‘?’ on a tupleu is extraneous if and only if the confidence values for all
of u’s alternatives sum to 1.

6. The Trio System

Figure 1.3 shows the basic three-layer architecture of the Trio system. The
core system is implemented in Python and mediates between the underlying re-

Trio: A System for Data,Uncertainty, and Lineage 25

Standard relational DBMS

Trio API and translator
(Python)

Trio API and translator
(Python)

Command-line
client

Command-line
client

Trio
Metadata

TrioExplorer
(GUI client)

TrioExplorer
(GUI client)

Trio Stored
Procedures

Encoded
Data Tables

Lineage
Tables

Standard SQL

Figure 1.3. Trio Basic System Architecture.

lational DBMS and Trio interfaces and applications. The Python layer presents
a simple Trio API that extends the standard Python DB 2.0 API for database
access (Python’s analog of JDBC). The Trio API accepts TriQLqueries and
modification commands in addition to regular SQL, and query results may be
ULDB tuples as well as regular tuples. The API also exposes the other Trio-
specific features described in Section 5. Using the Trio API,we built a generic
command-line interactive client (TrioPlus) similar to that provided by most
DBMS’s, and theTrioExplorer graphical user interface shown earlier in Fig-
ure 1.1.

Trio DDL commands are translated via Python to SQL DDL commands
based on the encoding to be described in Section 6.1. The translation is fairly
straightforward, as is the corresponding translation ofINSERT statements and
bulk load.

Processing of TriQL queries proceeds in two phases. In thetranslation
phase, a TriQL parse tree is created and progressively transformed into a tree
representing one or more standard SQL statements, based on the data encod-
ing scheme. In theexecutionphase, the SQL statements are executed against
the relational database encoding. Depending on the original TriQL query,
Trio stored procedures may be invoked and some post-processing may occur.
For efficiency, most additional runtime processing executes within the DBMS
server. Processing of TriQL data modification commands is similar, although
a single TriQL command often results in a larger number of SQLstatements,
since several relational tables in the encoding (Section 6.1) may all need to be
modified.

TriQL query results can either bestoredor transient. Stored query results
(indicated by anINTO clause in the query) are placed in a new persistent table,

26

and lineage relationships from the query’s result data to data in the query’s in-
put tables also is stored persistently. Transient query results (noINTO clause)
are accessed through the Trio API in a typical cursor-oriented fashion, with an
additional method that can be invoked to explore the lineageof each returned
tuple. For transient queries, query result processing and lineage creation oc-
curs in response to cursorfetchcalls, and neither the result data nor its lineage
are persistent.

TrioExplorer offers a rich interface for interacting with the Trio system. It
implements a Python-generated, multi-threaded web serverusing CherryPy,
and it supports multiple users logged into private and/or shared databases. It
accepts Trio DDL and DML commands and provides numerous features for
browsing and exploring schema, data, uncertainty, and lineage. It also enables
on-demand confidence computation, coexistence checks, andextraneous data
removal. Finally, it supports loading of scripts, command recall, and other user
conveniences.

It is not possible to cover all aspects of Trio’s system implementation in
this chapter. Section 6.1 describes how ULDB data is encodedin regular
relations. Section 6.2 demonstrates the basic query translation scheme for
SELECT-FROM-WHERE statements, while Sections 6.3–6.9 describe transla-
tions and algorithms for most of TriQL’s additional constructs.

6.1 Encoding ULDB Data

We now describe how ULDB databases are encoded in regular relational
tables. For this discussion we useu-tuple to refer to a tuple in the ULDB
model, i.e., a tuple that may include alternatives, ‘?’, andconfidence values,
andtuple to denote a regular relational tuple.

Let T (A1, . . . , An) be a ULDB table. We store the data portion ofT in two
relational tables,TC andTU . TableTC contains one tuple for each u-tuple inT .
TC ’s schema consists of the certain attributes ofT , along with two additional
attributes:

xid contains a unique identifier assigned to each u-tuple inT .

num contains a number used to track efficiently whether or not a u-tuple
has a ‘?’, whenT has no confidence values. (See Section 6.2 for further
discussion.)

TableTU contains one tuple for each tuple-alternative inT . Its schema consists
of the uncertain attributes ofT , along with three additional attributes:

aid contains a unique identifier assigned to each alternative inT .

xid identifies the u-tuple that this alternative belongs to.

conf stores the confidence of the alternative, orNULL if this confidence
value has not (yet) been computed, or ifT has no confidences.

