
Predictive Pricing and Revenue Sharing

Bobji Mungamuru

Stanford University

bobji@i.stanford.edu

Hector Garcia-Molina

Stanford University

hector@cs.stanford.edu

July 24, 2008

Abstract

Predictive pricing (e.g., Google’s “Smart Pricing” and Yahoo’s “Quality-Based Pricing”) and revenue
sharing are two important tools that online advertising networks can use in order to attract content publishers
and advertisers. We develop a simple model of the pay-per-click advertising market to study the market effects
of these tools. We then present an algorithm, PricingPolicy, for computing an advertising network’s best
response i.e., given the predictive pricing and revenue sharing policies used by its competitors, what policy
should an advertising network use in response? Using PricingPolicy, we gain insight into the structure of
optimal predictive pricing and revenue sharing policies.

1 Introduction

Google’s “Smart Pricing” [6] and Yahoo’s “Quality-Based Pricing” [12] are examples of a practice we refer
to as predictive pricing. The idea behind predictive pricing in pay-per-click advertising is to charge the same
advertiser different prices for click-throughs, depending on which publisher the click-through originated from.
For example, an advertiser who bid on the keyword “camera” might be charged less for a click-through from
a travel website than one from a photographer’s blog, since the latter would (ostensibly) be more targeted to
potential camera purchasers than the former. Advertising networks use predictive pricing to attract publishers
and advertisers to their network.

Revenue sharing, which is the practice of paying out a fraction of earned revenues to the publishers where
click-throughs originate, is another tool used by advertising networks to attract traffic. Revenue sharing is
the reason publishers display advertisements alongside their content in the first place. In this paper, we study
how an online advertising network can apply predictive pricing and revenue sharing “optimally” – that is, in a
manner that maximizes the advertising network’s profits.

The sheer size of the online advertising market makes this problem interesting and important. Although
predictive pricing and revenue sharing can help advertising networks attract and retain lucrative traffic, applying
these tools suboptimally can mean that a network is “leaving money on the table” (either by paying out an
unnecessarily large revenue share, or by attracting less- or lower-quality traffic than they could be). And in
a market that, by most estimates (e.g., [5]), is worth several billions of dollars, the losses due to suboptimal
pricing policies can be tremendous. Advertising networks that currently do not apply predictive pricing should
feel compelled to start – our results suggest that they are yielding a significant advantage to their competitors.

1

mailto:bobji@i.stanford.edu
mailto:hector@cs.stanford.edu

Finding an optimal pricing policy is difficult because models of the online advertising market can quickly
become very complex. The challenge is to capture just those aspects that impact pricing policy decisions.
Our model is game-theoretic, necessitating the computation of equilibria (a task that is known to be difficult).
Worse yet, the optimization problems involved in computing equilibria are highly non-convex. Thus, we face
significant challenges from both modeling and computational perspectives.

The practice of predictive pricing in the pay-per-click advertising market is relatively new. To the authors’
knowledge, there has been no formal analysis thus far of how to apply predictive pricing and share revenue
optimally. We suspect that it is currently being applied in an ad hoc manner. Perhaps there has been no
need for a principled approach – the fact that any predictive pricing was being done at all may have been
sufficient to satisfy publishers and advertisers. However, as more networks adopt such programs, we feel that
a principled approach will become necessary. Recent research on “click quality” has focused on a related (but
orthogonal) problem i.e., click fraud [3, 4, 9, 10]. Click fraud relates to whether a given click-through is valid
or invalid. Predictive pricing, on the other hand, focuses on the probability that a valid click-through becomes
a conversion i.e., the conversion rate. Also, techniques for fighting click fraud are typically not applied on
a per-publisher basis (apart from simple blacklisting). Predictive pricing, on the other hand, allows for very
fine-grained publisher-level control.

1.1 Overview

We begin by constructing a model of the online advertising market as a game between content publishers,
advertising networks and advertisers. The model is a simplification of what happens in practice – our intent
is to hone in on the market effects of predictive pricing and revenue sharing decisions. We then derive an
expression for an advertising network’s best-response function. That is, if an advertising network knows the
predictive pricing and revenue sharing policies of its competitors, what policy should the network choose in
response, in order to maximize its profits? The expression we derive for the best-response function is implicit
– it is the solution to a difficult optimization problem. We then present an algorithm, PricingPolicy, for
solving this optimization problem, yielding a near-optimal predictive pricing and revenue sharing policy.

Finally, we apply PricingPolicy toward answering some qualitative questions about predictive pricing:

• Is it always optimal to charge less for lower-quality traffic? (Yes.)

• Should an advertising network always try to attract as much traffic as it can, regardless of traffic quality?
(No.)

• If a network is better at targeting, can it offer a lower revenue share? (Yes.)

• Does predictive pricing harm publishers, as has been conjectured in online forums? (Yes and no – it
harms low-quality publishers and helps high-quality publishers.)

In principle, the best-response function can be used as a “subroutine” for computing equilibrium policies for
advertising networks (an equilibrium is, by definition, a fixed point of the networks’ best-response functions).
However, we believe that the practical value of our algorithm lies in computing best responses, rather than
equilibria. It prescribes actions that networks can take “today” in response to their competitors, rather than
waiting for equilibria to unfold. Thus, our focus will be on finding best responses.

