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Abstract

Privacy, preservation and performance (“3 P’s”) are cen-

tral design objectives for distributed data management systems.

However, these objectives tend to compete with one another.

This paper presents a model for describing distributed data

management systems, along with a framework for measuring

the privacy, preservation and performance offered by such sys-

tems. The framework enables a system designer to quantita-

tively explore and optimize the tradeoffs between the 3 P’s.

1 Introduction

There are several attributes to consider when designing a dis-

tributed data management system. For example, we would like

a system that enforces “privacy” by not divulging data to unau-

thorized entities. At the same time, we want to “preserve” the

data effectively i.e., protect it from hardware failures, natural

disasters, and so on. And, of course, we do not want to sacri-

fice “performance” – a system that runs slowly may not be very

useful. There are many such desirable attributes: confidential-

ity, integrity, reliability, availability, throughput, and so on.

While each of these attributes has been studied extensively,

there is not much work that considers the tradeoffs between

them. We believe that today the real challenge in designing a

system is in achieving a balance between several conflicting at-

tributes. For example, a system that simply deletes all input

data would be very “secure” – no data will ever leak out! – but

would be unattractive in other dimensions. Similarly, one can

build a highly “reliable” system that proliferates many copies of

its data. This system would excel along the preservation dimen-

sion, but each extra copy would increase the chances of unau-

thorized break-ins. If we encrypt a large collection of records

as a single “blob”, performance for reading individual records

suffers. If we encrypt each record individually, reads will be

faster, but overall security may not be as strong.

In this paper we study, in a unified way, three conflicting at-

tributes of a distributed system, and show how to design systems

that strike a balance among them. We refer to these attributes as

the “3 P’s” of distributed data management – privacy, preserva-

tion and performance. Informally:

• Privacy refers to protecting data from unauthorized access
(related to security and confidentiality).

• Preservation ensures that data is still available and uncor-
rupted far into the future (related to integrity, availability,

and reliability).

• Performance refers to the quick, timely access to our dis-
tributed data (related to response time and throughput).

1.1 Overview

The main contributions of this paper are:

1. A unified framework for measuring the privacy, preserva-

tion and performance offered by a system.

2. An algorithm for finding systems that achieve a desired

balance between the 3 P’s.

Our work represents a bridge between system design and risk

management. Risk management is the science of identifying,

measuring and mitigating the uncertainty related to threats.

We identify privacy violations, data loss and poor perfor-

mance as threats faced by a system in its daily operation. We

then measure the potential harm caused by these threats: a) Pri-

vacy is measured by the damage, D, caused by leakage of in-
formation to unauthorized parties, b) Preservation is measured

by the loss, L, incurred due to lost or corrupted data, and c) Per-
formance is measured by the running time, T , of read and write
commands issued to the system.

We mitigate risk not by providing “guarantees” – instead, we

accept that bad things can happen, and try to minimize the harm

when bad things do happen. How can we ensure that we do well

“on average”, and how can we reduce the likelihood of “catas-

trophes”? We treat D, L and T as random variables, and solve
optimization problems involving their means and variances.

To effectively manage risk, it is crucial to account for the

heterogeneity within a collection of data objects. For exam-

ple, there may be a great deal of damage done if an internal

e-mail discussing corporate strategy is leaked to outsiders. But,

nobody may care if the e-mail was accidentally deleted. On

the other hand, nobody would mind if marketing materials were

“leaked” to outsiders (it’s probably a good thing!). But if these



marketing materials were lost, the time and money spent de-

veloping them would be lost. Moreover, e-mail is mostly text

whereas marketing flyers are filled with large images, so the per-

formance implications are vastly different between the two. In

our framework, we explicitly model data objects in a heteroge-

neous collection as having differing values, sensitivities, sizes

and usage patterns.

The outcome of our work is a solution strategy for the fol-

lowing problem: Given a set of resources (e.g., data centers,

servers, storage devices), and a collection of data objects (e.g.,

documents, photos, MP3s, e-mail) with known usage charac-

teristics, sensitivities and sizes, how should we distribute them

across our resources to achieve a desired balance between the

3 P’s – privacy, preservation and performance?

1.2 Related Work

Most existing research in distributed data management

shows how to design systems with either good privacy, good

preservation or good performance properties (e.g., [2, 4, 8, 12]).

However, there is relatively little literature discussing the trade-

offs between these three objectives.

There is some work on how to safeguard data – that is, man-

aging the privacy and preservation aspects together. For exam-

ple, threshold schemes are used in [13] to provide fault tolerance

guarantees in a distributed system. In [10] and [11], the prop-

erties of threshold schemes are achieved by alternative, more

efficient means. In [5] and [6], it is shown how to optimally

tradeoff between privacy and preservation. However, these ap-

proaches are incomplete because:

• The performance dimension is not considered, and

• All data is treated equally – heterogeneity is not modeled.

Adding these two elements makes the problem substantially

more complex, and our solution substantially more useful.

2 Model

In this section, we define a declarative and unified model

that encodes the choices we can make regarding the 3 P’s. The

model is based upon four classes of operators – Split, Copy,

Threshold and Partition. Distributed data management systems

are then built up as compositions of these operators. In Sections

3 and 4, we will discuss how to quantify the 3 P’s, and search

for “good” systems within this framework.

2.1 Split, Copy and Threshold Operators

We begin by defining a pair of operators, which take a collec-

tion of data objects as input and produce one or more collections

of data objects as output. A k-way Copy operator, denoted by
C, produces as its output k identical copies of its input data. A
k-way Split operator, denoted by S, applies an encoding to its

input and produces k outputs, or shares, such that all k shares
are required to fully reconstruct the input.

Figure 1. FΘ = a(b + f2/3(c,d, e))

Copy and Split are special cases of a more general class of

operators, known as Threshold operators. A k-of-n Threshold
operator, denoted k/n, applies a transformation to its input and
produces n shares such that any k are sufficient to reconstruct
the input. A Copy operator corresponds to k = 1 and a Split
corresponds to k = n.