Trio: A System for Data,Uncertainty, and Lineage 27

Clearly several optimizations are possible: Tables with confidence values can
omit thenum field, while tables without confidences can omitconf. If a
tableT with confidences has no certain attributes, then tableTC is not needed
since it would contain onlyxid’s, which also appear inTU . Conversely, ifT
contains no uncertain attributes, then tableTU is not needed: attributeaid is
unnecessary, and attributeconf is added to tableTC . Even when both tables
are present, the system automatically creates a virtual view that joins the two
tables, as a convenience for query translation (Section 6.2).

The system always creates indexes onTC .xid, TU .aid, andTU .xid. In
addition, Trio users may create indexes on any of the original data attributes
A1, . . . , An using standardCREATE INDEX commands, which are translated
by Trio toCREATE INDEX commands on the appropriate underlying tables.

The lineage information for each ULDB tableT is stored in a separate
relational table. Recall the lineageλ(t) of a tuple-alternativet is a boolean
formula. The system represents lineage formulas indisjunctive normal form
(DNF), i.e., as a disjunction of conjunctive clauses, with all negations pushed
to the “leaves.” Doing so allows for a uniform representation: Lineage is stored
in a single tableTL(aid,src aid,src table,flag), indexed onaid and
src aid. A tuple (t1, t2, T2, f) in TL denotes thatT ’s alternativet1 has alter-
nativet2 from tableT2 in its lineage. Multiple lineage relationships for a given
alternative are conjunctive by default; special values forflag and (occasion-
ally) “dummy” entries are used to encode negation and disjunction. By far the
most common type of lineage is purely conjunctive, which is represented and
manipulated very efficiently with this scheme.

Example. As one example that demonstrates many aspects of the encoding,
consider the aggregation query result from Section 2.5. Call the result tableR.
Recall that attributecar is certain while attributecount is uncertain. The
encoding as relational tables follows, omitting the lineage for result tuple 72
since it parallels that for 71.

R C:
xid num car

71 2 Honda
72 2 Mazda

R U:

aid xid count

711 71 1
712 71 2
721 72 1
722 72 2

R L:

aid src aid src table flag

711 221 Drives NULL
711 211 Drives neg
712 211 Drives NULL
712 221 Drives neg

28

For readability, uniqueaid’s are created by concatenatingxid and alterna-
tive number. The values of 2 in attributeR C.num indicate no ‘?’s (see Sec-
tion 6.2), andR U.conf is omitted since there are no confidence values. The
remaining attributes should be self-explanatory given thediscussion of the en-
coding above. In addition, the system automatically creates a virtual view
joining tablesR C andR U onxid.

6.2 Basic Query Translation Scheme

Consider theSuspects query from the beginning of Section 2, first in its
transient form (i.e., withoutCREATE TABLE). The Trio Python layer trans-
lates the TriQL query into the following SQL query, sends it to the underlying
DBMS, and opens a cursor on the result. The translated query refers to the vir-
tual views joiningSaw C andSaw U, and joiningDrives C, andDrives U;
call these viewsSaw E andDrives E (“E” for encoding) respectively.

SELECT Drives_E.driver,
Saw_E.aid, Drives_E.aid, Saw_E.xid, Drives_E.xid,
(Saw_E.num * Drives_E.num) AS num

FROM Saw_E, Drives_E
WHERE Saw_E.color = Drives_E.color AND Saw_E.car = Drives_E.car
ORDER BY Saw_E.xid, Drives_E.xid

Let Tfetchdenote a cursor call to the Trio API for the original TriQL query,
and letDfetchdenote a cursor call to the underlying DBMS for the translated
SQL query. Each call toTfetchmust return a complete u-tuple, which may
entail several calls toDfetch: Each tuple returned fromDfetch on the SQL
query corresponds to one alternative in the TriQL query result, and the set
of alternatives with the same returnedSaw E.xid andDrives E.xid pair
comprise a single result u-tuple (as specified in the operational semantics of
Section 2.1). Thus, onTfetch, Trio collects all SQL result tuples for a single
Saw E.xid/Drives E.xid pair (enabled by theORDER BY clause in the
SQL query), generates a newxid and newaid’s, and constructs and returns
the result u-tuple.

Note that the underlying SQL query also returns theaid’s from Saw E
andDrives E. These values (together with the table names) are used to con-
struct the lineage for the alternatives in the result u-tuple. Recall that thenum
field is used to encode the presence or absence of ‘?’: Our scheme maintains
the invariant that an alternative’s u-tuple has a ‘?’ if and only if its num field
exceeds the u-tuple’s number of alternatives, which turns out to be efficient
to maintain for most queries. This example does not have result confidence
values, however even if it did, result confidence values by default are not com-
puted until they are explicitly requested (recall Section 4). When a “COMPUTE
CONFIDENCES” clause is present,Tfetchinvokes confidence computation be-

Trio: A System for Data,Uncertainty, and Lineage 29

fore returning its result tuple. Otherwise,Tfetchreturns placeholderNULLs for
all confidence values.