2

2 Model

We model the pay-per-click (PPC) advertising market as a one-shot dynamic game between three classes of
players: content publishers, advertising networks and advertisers. Content publishers (or, publishers) publish
websites and display advertisements alongside their content. Advertisers design advertisements (or, ads) and
bid on keywords that describe the interests of their target market. Advertising networks (or, networks) act as
intermediaries, auctioning off click-throughs (or, clicks) to advertisers and delivering relevant ads to publishers
upon request.

If a user visits a publisher’s site and clicks on an ad, the advertiser pays the network a small amount. The
network then pays out a fraction of this amount to the publisher where the click originated. Predictive pricing
affects how much the advertiser is billed by the network, whereas the revenue share determines what fraction
of this revenue the network will pay out to the publisher. A small fraction of clicks become conversions e.g.,
a purchase, or a sign-up to an email list. The advertiser earns some revenue each time a click becomes a
conversion.

Our dynamic game is comprised of two steps:

1. In the first step, networks select and announce their predictive pricing and revenue sharing policies.

2. In the second step, publishers decide which networks to sell their clicks on, and advertisers decide how
much they are willing to pay for clicks from each network.

After the second step, payoffs are realized: a) publishers sell clicks (i.e., display ads) on their chosen networks,
and b) advertisers pay the networks, who then pay the publishers. We consider a one-shot game, although the
extension to a multi-period model is straightforward. Appendix B contains a summary of the notation used in
this paper.

Consider the market for click-throughs on a single keyword. There are I publishers whose content is
relevant to the keyword, K advertisers interested in buying clicks on this keyword, and J networks. Typically,
I � K � J . Each publisher i receives Vi clicks on his website1. Let cij be the fraction of these clicks that
publisher i sends to network j. Then,

Vicij (1)

is the total number of clicks that publisher i sends to network j.
For simplicity, we will ignore click fraud in this paper. That is, we assume that all clicks are valid and that

networks mark all clicks valid (ri = 1 ∀i and Nij = 1 ∀(i, j), using the notation of [10]). Our results are in no
way dependent on this assumption. For example, if we were to account for click fraud, (1) would be NijVicij ,
where Nij is the fraction of publisher i’s clicks marked valid by network j.

For each click coming from publisher i, network j bills advertisers for only a fraction gij of a click i.e.,
advertisers receive a (1− gij) discount. The fraction gij is the predictive pricing factor2 that network j applies

1Each publisher in our model has an inventory of clicks to allocate across the networks. In practice, however, publishers allocate
impressions (or, “page views”), not clicks. In [10], we include a detailed discussion of the conditions under which it is equivalent to
model clicks (rather than impressions) as the objects being bought and sold.

2The term “predictive pricing” alludes to network j’s prediction about the quality of publisher i’s traffic (i.e., accounting for
click-through rates, click fraud and conversion rates).

3

to publisher i’s traffic. The effective number of clicks publisher i is paid for by network j is then:

Vicijgij (2)

Of each dollar of revenue from advertisers, network j pays out a fraction hj to publishers. The fraction hj is
referred to as the revenue share. We refer to {gij ∀i} and hj together as network j’s pricing policy.

Let θj be the expected auction revenue per click on network j. That is, if network j were to auction off Z

clicks, its total expected revenue would be Zθj . The value of θj depends on the auction mechanism used by
network j, as well as all the advertisers’ bids. Then, the revenue to publisher i from network j is:

πij ≡ Vicijgijhjθj (3)

The total revenue to i across all networks is:
πi ≡

∑
j

πij (4)

Of all the clicks sent to network j, a fraction ξjk is sent on to advertiser k. The fraction ξjk depends on
network j’s auction mechanism, as well as all of the advertisers’ bids. We assume that ξjk does not depend
on i i.e., the posterior probability that a given click originated on publisher i’s site does not depend on the
advertiser that received the click. As we demonstrate later, we will never need to actually compute the value
of ξjk. Of the clicks going from publisher i to network j to advertiser k, let βijk be the fraction that become
conversions i.e., the conversion rate. The number of clicks converted by advertiser k that came from publisher
i via network j is then:

Vicijξjkβijk (5)

Let yk be the revenue that advertiser k earns from each conversion. The total revenue to advertiser k from
conversions of clicks from network j, across all publishers, is then:

Ykj ≡

(∑
i

Vicijξjkβijk

)
yk =

(∑
i

Vicijβijk

)
ξjkyk (6)

Using (2), the effective number of clicks originating from publisher i that advertiser k is billed for by network
j is:

Vicijgijξjk (7)

The total number of clicks advertiser k is billed for by network j is then:

Zkj ≡

(∑
i

Vicijgij

)
ξjk (8)

Let vkj be advertiser k’s valuation for network j’s clicks i.e., vkj is what advertiser k is willing to pay
network j per click. The total amount that advertiser k is willing to pay network j is then:

Zkjvkj (9)

4

Advertiser k’s return on investment (ROI) on clicks from network j would therefore be:

Rkj ≡
Ykj

Zkjvkj
=

(
∑

i Vicijβijk) yk
(
∑

i Vicijgij) vkj
(10)

Note that we are differentiating between bids and valuations here. Network j does not know vkj , so it runs
auctions to extract this information. Advertiser k’s bid in this auction does not necessarily have to be vkj .
Network j’s expected per-click auction revenue, θj , is a function of {vkj ∀k} and the auction mechanism used
by j.