There can be several possible implementations for a given

operator. For example, as we discuss in Section 2.5, there

are several ways to implement a k-way Split operator, such as
XOR’ing the input data with k − 1 randomly generated bit se-
quences or using repeated AES encryptions with k−1 different
encryption keys (giving k outputs total in each case).

2.2 Configurations

Operators can be recursively composed in interesting ways in

order to safeguard data objects i.e., provide privacy and preser-

vation. We refer to such compositions of operators as configura-

tions. For example, consider the configuration shown in Figure

1, which we use to safeguard a single sensitive data object, o1

(say, a document). The data object o1 is input to the Split op-

erator at the root, labelled r. The input1 to r is then split into

two shares, a and g, using a 2-way Split operator so that both a

and g are needed to reconstruct r. Two identical copies of g are

then made, labelled b and f , using the 2-way Copy operator at

g. Finally, f is divided again into three shares c, d and e such

that any two are sufficient to reconstruct f .

The configuration in Figure 1 tells us how to decompose the

data at r and distribute it across the servers (i.e., physical stor-

age locations) a,b, c, d and e. The data objects r,g and f are

transient, in the sense that they are not materialized. To recon-

struct r, we need either objects {a, b} or {a, c,d} or {a, c, e}
or {a, d, e}. Thus, we can represent this configuration by the
access formula a(b+ f2/3(c,d, e)), where f2/3(c,d, e) is true
if two or more of c, d and e are true, and false otherwise.

1When we refer to a vertex v, we are sometimes referring to the data that

is input to the operator or storage server at vertex v (e.g., “reconstructing v”),

while at other times we are referring to the operator itself (e.g., “choosing an

implementation for v”). The meaning will always be clear from the context.



Figure 2. Partition operator.

Using the configuration in Figure 1, we have managed to

safeguard the data at r in the following sense. Suppose the data

object at a was leaked, say, to an attacker. Without also obtain-

ing g, the attacker is unable to reconstruct o1. An attacker will

always need at least two of a,b, c,d and e in order to recon-

struct o1. Alternatively, suppose the data object at b was lost,

say, due to a disk failure. Using c,d and e, we can still recon-

struct g, r, and therefore o1. Thus, we can lose one of b, c,d
or e and still recover o1.

2.3 Data Objects

A data object can be thought of as a “blob of bits” that exists

as a logical unit. Documents, music files, email, source code

and images are all examples. Section 2.2 gave an example in-

volving a single object, o1. In general, we are interested in dis-

tributing collections of (possibly heterogeneous) data objects.

When a collection of data objects is input to an operator, each

object in the collection is processed individually. For example,

suppose a collection {o1,o2} is input to vertex r in Figure 1.

If r is implemented using encryption, a would be the collection

{o∗
1,o

∗
2} of individually-encrypted objects and g would be a

single key (alternatively, we can use a collection of keys, one

for each input object). To reconstruct o1, we would only need to

download o∗
1 from a, rather than the entire encrypted collection.

A key point is that Split, Copy and Threshold do not “break

up” a collection of data objects – if a given output is a collection,

then there is a one-to-one correspondence between objects in

that output and objects in the input.

If a server is broken-into by an attacker, all of the data objects

at that server are obtained by the attacker. Similarly, if a server

is lost or destroyed, all of the data objects on that server are lost.

When data accesses (e.g., reads and writes) occur, however, in-

dividual data objects are accessed.

2.4 Partition Operator

A k-way Partition operator, denotedP, simply breaks its in-
put into k disjoint subcollections, and outputs these k subcollec-
tions without any further encoding. Figure 2 illustrates a 2-way

Partition of a collection of three data objects, {o1,o2,o3}.
The key difference between a Partition and a Split is that

individual outputs of a Partition can be valuable on their own.

In Figure 2, for example, vertex b is valuable even without a,

since the subcollection {o2,o3} is stored there. If r were a

Split, this would not be the case. In this sense, we can think of

a Partition as an “insecure Split”.

2.5 Operator Implementations

A configuration does not specify how to actually implement

each operator. To fully specify a distribution strategy, we must

select an implementation for each operator, and decide where to

send each output of the operator.

There are several ways to Split data into k shares such that
all k are required to reconstruct the input. Earlier, we gave the
example of AES and XOR’ing with random bit sequences. En-

cryption algorithms offer a whole family of widely-used im-

plementation options. Another possible implementation would

be vertically partitioning (or normalizing) the columns of a

database relation, such that no subset of columns in sensitive

[1]. The objects, in this case, would be individual records.

Similarly, there are several implementations of Threshold

operators (e.g., [3, 9]). Threshold operators in practice tend

to suffer from poor performance, so [11] proposes a faster al-

ternative that composes replication and XOR operations. For a

Partition operator, choosing an implementation means deciding

to which output to send each object in the input collection (see

Figure 2 for an example).

The processing time per MB of input data, and the sizes of

the outputs per MB of input are the most important character-

istics of an operator implementation. For example, in Figure 1,

perhaps AES with 128-bit keys is used at r, with the ciphertext

at a and encryption key at g. The k/n at f could use Shamir’s
scheme. Thus, if o1 was of size s, the data at a would also be
size s, whereas b, c, d and e would be 128 bits each. Instead,

if XOR were used at r, the outcome would be quite different –

a,b, c, d, e and the input to f would all be of size s.

2.6 Summary

We now give a brief summary of Section 2, and define some

notation for use throughout the remainder of this paper. We are

given a collection of data objects, O ≡ {o1,o2, . . . }, and a set
of servers, X ≡ {x1,x2, . . . }. We wish to distribute O across
X in such a way that we can read and write quickly (i.e., we
want good performance), and the objects are safeguarded from

unauthorized access (privacy) and loss (preservation). We are

also given a set I of implementation options from which we
can select an implementation for each operator.