For the stored (CREATE TABLE) version of the query, Trio first issues DDL
commands to create the new tables, indexes, and virtual viewthat will encode
the query result. Trio then executes the same SQL query shownabove, except
instead of constructing and returning u-tuples one at a time, the system directly
inserts the new alternatives and their lineage into the result and lineage tables,
already in their encoded form. All processing occurs withina stored proce-
dure on the database server, thus avoiding unnecessary round-trips between
the Python module and the underlying DBMS.

The remaining subsections discuss how TriQL constructs beyond simple
SELECT-FROM-WHERE statements are translated and executed. All transla-
tions are based on the data encoding scheme of Section 6.1; many are purely
“add-ons” to the basic translation just presented.

6.3 Duplicate Elimination

Recall from Section 2.4 that TriQL supports “horizontal” duplicate-elimi-
nation with theMERGED option, as well as conventionalDISTINCT. In gen-
eral, either type of duplicate-elimination occurs as the final step in a query that
may also include filtering, joins, and other operations. Thus, after duplicate-
elimination, the lineage of each result alternative is a formula in DNF (recall
Section 6.1): disjuncts are the result of merged duplicates, while conjunction
within each disjunct represents a tuple-alternative’s derivation prior to merg-
ing; a good example can be seen at the end of Section 1.4. How Trio encodes
DNF formulas in lineage tables was discussed briefly in Section 6.1.

Merging horizontal duplicates and creating the corresponding disjunctive
lineage can occur entirely within theTfetchmethod: All alternatives for each
result u-tuple, together with their lineage, already need to be collected within
Tfetchbefore the u-tuple is returned. Thus, whenMERGED is specified,Tfetch
merges all duplicate alternatives and creates the disjunctive lineage for them,
then returns the modified u-tuple.
DISTINCT is more complicated, requiring two phases. First, a translated

SQL query is produced as ifDISTINCT were not present, except the result is
ordered by the data attributes instead ofxid’s; this query produces a tempo-
rary resultT . One scan throughT is required to merge duplicates and create
disjunctive lineage, thenT is reordered byxid’s to construct the correct u-
tuples in the final result.

6.4 Aggregation

Recall from Section 2.5 that TriQL supports 20 different aggregation func-
tions: four versions (full, low, high, andexpected) for each of the five standard

30

functions (count, min, max, sum, avg). All of the full functions and some of the
other options cannot be translated to SQL queries over the encoded data, and
thus are implemented as stored procedures. (One of them,expected average,
is implemented as an approximation, since finding the exact answer based on
possible-instances can be extremely expensive [9].) Many of the options, how-
ever, can be translated very easily. Consider tableSawwith confidence values.
Then the TriQL query:

SELECT color, ECOUNT(*) FROM Saw GROUP BY car

is translated based on the encoding to:

SELECT color, SUM(conf) FROM Saw_E GROUP BY car

A full description of the implementation of Trio’s 20 aggregate functions can
be found in [9].

6.5 Reorganizing Alternatives

RecallFlattenandGroupAltsfrom Section 2.6. The translation scheme for
queries withFlattenis a simple modification to the basic scheme in which each
result alternative is assigned its ownxid. GroupAltsis also a straightforward
modification: Instead of the translated SQL query grouping by xid’s from the
input tables to create result u-tuples, it groups by the attributes specified in
GROUPALTS and generates newxid’s.

6.6 Horizontal Subqueries

Horizontal subqueries are very powerful yet surprisingly easy to implement
based on our data encoding. Consider the example from Section 2.7:

SELECT * FROM Saw
WHERE car = ’Honda’ AND EXISTS [car <> ’Honda’]

First, syntactic shortcuts are expanded. In the example,[car <> ’Honda’]
is a shortcut for[SELECT * FROM Saw WHERE car<>’Honda’]. Here,
Saw within the horizontal subquery refers to theSaw alternatives in the cur-
rent u-tuple being evaluated [11]. In the translation, the horizontal subquery is
replaced with a standard SQL subquery that adds aliases for inner tables and a
condition correlatingxid’s with the outer query:

... AND EXISTS (SELECT * FROM Saw_E S
WHERE car <> ’Honda’ AND S.xid = Saw_E.xid)

S.xid=Saw E.xid restricts the horizontal subquery to operate on the data
in the current u-tuple. Translation for the general case involves a fair amount of
context and bookkeeping to ensure proper aliasing and ambiguity checks, but
all horizontal subqueries, regardless of their complexity, have a direct transla-
tion to regular SQL subqueries with additionalxid equality conditions.