Finally, network j’s total profit, ηj , is the amount collected from advertisers less the amount paid out to
publishers. Therefore:

ηj ≡

(∑
i

Vicijgij

)
(1− hj)θj =

1− hj
hj

∑
i

πij (11)

2.1 Assumptions

Separable Conversion Rates. We assume that conversion rates are separable i.e., that each βijk is a product
of three factors:

βijk = βPub
i βNet

j βAdv
k ∀(i, j, k) (12)

Each factor in (12) has a different interpretation3. βPub
i measures how targeted publisher i’s traffic is with

respect to the keyword in question. βNet
j measures how good network j is at matching publishers’ content with

advertisers’ ads. βAdv
k measures the quality and effectiveness of advertiser k’s ads. From (6), separability of

conversion rates implies:

Ykj = βNet
j

(∑
i

Vicijβ
Pub
i

)
ξjkβ

Adv
k yk (13)

Linear Auctions. We assume that every network uses an auction that is linear in the following sense: if
all agents’ valuations are scaled by a factor γ, then the expected revenue from the auction is also scaled by
γ. First-price, second-price, Dutch and English auctions can all be shown to have this property. The maximal
and minimal equilibrium revenues for the position auction in [11] and the generalized second-price auction in
[5] are also linear in this sense.

We are not assuming that all networks use the same auction mechanism, or even that the mechanisms are
truthful – only that each auction is linear. The linearity assumption will allow us to derive an explicit expression
for θj (see (19)).

2.2 Publishers’ and Advertisers’ Objectives

In the first step, network j chooses its pricing policy (i.e., hj and {gij ∀i}) such that its profit, ηj , is maximized.
We discuss network j’s optimization problem in Section 3.

In the second step, publisher i chooses allocations {cij ∀j} such that the total revenue generated from its

3A related “separability” assumption is made in [1] and [11], where the click-through rate (CTR) for an advertisement is assumed
to be the product of an advertiser-specific factor and a position/“slot”-specific factor.

5

sites is maximized:
maximize πi subject to

∑
j

cij = 1 (14)

At the same time, each advertiser k chooses valuations vkj that maximize its revenue from each network j,
subject to a lower bound Rk on ROI:

maximize Ykj subject to Rkj ≥ Rk (15)

Here, Rk is advertiser k’s target ROI. Intuitively, Rk is the ROI that advertiser k can achieve by advertising
through channels other than PPC. Solving (15) is equivalent to maximizing advertiser k’s combined profits
from both online and “offline” advertising.

Publishers and advertisers know the networks’ pricing policies when they make their decisions in the sec-
ond step. Publisher i’s type is

(
Vi, β

Pub
i

)
, network j’s type is βNet

j and advertiser k’s type is
(
yk, Rk, β

Adv
k

)
.

Publishers’ and networks’ types are common knowledge, whereas each advertiser k’s type is known only to k.

2.3 Publishers’ and Advertisers’ Best Responses

At the optimum, the constraint in (15) will be binding for each network j:

Rkj = Rk ∀j (16)

To understand why (16) holds, assume for a moment that network j’s auction is truthful i.e., that advertiser
k’s bid is vkj . Recall that Rk is the ROI that advertiser k can achieve through channels other than PPC
advertising. So, if Rkj > Rk, advertiser k will want to spend more money on network j i.e., it will want to
buy more clicks from network j. To receive more clicks from network j, it must increase its bid vkj . However,
from (10), we know that Rkj is decreasing in vkj . Therefore, advertiser k will keep increasing vkj as long as
Rkj > Rk, meaning (16) will hold at the optimum. This argument is informal, but can be made rigourous.

From (10) and (16), advertiser k’s optimal valuation (i.e., its best response) is:

vkj = βNet
j

(∑
i Vicijβ

Pub
i

)
(
∑

i Vicijgij)
βAdv
k yk
Rk

= v̄kaj (17)

where v̄k is defined as advertiser k’s nominal valuation, and aj is an adjustment factor applied to network j:

v̄k ≡
βAdv
k yk
Rk

aj ≡ βNet
j

(∑
i Vicijβ

Pub
i

)
(
∑

i Vicijgij)
(18)

Intuitively, aj is proportional to the ratio between the number of clicks converted on network j and the effective
number of clicks billed for, after predictive pricing. The key point is that publishers’ and networks’ decisions
affect vkj only through the multiplicative factor aj . Moreover, vkj depends on the actions of all publishers, but
does not depend on the actions of any other advertisers.