A data distribution strategy (or strategy for short), S, is spec-
ified by the triple S ≡ (O,Θ, I), where Θ is the configuration
we choose and I gives the implementation for each operator.
Θ ≡ Θ(X ,Y, E), where X is the set of servers defined above,
Y ≡ {y1,y2, . . . } is the set of non-terminals vertices (i.e., op-
erators), and E is the set of directed edges in Θ. The function
I : Y → I specifies which operator implementation in I we are
using at each non-terminal vertex y ∈ Y . We often assume that
vertices are labelled a,b, c, . . . and that the root is labelled r.

We will often represent a configuration Θ by its access for-
mula, FΘ : {0, 1}|X | → {0, 1}, which is a factored monotone



boolean expression over the elements of X . FΘ captures the

reconstruction semantics of Θ. Copy operators are represented
by boolean addition, whereas Split and Partition operators are

represented by boolean multiplication (since P behaves like S

with respect to reconstruction semantics). A k-of-n Threshold
operator is represented by the function fk/n : {0, 1}n → {0, 1},
which returns true if and only if at least k inputs are true. Satis-
fying assignments of FΘ indicate which terminals are sufficient

for an attacker to reconstruct the data at the root, whereas fal-

sifying assignments indicate which must be lost for reconstruc-

tion of the root to be rendered impossible. For example, the

configuration given in Figure 1 is FΘ = a(b + f2/3(c,d, e)).
The particular factorization of FΘ is important. For exam-

ple, FΘ = a(b + f2/3(c,d, e)) is not the same as FΘ =
ab + acd + ade + ace, though they are logically equivalent2.

Our goal is to output the ”best” data distribution strategy S,
given data objects O, servers X , and implementations I.

3 Evaluating Strategies

In this section, we discuss how to quantify privacy, preser-

vation and performance for a given strategy, S. In Section 4,
we will develop a procedure for finding good data distribution

strategies under these measures. In Section 5, we present a de-

tailed case study illustrating an application of our techniques.

3.1 Privacy and Preservation

3.1.1 Probabilities of Failure

The probability of break-in, pv, for a vertex v is the probabil-

ity that an attacker breaks into enough servers to reconstruct

all of the data at vertex v. We use the term “break-in” gener-

ically to refer to an unauthorized party gaining access to our

data. For example, if server b in Figure 1 was a DVD kept

in somebody’s desk, a “break-in” might mean that the DVD is

physically stolen. Alternatively, if b is a password-protected

network node, a “break-in” might refer to a cracked or leaked

password. We can equivalently think of pv as the “probability

of privacy failure” at vertex v.

Similarly, the probability of data loss, qv, for a vertex v is

the probability that enough servers are lost or destroyed (or un-

available for some other reason) that we are no longer able to

reconstruct any of the data at vertex v. The phrase “data loss”

generically refers to any situation where where we cannot ac-

cess data from a server – depending on the application, we may

be concerned about temporary data loss (e.g., misplaced data,

network outages), or permanent (e.g., media failures, bit rot).

Returning to Figure 1, if server b was a DVD, “data loss” might

mean that the DVD is damaged or misplaced. We can think of

qv as the “probability of preservation failure” at v.
Together, the probabilities of break-in and data loss are re-

ferred to as failure probabilities. Formally, we define a pair

of independent probability spaces (Ωp, P) and (Ωq, Q), which
represent an adversary’s attempts to break-into and destroy our

2See [7] for a full discussion of logical equivalence.

data, respectively. Ωp andΩq are the sample spaces, where each

elementary outcome ω ∈ Ωp represents a specific subset of X
that the attacker manages to break into whereas each ω ∈ Ωq

represents a subset of X that the attacker manages to destroy
(causing data loss). Thus, Ωp = Ωq = 2X . P and Q are dis-

crete probability measures over Ωp and Ωq. Therefore, if TΘ

and FΘ are, respectively, the sets of satisfying and falsifying

assignments of FΘ, then pr = P(TΘ) and qr = Q(FΘ).

3.1.2 Damage and Loss

For each data object oi ∈ O, we define the sensitivity, di ≡
d(oi), as the damage or “harm” to us if an attacker gains (unau-
thorized) access to oi

3. It is most natural to think of di as a

measure of how “sensitive” data object oi is – how much dam-

age would be done to us if an unauthorized party gained access

to oi? For example, if o1 was a secret document and o2 was a

music file, then we might expect that d1 ≫ d2.

Suppose we use a strategy S to distribute an object o1. An

attacker can cause damage d1 only by breaking into enough

servers to reconstruct o1. Formally, we define indicator random

variables, {Ai : Ωp → {0, 1}, i ∈ 1, . . . , |O|}, where Ai(ω) =
1 if and only if the data stored at servers ω ∈ Ωp is sufficient

to reconstruct oi. The realized damage, D : Ωp → [0, d0] is a
random variable on Ωp, where D(ω) ≡

∑
i diAi(ω) for each

ω ∈ Ωp, and d0 ≡
∑

i di is the sum-total sensitivity of all the

objects inO. In words, if an attacker breaks into servers ω ⊆ X ,
the total damage caused is simply the sum of the sensitivities of

the data objects that he can reconstruct using ω.

Completely analogous to di, we can define the value, li ≡
l(oi), as the cost or “harm” to us if data object oi is lost. In-

tuitively, li is a measure of how useful or valuable oi is to us.

Suppose, in our example, that we had a backup copy of docu-

ment o1 in our e-mail, but no backup of the music file o2. In

that case, probably l2 ≫ l1. Alternatively, li might refer to the
time needed to restore oi from a backup.

The value li is lost only if so many servers are lost (or de-
stroyed, or otherwise unavailable) that reconstruction of oi is

rendered impossible. Define indicators {Bi : Ωq → {0, 1}, i ∈
1, . . . , |O|}, where Bi(ω) = 1 if and only if losing access to
ω ∈ Ωq would mean that we could no longer reconstruct oi.