Trio: A System for Data,Uncertainty, and Lineage 31

6.7 Built-In Predicates and Functions

Trio has three built-in predicates and functions:Conf() introduced in Sec-
tion 2.2,Maybe() introduced in Section 2.9, andLineage() introduced in
Section 2.3.

FunctionConf() is implemented as a stored procedure. If it has just one
argumentT , the procedure first examines the currentT E.conf field to see if
a value is present. (Recall from Section 6.1 thatT E is the encoded data table,
typically a virtual view over tablesTC andTU .) If so, that value is returned.
If T E.conf is NULL, on-demand confidence computation is invoked (see
Section 4); the resulting confidence value is stored permanently in T E and
returned.

The situation is more complicated whenConf() has multiple arguments,
or the special argument “*” as an abbreviation for all tables in the query’s
FROM list (recall Section 2.2). The algorithm for argumentsT1, . . . , Tk logi-
cally constructs a “dummy” tuple-alternativet whose lineage is the conjunc-
tion of the current tuple-alternatives fromT1, . . . , Tk being considered. It then
computest’s confidence, which provides the correct result for the current invo-
cation ofConf(T1, . . . , Tk). In the case ofConf(*), the computed values
usually also provide confidence values for the query result,without a need for
on-demand computation.

TheMaybe() andLineage() predicates are incorporated into the query
translation phase. PredicateMaybe() is straightforward: It translates to a
simple comparison between thenum attribute and the number of alternatives
in the current u-tuple. (One subtlety is thatMaybe() returnstrue even when
a tuple’s question mark is “extraneous”—that is, the tuple in fact always has
an alternative present, due to its lineage. See Section 5 fora brief discussion.)

PredicateLineage(T1,T2) is translated into one or more SQLEXISTS
subqueries that check if the lineage relationship holds: Schema-level lineage
information is used to determine the possible table-level “paths” fromT1 to T2.
Each path produces a subquery that joins lineage tables along that path, with
T1 andT2 at the endpoints; these subqueries are thenOR’d to replace predicate
Lineage(T1,T2) in the translated query.

As an example, recall tableHighSuspects in Section 1.4, derived from
tableSuspects, which in turn is derived from tableSaw. Then predicate
Lineage(HighSuspects, Saw) would be translated into one subquery
as follows, recalling the lineage encoding described in Section 6.1.

EXISTS (SELECT *
FROM HighSuspects_L L1, Suspects_L L2
WHERE HighSuspects.aid = L1.aid
AND L1.src_table = ’Suspects’ AND L1.src_aid = L2.aid
AND L2.src_table = ’Saw’ AND L2.src_aid = Saw.aid)

32

6.8 Query-Defined Result Confidences

The default probabilistic interpretation of confidence values in query results
can be overridden by including “expressionAS conf” in the SELECT clause
of a TriQL query (Section 2.8). Since Trio’s data encoding scheme uses a
column calledconf to store confidence values, “AS conf” clauses simply
pass through the query translation phase unmodified.

6.9 Remaining Constructs

We briefly describe implementation of the remaining TriQL constructs and
features.

Rest of SQL.As mentioned in Section 2.9, since TriQL is a superset
of SQL, any complete TriQL implementation must handle all ofSQL.
In our translation-based scheme, some constructs (e.g.,LIKE predi-
cates) can be passed through directly to the underlying relational DBMS,
while others (e.g., set operators, some subqueries) can involve substan-
tial rewriting during query translation to preserve TriQL semantics. At
the time of writing this chapter, the Trio prototype supports all of the
constructs discussed or used by examples in this chapter, aswell as set
operatorsUNION, INTERSECT, andEXCEPT.

Order By. Because ordering byxid’s is an important part of the ba-
sic query translation (Section 6.2),ORDER BY clauses in TriQL require
materializing the result first, then ordering by the specified attributes.
When special “attribute”Confidences (Section 2.9) is part of the
ORDER BY list, “COMPUTE CONFIDENCES” (Section 2.8) is logically
added to the query, to ensure theconf field contains actual values, not
placeholderNULLs, before sorting occurs.

UNIFORM and SCALED. The keywordsUNIFORM (Section 2.8) and
SCALED (Section 2.9) can be used in a TriQLFROM clause to add or
modify confidences on an input table, or with “AS conf” to specify con-
fidences on the result. The “AS conf” usage is easy to implement within
theTfetchprocedure (Section 6.2):Tfetchprocesses entire u-tuples one
at a time and can easily add or modify confidence values beforereturning
them.