Let κj be network j’s expected revenue per click assuming vkj = v̄k ∀k i.e., θj = κj when vkj = v̄k. Note
that v̄k does not depend on j. Therefore, if κ1 > κ2, it would mean network 1 is extracting more revenue per
click than network 2, from the same set of valuations i.e., network 1’s auction is more “efficient” than network

6

2.
Now, suppose each advertiser k chooses his valuation optimally i.e., (17) holds for all k. Compared to the

scenario where vkj = v̄k ∀k, each advertiser k’s valuation has been scaled up by a factor aj . The assumption
that network j’s auction is linear would therefore imply that:

θj = κjaj (19)

From (3) and (4), πi is linear in publisher i’s allocations {cij ∀j}. The lone constraint in (14) is also linear
in cij . Thus, solutions to (14) have a simple and intuitive form. Let Xij be publisher i’s revenue assuming it
sends all of its traffic to network j (i.e., cij = 1). From (3), we get:

Xij = Vigijhjθj (20)

The optimal allocations {c′ij ∀j} for publisher i (i.e., its best response) satisfy:∑
j

c′ijXij = max
j
Xij and

∑
j

c′ij = 1 (21)

In words, it is optimal for publisher i to send all its traffic to the single network whose Xij value is highest. If
there is a tie between two or more networks, publisher i can split its traffic arbitrarily between these networks.

We emphasize that the networks act first and publishers and advertisers second. So, when publishers
compute their optimal allocations and advertisers compute their optimal valuations, the networks’ actions (i.e.,
their pricing policies) are known. Therefore, {gij ∀(i, j)} and {hj ∀j} are treated as constants and not variables
in (14) and (15).

For a given first-step outcome {gij ∀(i, j)} and {hj ∀j}, an equilibrium in the second step is defined as
a scenario where every advertiser k chooses its valuations {vkj ∀j} optimally and every publisher i chooses
its allocations {cij ∀j} optimally i.e., (17), (19) and (21) hold simultaneously for all (i, j, k). Therefore, if an
equilibrium is played in the second-step, we can substitute (17) and (19) into (11), and simplify:

ηj = βNet
j

(∑
i

Viβ
Pub
i cij

)
(1− hj)κj (22)

Interestingly, the predictive pricing factors gij do not appear anywhere in (22), although they affect publisher
allocations and advertiser valuations (see (17), (20) and (21)).

3 Optimal Pricing Policies

Network j’s goal is to maximize its profit, ηj . From (22), ηj depends on the decisions made by publishers and
advertisers. However, the networks act first in our game. Publishers and advertisers observe the networks’
decisions in the first step before deciding on their allocations and valuations in the second step. In other words,
the outcome in the second step (i.e., allocations and valuations) is the market’s reaction to first-step outcome
(i.e., networks’ pricing policies). Therefore, to maximize revenue, each network j will: a) assume that an
equilibrium will be played in the second step, and b) choose a pricing policy that induces the most profitable

7

equilibrium in the second step.
The second-step outcome depends not only on network j’s pricing policy, but also on the pricing policies

chosen by competing networks in the first step. For example, if the revenue share hj offered by network j is
too low, then very few publishers may send traffic to j (i.e., cij = 0 for most i), leading to a low ηj . If hj were
too high, more publishers may send traffic to network j, but ηj might be low again since j would be paying
out a large fraction of revenues to publishers. Therefore, network j must account for the actions of all other
networks when choosing its own pricing policy.

We will now compute the best response of network 1, holding the actions of all other networks fixed, and
assuming an equilibrium is played in the second step4. Combining (11), (18), (19), (20) and (21), network 1’s
best response is a solution to the following optimization problem:

maximize η1 ≡ βNet
1

(∑
i

Viβ
Pub
i ci1

)
(1− h1)κ1

subject to Xij = Vigijhjθj ∀(i, j)∑
j

cijXij = max
j
Xij ∀i∑

j

cij = 1 ∀i

θj = κjaj ∀j

aj = βNet
j

(∑
i Vicijβ

Pub
i

)
(
∑

i Vicijgij)
∀j

0 ≤ gi1, h1, cij ≤ 1 ∀(i, j) (23)

The objective in (23) is an expression for network 1’s profit (see (22)). The first three constraints encode the
assumption that each publisher chooses allocations optimally in the second step (see (20) and (21)). The fourth
and fifth constraints say that advertisers also choose valuations optimally (see (18) and (19)) i.e., that there is
an equilibrium in the second step between publishers and advertisers. In particular, observe that yk, Rk and
βAdv
k do not appear in (23). The constants {κj ∀j} are sufficient statistics for the distribution of advertiser

types in our problem. The final constraint gives ranges for the decision variables we are interested in.
Network 1’s optimization problem (23) is highly non-convex, so even feasible points are not easy to find.

One of our main contributions is an iterative algorithm, which we call PricingPolicy, for finding near-optimal
solutions to (23).

Define g1 ≡ {gi1}I×1 i.e., g1 is an I-by-1 matrix (i.e., a length-I vector) whose ith element is gi1. Similarly,
let C ≡ {cij}I×J be an I-by-J matrix of publisher allocations and let G−1 ≡ {gij ∀j 6= 1}I×(J−1) and
h−1 ≡ {hj ∀j 6= 1}(J−1)×1 denote the actions of the other networks. Recall that in (23), G−1 and h−1

are given as inputs i.e., we are finding network 1’s best response to G−1 and h−1, so they are not variables.
We refer to triples (h1,g1,C) as points. We say that the point (h1,g1,C) is feasible if it satisfies the

constraints in (23). If (h1,g1,C) is feasible, it means that if network 1 plays (h1,g1) and the other networks
play (h−1,G−1) in the first step, then the publishers’ equilibrium allocations in the second step will be C (recall
that the corresponding advertiser valuations can be computed from (17)). We say that (h∗1,g

∗
1,C

∗) is optimal if

4Our choice of network 1 is without loss of generality. Obviously we can compute the best response for any network j in a similar
manner.