The realized loss, L : Ωq → [0, l0] is a random variable on Ωq,

where L(ω) ≡
∑

i liBi(ω) for each ω ∈ Ωq, and l0 ≡
∑

i li
is the sum-total of values across all the data objects being dis-

tributed using S.

3.1.3 Expected Damage and Expected Loss

One way to measure the privacy offered by a strategy S is the
expected damage, D̄ ≡ EP [D]. Similarly, preservation can be
measured by the expected loss, L̄ ≡ EQ [L]. We want both D̄
and L̄ to be as small as possible. Observe that the expectation
D̄ is computed with respect to the break-in probability measure

3Notationally, we choose the symbol di to represent sensitivity so that the

reader may associate it with with the damage, D. For similar reasons, we will

use li to denote value, to connect it with the loss, L.



P, whereas L̄ is computed under the data loss measure Q. Intu-

itively, D̄ and L̄ are the “costs”4 we will incur, on average, for
using S to distribute our collection of data objects, O.
It can be shown that, if Partition operators are disallowed,

selecting the configuration that minimizes D̄ and L̄ is equivalent
to minimizing pr and qr, respectively. However, the converse is
untrue – if Partition operators are allowed, then a configuration

that minimizes D̄ and L̄ does not necessarily minimize pr and

qr, or vice versa. We will use this observation in Section 4 when
we search for “good” configurations.

3.1.4 Second Moments

We may also wish to control σD and σL, the standard devia-

tions of D and L, respectively. Similar to the means D̄ and L̄,
the standard deviations are also measures of privacy and preser-

vation provided by a system. However, σD and σL capture the

risk of “catastrophic” privacy breaches or data loss where all our

sensitive data is leaked or lost5. Partition operators are useful

for reducing σD and σL since they distribute data across stor-

age locations whose failures are (hopefully) weakly correlated,

or independent.

3.2 Performance

A natural metric for performance is the amount of time it

takes to access our data. To make this idea concrete, we define

a command as either a read or a write of a single data object. A

command is the basic unit of work in our model. For a given

strategy S, our measure of performance is the expected running
time, T̄ ≡ EF [T ], which is the average execution time of a
single command (we will define our notation shortly). There are

a number of factors that affect T̄ . For brevity, we will illustrate
a few of these factors using a small example. We will notice

immediately that the chosen operator implementations have a

large impact on performance.

Suppose we are using the strategy S shown in Figure 3, with
FΘ = (ab)(c + d), to distribute two documents o1 and o2,

each of size s1 = s2 = 1 MB. The Partition r sends o1 to e

and o2 to f . The Split e is implemented using AES with 128-

bit keys, where the key is stored at a and the ciphertext o∗
1 is

stored at b. We will show how to compute T̄ – we begin at the
terminals, and proceed “up” the configuration to r.

Suppose we issue a read command involving o1. We must

read data from both a and b to compute e. Observe that

we do not need to reconstruct f , however. Let TR
a (s) be the

time needed to read an object of size s from vertex a. Then

TR
a (s) = sta, where ta is the access time in seconds per MB
for the storage device a. Since a key is stored at a, we require

skey = 128 bits of data from server a. Assume that a, b, c and
d are nodes from which we can transfer at 10 MB per second.

Thus, ta = 1
10 , so TR

a (skey) = 1
10 · 1

64 = 1.56 milliseconds.
Similarly, TR

b
(s) = TR

c (s) = TR
d

(s) = s
10 seconds.

4The economic notion of expected utility is closely related. Expected dam-

age can be thought of as the expected utility of an attacker, whereas expected

loss is the expected disutility of a defender.
5σD and σL are reminiscent of risk in portfolio optimization.

Figure 3. FΘ = (ab)(c + d)

Let TR
e (s) be the time needed to reconstruct an object of

size s from the non-terminal vertex e. TR
e (s) depends on te,

the processing time per MB of input data at e. Since the Split

at e is implemented using AES, te = tAES, where tAES is the
processing time for AES. TR

e (s) will also depend on our choice
of computation model. That is, are the accesses of a and b done

in parallel or serial? In a parallelmodel, we can read in a and b

in at the same time, so TR
e (s) = ste +max{TR

a (skey), T
R
b

(s)}.
In a serial model, we can only read one of a and b at a time, so

TR
e (s) = ste + TR

a (skey) + TR
b

(s). We will assume a parallel
model for the rest of this example. The input to e is s1 = 1MB
in size. Assuming te = tAES = 1

20 , then TR
e (s1) = 1

20 · 1 +
max{ 1

10 , 1
640} = 150 milliseconds.

Finally, the Partition at r requires little computational ef-

fort, since no encoding is done (a similar statement applies for

Copy). So, in our model, we simply set tr = 0 i.e., P and C

operators come “for free”. We conclude that the time required

to read o1 is 150 milliseconds. Now, suppose we want to read

o2 instead. We need f , and consequently either c or d, since

they are both identical copies of f . Thus, a read of o2 requires

TR
f

(s2) = tfs2 + min{TR
c (s2), T

R
d

(s2)} = 100 milliseconds.

Whereas a read of o2 requires accessing either one of c or

d, a write or update of o2 requires both c and d to be updated

(i.e., to keep the copies consistent). Thus, we expect TW
f

(s) ≥
TR
f

(s), where TW
f

(s) is the time needed to write (or update) an
object of size s to f . Writing or updating o1, on the other hand,

requires accessing vertices a, b and e, which is the same as if

we were reading o1. However, the access times and processing

times at each vertex may be different for reads and writes e.g.,

decryptions may be faster than encryptions. As such, we might

also expect TW
e (s) ≥ TR

e (s). For this example, we assume that
TW
e (s) = TW

f
(s) = 200s milliseconds.