UNIFORM andSCALED in theFROM clause are somewhat more com-
plex: Confidence computation for the query result must occurduring
query processing (as opposed to on-demand), to ensure result confidence
values take into account the modifier(s) in theFROM clause. (Alterna-
tively, special flags could be set, then checked during laterconfidence
computation, but Trio does not use this approach.) Special process-

REFERENCES 33

ing again occurs inTfetch, which logically adds or modifies confidence
values on input alternatives when computing confidence values for the
query result.

NoLineage, NoConf, and NoMaybe.These TriQL options are all quite
easy to implement:NoLineage computes confidence values for the
query result as appropriate (since no lineage is maintainedby which to
compute confidences later), then essentially turns the query result into
a Trio base table.NoConf can only be specified in queries that oth-
erwise would include confidence values in the result; now theresult is
marked as a Trio table without confidences (and, of course, does not
compute confidence values except as needed for query processing). Fi-
nally, NoMaybe can only be specified in queries that produce results
without confidences; all ?’s that otherwise would be included in the re-
sult are removed by modifying thenum field in the encoding (Section
6.1).

Data modifications and versioning.Recall from Section 3.4 that Trio
supports a lightweight versioning system, in order to allowdata modifi-
cations to base tables that are not propagated to derived tables, while still
maintaining “meaningful” lineage on the derived data. Implementation
of the versioning system is quite straightforward: If a ULDBtableT is
versioned,start-versionandend-versionattributes are added to encoded
table TU (Section 6.1). A query over versioned tables can produce a
versioned result with little overhead, thanks to the presence of lineage.
Alternatively, queries can requestsnapshotresults, as of the current or a
past version. Data modifications often simply manipulate versions rather
than modify the data, again with little overhead. For example, deleting
an alternativet from a versioned tableT translates to modifyingt’s end-
version in TU . Reference [6] provides details of how the Trio system
implements versions, data modifications, and the propagation of modifi-
cations to derived query results when desired.

References

[1] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sug-
ihara, and J. Widom. Trio: A system for data, uncertainty, and lineage. In
Proc. of Intl. Conference on Very Large Databases (VLDB), pages 1151–
1154, Seoul, Korea, September 2006.Demonstration description.

[2] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. InProc. of Intl. Conference on

34

Very Large Databases (VLDB), pages 953–964, Seoul, Korea, September
2006.

[3] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom. Anintroduc-
tion to ULDBs and the Trio system.IEEE Data Engineering Bulletin,
Special Issue on Probabilistic Databases, 29(1):5–16, March 2006.

[4] A. Das Sarma, P. Agrawal, S. Nabar, and J. Widom. Towards special-
purpose indexes and statistics for uncertain data. InProc. of the Work-
shop on Management of Uncertain Data, Auckland, New Zealand, Au-
gust 2008.

[5] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models
for uncertain data. InProc. of Intl. Conference on Data Engineering
(ICDE), Atlanta, Georgia, April 2006.

[6] A. Das Sarma, M. Theobald, and J. Widom. Data modifications and ver-
sioning in Trio. Technical report, Stanford University InfoLab, March
2008. Available at:http://dbpubs.stanford.edu/pub/2008-5.

[7] A. Das Sarma, M. Theobald, and J. Widom. Exploiting lineage for con-
fidence computation in uncertain and probabilistic databases. InProc.
of Intl. Conference on Data Engineering (ICDE), Cancun, Mexico, April
2008.

[8] A. Das Sarma, J.D. Ullman, and J. Widom. Schema design foruncer-
tain databases. Technical report, Stanford University InfoLab, November
2007. Available at:http://dbpubs.stanford.edu/pub/2007-36.

[9] R. Murthy and J. Widom. Making aggregation work in uncertain and
probabilistic databases. InProc. of the Workshop on Management of Un-
certain Data, pages 76–90, Vienna, Austria, September 2007.

[10] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom, P. Agrawal,
O. Benjelloun, A. Das Sarma, R. Murthy, , and T. Sugihara. Trio-One:
Layering uncertainty and lineage on a conventional DBMS. InProc. of
Conference on Innovative Data Systems Research (CIDR), Pacific Grove,
California, 2007.

[11] TriQL: The Trio Query Language. Available from:
http://i.stanford.edu/trio.

[12] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. InProc. of Conference on Innovative Data Systems Research
(CIDR), Pacific Grove, California, 2005.