8

it is feasible and network 1’s profit is (weakly) the highest when (h∗1,g
∗
1,C

∗) is played, compared to any other
feasible point i.e., it is a best response to (h−1,G−1).

In Appendix A, we describe a sequence of transformations that yield a geometric programming (GP) relax-
ation of (23) around a given point

(
h

(t)
1 ,g(t)

1 ,C(t)
)

. That is, we approximate (23) by a GP in the vicinity of

the point
(
h

(t)
1 ,g(t)

1 ,C(t)
)

. GPs are log-convex [2], and therefore can be solved globally and efficiently. Pric-

ingPolicy works by solving a sequence of these GPs. It outputs a sequence of feasible (but not-necessarily
optimal) points, where each point yields weakly higher profits for network 1 than the previous point. The
sequence of solutions (hopefully) converge to an approximate solution to (23).

Algorithm 1 PricingPolicy

Require: G−1, h−1, T
1: Select arbitrary initializations h(0)

1 and g(0)
1

2: Compute second-step equilibrium, C(0), assuming other networks play (h−1,G−1) and network 1 plays(
h

(0)
1 ,g(0)

1

)
3: for t ∈ 1, . . . , T do
4: Solve GP-relaxation of (23) to find an optimal point (h′1,g

′
1,C

′) that is “close to”
(
h

(t−1)
1 ,g(t−1)

1 ,C(t−1)
)

,
assuming other networks play (h−1,G−1)

5:

(
h

(t)
1 ,g(t)

1 ,C(t)
)
← (h′1,g

′
1,C

′)
6: end for
7: Recompute second-step equilibrium, C(T), assuming other networks play (h−1,G−1) and network 1 plays(

h
(T)
1 ,g(T)

1

)
8: return

(
h

(T)
1 ,g(T)

1 ,C(T)
)

Given
(
h

(0)
1 ,g(0)

1

)
and (h−1,G−1) (i.e., the first-step outcome), the second-step equilibrium allocations C(0)

in line 2 of PricingPolicy can be computed using fixed-point iteration on equations (19), (20) and (21). The
purpose of line 2 is to provide a feasible starting point

(
h

(0)
1 ,g(0)

1 ,C(0)
)

for the inner loop of PricingPolicy.

Similarly, line 7 ensures that the final output
(
h

(T)
1 ,g(T)

1 ,C(T)
)

is feasible for (23), since the solutions of the
relaxed problem may be infeasible for the original problem (23).

Different initializations g(0)
1 and h

(0)
1 may lead to different local optima, so PricingPolicy should be

executed several times with different initializations, keeping the best result. There are also a number of minor
tweaks needed to ensure that PricingPolicy works well in practice. Some of these tweaks are related to
“regularization”, to ensure the numerical stability of the algorithm. It is also prudent to verify that the
sequence of approximate solutions output by PricingPolicy corresponds to progress being made on the
original problem. For brevity, we omit further details here.

In principle, PricingPolicy could be used as a subroutine to an compute equilibrium for the first-step
i.e., for computing a subgame-perfect equilibrium for our one-shot dynamic game. We would run the algorithm
(i.e., computing a best response) for each network j holding all other networks’ actions fixed, and iterate until
convergence. However, we feel that computing the best-response function is more useful in practice – what
pricing policy should network j use in order to maximize its own profits?

9

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Iteration t

Actual Profit
Estimated Profit
Market Share
Revenue Share

(a) Progress of PricingPolicy.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Publisher Index i

Predictive Pricing Factors

(b) Optimal predictive prices, g
(T)
i1 .

Figure 1: The effects of predictive pricing.

4 Experiments

Using PricingPolicy, we can gain some interesting insights into the structure of optimal pricing policies.
Our first experiment examines whether networks that apply predictive pricing gain a competitive edge,

compared to networks that do not. Consider a market with J = 2 networks and I = 20 publishers. We assume
Vi = 100 ∀i and βPub

i = 0.0025i. That is, each publisher receives 100 clicks, and βPub
i is linear in i with values

ranging from 0.25% to 5%5. The networks are equally effective at matching up publishers and advertisers i.e.,
βNet

1 = βNet
2 = 1.0. We assume κ1 = κ2 = 10, so the auction mechanisms used by each network are also equally

efficient.
We used PricingPolicy to compute the optimal pricing policy for network 1, assuming network 2 does

not use predictive pricing (i.e., gi2 = 1 ∀i) and offers publishers a revenue share of 50% (i.e., h2 = 0.5). To solve
the GP-relaxation of (23) in line 4 of PricingPolicy, we used CVX, a package for solving convex programs
[7, 8].

We initialized the algorithm with random choices of g1 and h1. Figure 1(a) shows the revenue share h(t)
1

output at each iteration t, as well as the market share 1
I

∑
i c

(t)
i1 , estimated profit η̂(t)

1 and actual profit η(t)
1

at each iteration6. The estimated profit is computed using the allocations C(t) output by PricingPolicy in
iteration t (recall that C(t) may be infeasible for (23)), whereas the actual profit is computed using the actual
second-stage equilibrium allocations resulting from

(
h

(t)
1 ,g(t)

1

)
.