We are now in a position to compute T̄ . Let f1 and f2 be

the access frequencies of o1 and o2, respectively – we have∑
i fi = 1, so the access frequency fi can be thought of as the

probability that a command will access object oi. Let λi be the

read workload, which is the fraction of commands involving oi

that are reads. Thus, 1 − λi is the write workload for oi. Com-

bining these quantities, we can conclude that expected running

time for a command is T̄ = f1λ1T
R
e (s1)+ f2λ2T

R
f

(s2)+ (1−



λ1)f1T
W
e (s1) + (1− λ2)f2T

W
f

(s2). Using f1 = f2 = 0.5 and
λ1 = λ2 = 0.8, we get T̄ = 140 milliseconds per command.

4 Optimization

Now that we have metrics of privacy, preservation and per-

formance for any given strategy S (i.e., Ū , D̄, σU , σD and T̄ ),
we are in a position to search for the “best” strategy under these

metrics. However, it is not so simple, because of the tradeoffs

involved. Steps taken to improve privacy (S operators) tend to

worsen preservation, and vice versa (C). Moreover, using P

operators to improve performance can adversely impact both

privacy and preservation, whereas k/n can do the exact oppo-
site. Therefore, the correct approach is to solve constrained op-

timization problems such as (1):

min
S

T̄ subject to D̄ ≤ D0, L̄ ≤ L0 (1)

In words (1) says: Given a collection of data objects O, servers
X , and minimal requirements D0 and L0 for privacy and

preservation, find the strategy S that offers maximal perfor-
mance. Alternatively, we can optimize or constrain σD or σL,

or some weighted combination of all of D̄, L̄, σD, σL and T̄ .
Problems such as (1), though well-posed, are difficult to

solve. In fact, a much simpler version is considered in [6] –

given a single data object o1, some serversX and a lower bound
on probability of data loss, find the configuration that minimizes

the probability of break-in:

min
Θ

pr subject to qr ≤ q0 (2)

Since there was only a single data object, and performance was

not being modeled, it was sufficient to find the best configura-

tion Θ6. Unfortunately, even solving (2) exactly is intractable
for modestly-sized problem instances. As such, it is unlikely

that a tractable method for finding the global optimum in prob-

lems such as (1) can be found.

Instead, suppose we restrict our search space to strategies

where the configuration is a J-way Partition at the root, and
the children of the Partition are subsystems {Sj , j ∈ 1, . . . , J},
as illustrated in Figure 4. The subsystems are comprised ex-

clusively of S, C and k/n operators (i.e., no P), and they are

mutually disjoint in that they have no vertices in common.

It does not seem that we lose much by restricting the search

space in this way. We studied a number of examples that were

outside this restricted space. In each case, we found a system

within our search space whose D̄, L̄ and T̄ were roughly the
same. Therefore, although such a restriction implies that the

resulting strategy S will most likely be suboptimal, we conjec-
ture that S may not be far from optimal. Each step involved
in searching through this restricted space can be done near-

optimally (finding the global optimum in some cases). More-

over, each step of the search is actually tractable. Therefore, we

propose the following technique, referred to as Algorithm P3,

for finding7 approximate solutions to (1):

6In [6], the symbols P (Θ) andQ(Θ) are used instead of pr and qr.
7The name “P3” alludes to an optimization over the 3 P’s.

Figure 4. Partition at r, with J subsystems.

Algorithm 1 (Algorithm P3)

1: Select J and integers {mj} such that
∑J

j=1 mj = |X |.
2: Divide servers X into J subsets {Xj , j ∈ 1, . . . , J} where

|Xj | = mj , and failures are independent across subsets.

3: For j ∈ 1, . . . , J , solve (2) usingXj – find the configuration

Θj with the lowest pr, given servers Xj and a lower bound

on qr (or, vice versa). In each Θj , ensure that there are no

P operators.

4: Choose operator implementations Ij for each Θj such that

T̄j is minimized for each subsystem Sj ≡ (Θj , Ij).
5: We now have J subsystems {Sj , j ∈ 1, . . . , J}. Use a P at
the root to allocate O across the subsystems, such that D̄,
L̄ and T̄ are optimized.

4.1 Steps 1 and 2

In Steps 1 and 2, we assign each of the servers to one of

J subgroups, Xj . Although it is unclear how to choose J and
{mj} optimally, we might try different choices, repeat Algo-
rithm P3 a few times, and keep the best result.

4.2 Step 3

Given {Xj , j ∈ 1, . . . , J} from Steps 1 and 2, the next step is
to find the ”best” configurationΘj using eachXj . That is, given

Xj , find the Θj that solves (2). In [6], an efficient algorithm,

which we refer to as Algorithm P2, is given8 for computing ap-

proximate solutions to (2). Algorithm P2 finds a configuration

comprised of C, S and k/n operators only. As such, optimiz-
ing over pr and qr in Step 3 is equivalent to optimizing over
D̄j and L̄j for each subsystem Sj , irrespective of the operator

implementation choices. By disallowingP operators in the sub-

systems, we are greatly reducing the complexity of solving (1).

We do not need to jointly optimize over configuration choice

and implementation choice. Instead, we decouple the task into

separate optimizations over configuration (Step 3) and operator

implementation choices (Step 4). Our choices in Step 4 will not

change the pr and qr values achieved in Step 3.

8The name “P2” alludes to an optimization over privacy and preservation.



4.3 Step 4

Step 4 is to search for “optimal” implementations for each

operator in Θj , such that T̄j is minimized. We use a dynamic

programming approach to reduce the complexity of the search.

The idea is to compute a topological sort, Gj , of the vertices in

Θj . First traverse the list in reverse order (i.e., terminals first,

root last), computing TR
v (s) and TW

v (s) as a function of the
input size s, at each vertex v ∈ Gj . Then, traversing Gj in

forward order (i.e., root first), select the implementation at each

v that minimizes the “average” running time at v, and compute

the size of the output data objects that will be sent to v’s chil-

dren. Choosing an implementation at each vertex v ∈ Gj is a

balance between the processing time spent at v and the reduc-

tion achieved in output data size.

4.4 Step 5

We now have J subsystems, {Sj , j ∈ 1, . . . , J}. For each

Sj , let p
(j)
r and q

(j)
r be the resulting probabilities of break-in

and data loss at the root, r(j), of Θj . Define T
R,(j)
r (s) and

T
W,(j)
r (s) as the time required to read and write a data object

of size s using Sj . We are able to compute p
(j)
r , q

(j)
r , T

R,(j)
r (s)

and T
W,(j)
r (s) for each Sj . We now combine these subsystems

into a single strategy S using a J-way Partition operator at the

root, r. The jth child of r is subsystem Sj . See Figure 4.

All that remains to be decided is what implementation to

choose for the Partition operator at the root. That is, we must al-

locate each data object oi ∈ O to a subsystem Sj , such that the

constraints in (1) are satisfied and our objective function in min-

imized. Allocating data objects is a combinatorial optimization

problem, which in general is expensive to solve exactly. Fortu-

nately, we can formulate good relaxations of problems such as

(1) that are quite efficient to solve, as we show next.

Define indicator variables zi,j ∈ {0, 1}, where zi,j = 1 if
and only if oi ∈ O is sent to Sj . Clearly,

∑
j zi,j = 1 ∀ i.

Using {zi,j}, we can express the privacy, preservation and per-
formance for our strategy S as follows:

D̄ =
∑

i,j

p(j)
r dizi,j (3)

L̄ =
∑

i,j

q(j)
r lizi,j (4)

T̄ =
∑

i,j

hi,jzi,j (5)

where hi,j ≡ λiT
R,(j)
r (si)+(1−λi)T

W,(j)
r (si). We can, there-

fore, rewrite (1) using these new expressions:

min
{zi,j}

∑

i,j

hi,jzi,j

subject to
∑

i,j

p(j)
r dizi,j ≤ D0,

∑

i,j

q(j)
r lizi,j ≤ L0

∑

j

zi,j = 1 ∀ i, zi,j ∈ {0, 1} ∀ (i, j) (6)

Problem (6) is an integer program in the variables zi,j , which is

expensive to solve. Observe, however, that the expressions (3),

(4) and (5) are linear in zi,j . Suppose we allow each zi,j to take

on real values in [0, 1], instead of just integers:

0 ≤ zi,j ≤ 1 ∀ i, j (7)

Problem (6) with the relaxed constraints (7) is a linear program,

and can be solved easily and efficiently.

At the optimum, the solution {z∗i,j} obtained under the re-
laxed constraints (7) is a good approximation to the solution of

the integer program (6). In many problem instances, we find

that {z∗i,j} ∈ {0, 1} for most (i, j). For the few {z∗i,j} values
that are strictly between 0 and 1, we can simply round off to ob-
tain a close approximation to the exact solution to (6). The con-

straint relaxation in (7) would also allow us to solve integer pro-

grams (approximately) that include σD and σL in the objective

or constraints. In such cases, the relaxed problems are, at worst,

quadratically-constrained quadratic programs, for which effi-

cient solution algorithms exist as well. The case study in Sec-

tion 5 considers one such instance.

To summarize, using the solution {z∗i,j} obtained from the
constraint relaxation (7) is a viable, efficient technique for solv-

ing problems such as (6). The {z∗i,j} values tell us which sub-
system Sj to allocate each data object oi to, in order to obtain

the desired tradeoff between the 3 P’s.

5 Case Study

We present a case study to illustrate how the techniques in

this paper (i.e., Algorithm P3) can be applied in the design

of data distribution strategies. Suppose we are managing a

database of 100,000 electronic medical records on behalf of our

client, a large healthcare facility. Each medical record contains

sensitive information about a single patient such as their per-

sonal information, medical history and test results. We have a

cluster of 20 networked storage servers across which we want

to distribute the database with the aim of achieving good pri-

vacy, preservation and performance. Using our earlier notation,

X = {x1, . . . ,x20}.
Under HIPAA regulations in the USA9, in the event that

a breach of privacy occurs and patients’ medical records are

leaked to an unauthorized party, we would be subject to a fine

of $100 per patient10 (i.e., per leaked record). Thus, in our case

study the realized damage, D, corresponds to the total fines
levied against us as a penalty for data leaked from our database.

One of our aims in distributing the database will be to attain a

low value for the expectation, D̄, and the standard deviation,
σD, ofD. We are interested in the latter since it is a measure of
risk, i.e., the likelihood of catastrophic break-ins.

Frequent tape backups are made of the entire database. Thus,

in our case study, we are not concerned about permanent data

loss, per se. However, both the servers and the network infras-

tructure that connects them are prone to outages i.e., servers are

9Similar laws exist in the EU (95/46/EC) and Japan (HPB 517).
10There is a ceiling on the total fine, which we ignore for our case study.



Table 1. Candidate system designs.
Name Description

2x10 J = 2 sub-clusters of 10 servers

4x5 J = 4 sub-clusters of 5 servers

2x(6+4) J = 4 sub-clusters of 6 and 4 servers, respectively

2x(8+2) J = 4 sub-clusters of 8 and 2 servers, respectively

10x2s J = 10 2-way Split operators

10x2c J = 10 2-way Copy operators

unreliable and may go offline. Our service-level agreement with

the healthcare facility requires us to provide an “uptime” of at

least 99.9%. That is, at most 0.1% of reads and writes are al-

lowed to fail. Thus, a second goal in distributing the database

is to achieve our 99.9% uptime requirement. The challenge is

to design a highly available strategy using a collection of rel-

atively unreliable servers. In our case study, the realized loss,

L̄, corresponds to the “downtime” i.e., the fraction of reads and
writes that fail due to outages. Finally, we also aim for a low T̄ ,
the average time required to access a record from our system.