From Figure 1(a), we see that the algorithm converges after roughly T = 50 iterations. The estimated profit
tracks the actual profit reasonably well – in this case it is an underestimate of the actual profit, but in other
experiments we ran it was an overestimate. As iterations progress, h(t)

1 steadily decreases – PricingPolicy

recommends progressively better predictive prices g(t)
i1 , allowing network 1 to offer progressively lower revenue

5Such a range is realistic – 5% would be considered a high conversion rate in practice.
6From (22), note that η1 ≤

`P
i Viβ

Pub
i

´
κ1β

Net
1 ≡ ηmax

1 , which is the maximum possible profit network 1 can attain in any
outcome. Thus, in Figures 1(a) and 2, we normalize profits by ηmax

1 .

10

shares.
Observe that the algorithm converges to a revenue share of 29%, which is much lower than the 50% being

offered by network 2. Despite offering a lower revenue share, network 1 manages to attract 74% market share.
Thus, the use of predictive pricing is giving network 1 a significant advantage.

It may seem surprising that the market share in Figure 1(a) is also falling across iterations. The lowest-
quality (i.e., lowest βPub

i) publishers are essentially being driven from network 1 to network 2. Figure 1(b),
which shows the final set of predictive prices g(T)

1 , suggests why these publishers leave network 1. Advertisers are
being charged very low prices (i.e., low gi1) for traffic from low-quality publishers (i.e., low βPub

i). Consequently,
network 1 offers to pay these low-quality publishers very little for their traffic, causing them to choose network
2 instead.

Observe that the optimal predictive prices in Figure 1(b) are increasing in i, and consequently in the
conversion rate, βPub

i . That is, advertisers are being charged less for traffic from publishers whose conversion
rate is lower. We ran several other experiments (not discussed here), and found the optimal gi1 was increasing
in βPub

i in every case.
Essentially, a “lemons market” effect is avoided on network 1 as a result of predictive pricing. The lack of

low-quality publishers on network 1 raises the average quality of network 1’s traffic, causing advertisers’ bids
to increase. The high-quality publishers get paid more per click, and are willing to settle for a lower revenue
share as a result.

Our second experiment considers the impact of targeting (i.e., βNet
j) on market outcomes. In particular,

if a network is more effective than its competitors at matching publishers with advertisers, does it translate
to higher profits for that network? Consider a market with J = 3 networks and I = 20 publishers. We
assume βPub

i = 0.000125i2 i.e., βPub
i is quadratic in i, with values ranging from 0.0125% to 5% (there are many

low-quality publishers and a few high-quality ones). Networks 2 and 3 are equally skilled at matching i.e.,
βNet

2 = βNet
3 = 1.0. We assume κ1 = κ2 = κ3 = 10, so no network has an edge due to the auction mechanism

they use. We assume that gi2 = 20βPub
i (i.e., network 2 uses a predictive pricing rule that is linear in conversion

rate), and network 3 sets gi3 = 1 ∀i (i.e., it does not use predictive pricing). Network 2 offers a lower revenue
share than network 3, i.e., h2 = 0.5 and h3 = 0.6.

We computed optimal pricing policies for network 1, for various values of βNet
1 ranging from 0.7 to 1.3.

Recall that βNet
1 greater than (less than) 1.0 means that network 1 is better (resp., worse) at matching than

networks 2 and 3. Figure 2 shows network 1’s optimal revenue share h∗1 and its resulting profits (normalized
by ηmax

1). As we might expect, network 1 earns higher (lower) profits when βNet
1 is higher (resp., lower). From

Figure 2, we see that network 1 is able to offer a lower revenue share when βNet
1 is higher, since network 1 is

generating more conversions for advertisers, causing bids (and consequently publishers’ revenues) to increase.

5 Conclusion

We have presented an economic model of the PPC advertising market that captures the effects of predictive
pricing and revenue sharing. The model is simple, yet flexible enough to account not only for conversion rates,
but also click-through rates and click fraud (although we did not discuss them in this paper). We derived
an implicit expression for the optimal pricing policy for a network, as the solution to a difficult optimization
problem. We then presented an iterative algorithm, PricingPolicy, which finds near-optimal solutions to

11

0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.2

0.4

0.6

0.8

1

 βNet
1

Revenue Share
Profit

Figure 2: The effect of network 1’s skill at matching publishers and advertisers (i.e., βNet
1).

this problem.
Through experiments, we found that predictive pricing and revenue sharing can be very effective tools for

advertising networks to attract publishers and advertisers, especially if their competitors are not using predictive
pricing. It is not necessarily optimal to attract as much traffic as possible – quality can be just as important
as quantity. Being more effective at matching publishers and advertisers can increase a network’s profits, so
improving their matching algorithms may be a worthwhile investment for networks.

References

[1] Aggarwal, G., Goel, A., and Motwani, R. Truthful auctions for pricing search keywords. In ACM
Conference on Electronic Commerce (EC06) (June 2006).

[2] Boyd, S., Kim, S.-J., Vandenberghe, L., and Hassibi, A. A tutorial on geometric programming.
Optimization and Engineering 8, 1 (2007), 67–127.

[3] Daswani, N., Mysen, C., Rao, V., Weis, S., Gharachorloo, K., and Ghosemajumder, S.