5.1 Steps 1 and 2

In Steps 1 and 2 of Algorithm P3, we divide our cluster of

servers X into J subclusters X1, . . . ,XJ . We will compare six

possible system designs, listed in Table 1. The first four corre-

spond to four separate executions of Algorithm P3, whereas the

final two systems in Table 1, 10x2s and 10x2c, are “naive” base

cases that we can evaluate our technique’s output against. Since

the 20 servers have identical characteristics, it makes no differ-

ence exactly which servers are assigned to which sub-clusters

– only the sizes of the sub-clusters are important. Each pro-

posed design has its strengths and weaknesses – in particular

we will observe a tradeoff between privacy (D̄ and σD) and

performance (T̄ ), for a fixed level of preservation, L̄.

5.2 Step 3

In Step 3, we search for optimal configurations Θj using the

servers in each sub-cluster Xj . We estimate that for each server

x ∈ X , the probability of break-in px (i.e., the probability that

server x’s data is leaked) is 1%, where break-ins occur mutu-

ally independently. Similarly, the probability qx that any server
x goes offline is estimated to be 5%, with failures occuring in-

dependently. Reads and writes of data from each server proceed

at tx = 10 MB per second, including network latencies. These
data are summarized in Table 2.

Using Algorithm P2, we solve (2) for the sub-clusters of vari-

ous sizes listed in Table 1. If we can achieve a 99.9% uptime for

every sub-cluster, then no matter how we distribute the records

across the J sub-clusters, we will satisfy our requirement of
99.9% overall uptime. So, in each execution of Algorithm P2,

we use q0 = 100% − 99.9% = 0.1% as the upper bound on
probability of data loss. The configurations (i.e., sub-clusters)

output by Algorithm P2 are listed in Table 3. As an example,

System 2x(6+4) in Table 1 will have two sub-clusters of size

mj = 6 and two of sizemj = 4.

Table 2. Parameters used in case study.
Description Symbol Value

Probability of break-in for server x px 1%

Probability of data loss for server x qx 5%

Access time per MB for server x tx 10 sec.

Processing time for AES tAES 0.005 sec./MB

Processing time for XOR tXOR 0.001 sec./MB

Processing time for k-of-n tk 0.500 sec./MB

Size of AES encryption keys skey 128 bits

Size of each medical record srec 100 kB

Read workload for each record λ 80%

Table 3. Sub-clusters output by Step 3.
mj FΘj

2s x1x2

2c x1 + x2

4 f2/4(x1,x2,x3,x4)

5 x1(x4 + x5 + x2x3) + f3/4(x2,x3,x4,x5)

6 x1f2/5(x2,x3,x4,x5,x6) + x2f2/3(x4,x5,x6)

8 x1 · f4/7(x2,x3,x4,x5,x6,x7,x8)+
x2 · f4/6(x3,x4,x5,x6,x7,x8)

10 x1((x2 + x3)G + x2x3f4/7(x4, . . . ,x10)+
x8x9x10f3/4(x4,x5,x6,x7)+
(x8x9 + x10)x4x5x6x7 + f7/9(x2, . . . ,x10) where
G = f5/6(x5, . . . ,x10) + x4(f4/5(x6, . . . ,x10)+
x5(f3/4(x7, . . . ,x10) + x6(f2/3(x8,x9,x10)+
x7(x8 + x9))))

Figure 5 is a plot of pr and qr for the configurations in Table
3, on a negative-log scale. For example, the sub-cluster of size

mj = 8 has pr = 4.9×10−9 and qr = 0.095. In each subcluster
(other than the two base cases), the probability of data loss is

less than 0.1%, as required. Observe that the subcluster with 4
servers has a lower qr than the one with 6 servers. In the latter
case, we were able to exploit slack in the constraint on qr to
achieve a much lower value for pr.

Recall that the configuration in each subcluster is comprised

of Split, Copy and Threshold operators, but not Partitions.

Moreover, operator implementations have not yet been chosen

at each vertex – we select these in Step 4. For concreteness, in

Figure 6 we illustrate the configuration output use for a subclus-

ter of sizemj = 5.

5.3 Step 4

The next step is to select implementations for the opera-

tors in each of the configurations listed in Table 3. We con-

sider two possible implementations for 2-way Split operators,

namely AES and XOR with a randomly chosen bit sequence.

For k-way Splits, k ≥ 3, our only option is an XOR with
k − 1 bit sequences. Similarly, Threshold operators are im-
plemented using a Shamir secret-sharing scheme. Thus, we

have I = {AES,XOR,Shamir} and the only decisions we must
make are how to implement 2-way Split operators. The process-

ing times per MB of input data, for each operator implementa-

tion, are given in Table 2. While the exact processing times
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urations in Table 3. Longer bars correspond to
lower probabilities of failure.

Figure 6. Subcluster with mj = 5 servers.

are not important, the key observations for our case study are

that XOR runs more quickly than AES, whereas a k-of-n oper-
ator is orders of magnitude slower than either. We assume that

the server access times and processing times are equal for reads

and writes (this assumption is approximately true for AES and

XOR), and that Copy operators are “free”.

We use a dynamic programming approach to select operator

implementations for each 2-way Split operator in each config-

uration in Table 3. As a concrete example, consider the con-

figuration FΘ = x1(x4 + x5 + x2x3) + f3/4(x2,x3,x4,x5),
illustrated in Figure 6. We assume that λ = 80% of commands
are reads for all records.