Crimeware: Understanding New Attacks and Defenses. Addison-Wesley Professional, April 2008, ch. On-
line Advertising Fraud.

[4] Daswani, N., and Stoppelman, M. The anatomy of clickbot.A. In Hot Topics in Understanding
Botnets (HotBots) (April 2007), Usenix.

[5] Edelman, B., Ostrovsky, M., and Schwarz, M. Internet advertising and the generalized second-price
auction: Selling billions of dollars worth of keywords. American Economic Review 97, 1 (March 2007),
242–259.

[6] Google. The facts about smart pricing. Google AdSense Blog (October 2005).

12

[7] Grant, M., and Boyd, S. CVX: Matlab software for disciplined convex programming (web page and
software), June 2008. http://stanford.edu/~boyd/cvx.

[8] Grant, M., and Boyd, S. Recent Advances in Learning and Control (a tribute to M. Vidyasagar).
Springer, 2008, ch. Graph Implementations for Nonsmooth Convex Programs.

[9] Immorlica, N., Jain, K., Mahdian, M., and Talwar, K. Click fraud resistant methods for learning
click-through rates. In Internet and Network Econonomics (November 2005), vol. 3828 of Lecture Notes
in Computer Science, Springer, pp. 34–45.

[10] Mungamuru, B., Weis, S., and Garcia-Molina, H. Should ad networks bother fighting click fraud?
(Yes, they should.). Stanford Infolab Technical Report (July 2008).

[11] Varian, H. Position auctions. International Journal of Industrial Organization (October 2006).

[12] Yahoo! A new pricing model rolls out today. Yahoo! Search Marketing Blog (June 2007).

A GP-relaxation of (23)

In this appendix, we show how to form a geometric programming (GP) relaxation of (23). GPs are log-convex
[2], and can therefore be solved globally and efficiently. Instances of the relaxed problem are solved in each
iteration of the for loop (lines 3 to 6) of PricingPolicy.

Begin by rewriting problem (23) as follows:

maximize

(∑
i

Ai1ci1

)
(1− h1)

subject to uij = Vigijhjyj ∀(i, j)∑
j

cijuij = max
j
uij ∀i∑

j

cij = 1 ∀i

yj =
(
∑

iAijcij)
(
∑

i Vicijgij)
∀j

0 ≤ gi1, h1, cij ≤ 1 ∀(i, j) (24)

where we have defined yj ≡ θj , uij ≡ Xij , and Aij ≡ Viβ
Pub
i κjβ

Net
j for notational convenience. In (24), upper

case quantities (i.e., Aij and Vi) are constants, whereas lower case quantities are variables (except gij and hj

for j 6= 1, since G−1 and h−1 are given as input). The fourth and fifth constraints in (23) have been combined
into one.

Replace max with softmax. Replace the second constraint in (24) by the following approximation:

cij =
uαij∑
n u

α
in

∀(i, j) (25)

13

http://stanford.edu/~boyd/cvx

where α is some large positive (but finite) constant. We are replacing the “hard” maximum in (24) with
a “softmax” approximation i.e., if uij > uin ∀n 6= j, then cij will be close to 1 (but not exactly 1). The
softmax is continuous and differentiable whereas the maximum operator is not. Larger values of α yield better
approximations, although choosing α too large may lead to numerical instability in practice.

Introduce linear equalities. Define wij ≡ Aijcij and pj ≡
∑

iwij . Define zij ≡ Vicijgij and qj ≡
∑

i zij .
The fourth constraint in (24) then becomes yj = pj

qj
∀j. Define d1 ≡ 1− h1. The objective function in (24) can

then be expressed as d1p1.
We can then rewrite (24) as:

maximize d1p1

subject to d1 = 1− h1

uij = Vigijhjyj ∀(i, j)

cij =
uαij∑
m u

α
im

∀(i, j) (26)∑
j

cij = 1 ∀i (27)

yj =
pj
qj
∀j∑

i

wij = pj ∀j (28)∑
i

zij = qj ∀j (29)

wij = Aijcij ∀(i, j)

zij = Vicijgij ∀(i, j)

0 ≤ gi1, h1, cij ≤ 1 ∀(i, j) (30)

The problem (30) is almost a GP, except for the linear equalities (27), (28) and (29), and the softmax equality
(26), all of which are not GP-compatible7. Due to (27), the softmax equality can simply be replaced by a
less-than inequality. To deal with the linear equalities, we replace them with local monomial approximations
that are GP-compatible, as suggested by [2].

Aside: Local monomial approximations. Consider any non-negative length-L vector x ≡ {xi}L×1 and a
linear equality constraint

∑
i xi = 1. The equality

∑
i xi = 1 is equivalent to the following pair of inequalities:∑

i

xi ≤ 1 (31)∑
i

xi ≥ 1 (32)

7A constraint is said to be GP-compatible if it is permitted in a geometric program [2].

14

The less-than constraint (31) is GP-compatible, whereas the greater-than constraint (32) is not. To make (32)
GP-compatible, fix a vector x0 and define m : RL → R as follows:

m(x; x0) ≡ d(x0)
L∏
i=1

x
fi(x0)
i (33)

where
fi(x) ≡ xi∑L

m=1 xm

and

d(x) ≡

(
L∑
i=1

xi

)
L∏
i=1

x
−fi(x)
i

The function m(x; x0) is a good monomial approximation of
∑

i xi around the point x0 in the sense that
logm(x; x0) is the first-order Taylor-series approximation of log

∑
i xi about the point x0. Moreover,

m(x; x0) ≤
∑
i

xi ∀x (34)

with equality iff x = x0, which means m is a global under-approximation of
∑

i xi.
Monomial greater-than inequalities are GP-compatible. Therefore, to approximate a a linear equality con-

straint
∑

i xi = 1 in a GP, we replace the equality with the pair of inequalities:∑
i

xi ≤ 1 + ε (35)

m(x; x0) ≥ 1− ε (36)

The slack parameter ε > 0 restricts our search space to a small ε-neighbourhood around x0, and ensures a
non-singleton feasible set i.e., with ε = 0, the only feasible solution to the inequalities (35) and (36) would be
x = x0.

Introduce monomial approximations. Given
(
h

(t)
1 ,g(t)

1 ,C(t)
)

, (G−1,h−1), ε > 0 and α� 0, define:

w(t)
j ≡ {w

(t)
ij }I×1 where w

(t)
ij ≡ Aijc

(t)
ij (37)

z(t)
j ≡ {z

(t)
ij }I×1 where z

(t)
ij ≡

Vic
(t)
i1 g

(t)
i1 j = 1

Vic
(t)
ij gij j 6= 1

(38)

15

Also define c(t)
i ≡ {c

(t)
ij }J×1. We can now replace each linear equality in (30) with a monomial approximation

about the point
(
h

(t)
1 ,g(t)

1 ,C(t)
)

:

maximize d1p1

subject to d1 ≤ 1− h1

uij = Vigijhjyj ∀(i, j)

cij ≤ (1 + ε)
uαij∑
m u

α
im

∀(i, j)

1− ε ≤ m
(
ci; c

(t)
i

)
∀i∑

j

cij ≤ 1 + ε ∀i

yj =
pj
qj
∀j

(1− ε)pj ≤ m
(
wj ; w

(t)
j

)
∀j∑

i

wij ≤ (1 + ε)pj ∀j

(1− ε)qj ≤ m
(
zj ; z

(t)
j

)
∀j∑

i

zij ≤ (1 + ε)qj ∀j

wij = Aijcij ∀(i, j)

zij = Vicijgij ∀(i, j)

gi1, h1, cij ≤ 1 ∀(i, j) (39)

Problem (39) is a relaxed version of (30), and it is a GP. We have eliminated all the non-negativity constraints
from (30) since such constraints are implicit in any GP. The constraint d1 = 1 − h1 has been replaced by a
less-than inequality – this constraint will be tight at the optimum since we are maximizing d1p1. The slack
parameter ε allows solutions of (39) to be infeasible for the original problem (24). That is why we recompute
C(T) in line 7 of PricingPolicy.

To summarize, in each iteration t of PricingPolicy, the point
(
h

(t)
1 ,g(t)

1 ,C(t)
)

is given as input. We then

search in the ε-vicinity of
(
h

(t)
1 ,g(t)

1 ,C(t)
)

for a point that is more profitable for network 1. The optimum

is then labeled
(
h

(t+1)
1 ,g(t+1)

1 ,C(t+1)
)

, and we iterate until convergence. Network 1’s profit is monotonically
increasing across iterations t, and is bounded above by ηmax

1 , so convergence is guaranteed. Although there are
far fewer variables in (24) than (39), the latter can be solved efficiently due to the log-convexity of GPs. Thus,
the increased number of variables in (39) is acceptable.

16

B Notation

Table 1 is a summary of the notation used in our model.

Table 1: Summary of notation used in our model.
Symbol Description
I, J,K Number of publishers, networks and advertisers (respectively)
i, j, k Index over publishers, networks and advertisers (respectively)
T Number of iterations in for loop of PricingPolicy

t Index over iterations in for loop of PricingPolicy

Vi Volume of clicks on publisher i’s site
βPub
i Quality of publisher i’s traffic
πij Publisher i’s revenue from clicks sent to network j
πi Publisher i’s total revenue
cij Fraction of publisher i’s clicks sent to ad network j
yk Advertiser k’s revenue per conversion
Rk Advertiser k’s target ROI
βAdv
k Effectiveness of advertiser k’s ads
βijk Conversion rate of clicks going from i to j to k
Ykj Advertiser k’s revenue from network j’s clicks
Zkj Number of clicks advertiser k is billed for by network j
Rkj Advertiser k’s ROI on ad network j
v̄k Advertiser k’s nominal valuation
vkj Advertiser k valuation of ad network j’s clicks
βNet
j Network j’s skill at matching publishers and advertisers
θj Network j’s expected auction revenue per click
κj Network j’s expected auction revenue per click when aj = 1
aj Network j’s adjustment factor
ηj Network j’s total revenue
ηmax
j Network j’s maximum possible revenue
hj Revenue share paid out by network j
gij Predictive pricing factor applied to publisher i’s traffic by network j

17

	Introduction
	Overview

	Model
	Assumptions
	Publishers' and Advertisers' Objectives
	Publishers' and Advertisers' Best Responses

	Optimal Pricing Policies
	Experiments
	Conclusion
	GP-relaxation of (23)
	Notation