We must select implementations I(a) and I(c) for vertices
a and c (the other operators have only one implementation op-

tion). Vertex a appears after c in any topological sort of the

2-way Split vertices, so we consider a first. Suppose the in-

put to a was a data object of size s. If I(a) = AES, then

s MB of ciphertext would be stored at x2 and a key of size

skey would be stored at x3 (see Table 2). Therefore, to write

the data object to a would require s(tAES + tx) + skeytx sec-
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Figure 7. Read and write times in milliseconds,
assuming s = 100 kB.

onds. On the other hand, if a was XOR, a write would require

s(tXOR+2tx) since XOR outputs two data objects of size equal
to the input. Therefore, the time required to write an object of

size s is TW
a (s) = stx + min{stAES + skeytx, stXOR + stx)}.

A similar calculation shows that, in this case, the read and write

times for a are equal i.e., TR
a (s) = TW

a (s) = T̄a. Therefore,

we prefer I(a) = AES if s(tXOR − tAES) + (s − skey)tx > 0,
and I(a) = XOR otherwise.
We use the functions TR

a (s) and TW
a (s) in selecting an im-

plementation for c. For example, if I(c) = AES and the key
is sent to vertex b, then TW

c (s) = s(tAES + tx) + 2skeytx +
TW
a (skey) and TR

c (s) = s(tAES + tx) + skeytx. On the other
hand, if I(c) = XOR, then TW

c (s) = s(tXOR + tx) + 2stx +
TW
a (s) and TR

c (s) = s(tXOR + 2tx). Note that the data input
to c is a copy of the input data at the root r, so sc = sr. Evalu-

ating T̄c = λTR
c (sc) + (1 − λ)TW

c (sc) for various sr, we find

that for small sr (relative to skey) we prefer an XOR at c while
for moderate to large sr we prefer AES. Intuitively, the reason

is that for small data objects the largest component of the run-

ning time is the processing time, while for large data objects the

server access times become the dominant factor.

In our case study, we assume the medical records are each

roughly srec = 100 kB in size, which is much larger than skey.
We therefore choose I(c) = AES. This causes objects of size
skey to be sent to a. Consequently, we choose I(c) = XOR.
In this manner, we select implementations and calculate the

resulting execution times for each sub-cluster i.e., the amount

of time to read and write a data object of size s. The results
are plotted in Figure 7, for s = srec. The subclusters of various
sizes have comparable read speeds, whereas write speeds vary

widely, since multiple servers typically are updated in a write.

5.4 Step 5

The final step in Algorithm P3 is to combine the J subclus-
ters using a single J-way Partition operator at the root, as de-
scribed in Table 1. It only remains to decide how the implement



the Partition i.e., how to distribute the medical records across

the subclusters designed in Steps 1 to 4.

As described earlier, there are 100,000 medical records in

the database. Some records are accessed more frequently than

others. In particular, we observe that the distribution of access

frequencies of individual medical records follows a power law

with exponent 1
2 . One reason for a such a distribution over ac-

cess times may be that the healthcare facility deals with a wide

range of patients and as a patient ages, the need for visits to a

physician are increased. We assume that the records are sorted

by access frequency i.e., if fk is the fraction of reads and writes

that involve record k, then fk ∝ 1√
k
.

We adopt the following data distribution strategy in each pro-

posed design. We divide the sorted list of medical records into

N = 20 blocks, such that each block is accessed 1
N of the

time. Let O ≡ {oi, i ∈ 1, . . . , N}, where oi is the ith block
of records. We will distribute the N blocks in O across the J
subclusters that we designed in Steps 1-4.

Let ni be the number of records in block oi. Due to

the square-root law distribution of access frequencies, ni is

(roughly) linear in i. The size of block i is, in turn, linear
in ni i.e., si = nisrec. Recall that if there is a privacy breach,
a fine of $100 is levied per leaked record – thus, di = 100ni.

Since each block receives an equal share of accesses by design,

we get fi = 1
N . Since our notion of loss is downtime (i.e., the

access frequency of unavailable data), we get li = fi = 1
N .

Our goal is to distribute the blocks so that D̄, σD, and T̄ are
minimized, subject to an uptime requirement of 99.9%. There

are several different problems that we might formulate. For ex-

ample:

min
S

σD subject to L̄ ≤ 0.1% (8)

Or, we could select constants α, β and σ0 and solve:

min
S

αD̄ + βT̄ subject to σD ≤ σ0, L̄ ≤ 0.1% (9)

In this case study, we solve (8) for each design proposed in

Table 1. The results of the optimization for each proposed de-

sign are given in Table 4. We see from the results that System

2x10 provides the lowest D̄ and σD, but has a relatively high T̄ .
The “base case” systems are the opposite – low running times

due to their simplicity, but weak on privacy and preservation.

Arguably, System 2x(8+2) is a good compromise, perform-

ing relatively well under all measures. It is interesting that Sys-

tem 2x(8+2) allocates only blocks 1 and 2 (i.e., the smallest

blocks containing the most frequently accessed records) to the

clusters of size 2 (which are the faster but less secure). All other

blocks are sent to the clusters of size 8, since the risk of leaking

larger blocks of records is deemed to be unjustified.

6 Conclusion

In this paper, we have presented an integrated framework for

balancing the 3 P’s of distributed data management: privacy,

preservation and performance. It is important to consider the

3P’s jointly. As demonstrated by our case study (see Table 4),

Table 4. Summary of results.
System σD ($) D̄ ($) L̄ T̄ (ms)

2x10 10.31 ≈ 2.12 × 10−5 0.102% 221.7

2x(8+2) 500.48 ≈ 0.08 0.097% 50.5

2x(6+4) 24066.92 236.35 0.090% 44.5

4x5 71654.00 2039.08 0.093% 38.9

10x2s 31802.63 999.99 9.75% 12.1

10x2c 443268.19 198998.01 2.5% 18.0

some systems that are attractive in one or two dimensions may

be much weaker in another.

Algorithm P3 is significant because it allows us to quanti-

tatively compare various candidate designs. By simply varying

some parameters, we can explore an entire multi-dimensional

tradeoff space. Depending on where we want to be in the trade-

off space, we can select a final design.
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