
PhotoSpread: A Spreadsheet for Managing Photos

Sean Kandel, Eric Abelson, Hector Garcia-Molina, Andreas Paepcke, Martin Theobald
Stanford University

Dept. of Computer Science; Stanford, CA 94305; USA

ABSTRACT
PhotoSpread is a spreadsheet system for organizing and
analyzing photo collections. It extends the current
spreadsheet paradigm in two ways: (a) PhotoSpread
accommodates sets of objects (e.g., photos) annotated
with tags (attribute-value pairs). Formulas can manip-
ulate object sets and refer to tags. (b) Photos can be
reorganized (tags and location changed) by drag-and-
drop operations on the spreadsheet. The PhotoSpread
design was driven by the needs of field biologists who
have large collections of annotated photos. The paper
describes the PhotoSpread functionality and the design
choices made.

Author Keywords
Photo browsing and analysis, spreadsheet.

ACM Classification Keywords
H.5.1 Multimedia Information Systems; H.5.2 User In-
terfaces; H.2.3 Languages.

INTRODUCTION
With the proliferation of digital cameras and scanners,
vast collections of digital images have become common,
and effectively analyzing such collections and their as-
sociated metadata has become critical. For example,
we are working with biologists who use outdoor camera
traps (remotely triggered photographic equipment) to
generate thousands of animal photographs in the Jasper
Ridge Nature Preserve. Each photo is automatically
tagged with the date, the temperature, the location
of the trap, and other metadata. In addition, biolo-
gists manually add tags describing the animal species,
the identity of the individual animal (if known), and
other facts. Biologists analyze these photos to discover
trends and anomalies. For instance, they need to se-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2008, April 5-10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04$5.00

lect groups of photos by their characteristics; groups
of photos must be compared side-by-side; the scientists
need to compute various statistics for particular sets
of photos (e.g., average temperature), and so on. In
addition, the biologists need to continuously edit the
metadata, to correct errors or to enter additional facts
they discover related to given photos. PhotoSpread was
developed in direct response to collaborating biologists’
difficulties with managing their field photos.

Consider the following actual analysis as an example
for what our current target user needs to produce.
A biologist is studying the interaction between deer
(Odocoileus hemionus) in the nature preserve, and its
main predator, the mountain lion (Puma concolor).
The biologist notices that in some photos the deer are
bolting away from the camera, and wants to know why.
A student has previously tagged each photo with the
species of the photographically captured animal.

The scientist now needs to assemble all the photos that
show deer, and must add a “bolting” tag where ap-
propriate. To test for a possible correlation between
mountain lions and bolting deer, the biologist needs to
determine the mean, median, mode and range of times
when deer were skittish. Congruence of these times with
mountain lions’ dawn and evening hunting hours would
demonstrate correlation. To see if temperature impacts
behavior as well, the biologist additionally needs to ex-
amine temperatures at the time photos were captured.

An alternative hypothesis may be that deer are most
skittish during the new moon, because the associated
darkness makes predators hard to see. To verify, the
biologist needs to divide the number of images that oc-
cur during a new (or 1st/3rd quarter) moon by the total
number of images. After completing this skittish deer
analysis, the biologist may need to replicate the process
on other species, such as raccoons or bobcats.

Similar photo analysis needs arise in other domains.
For example, a journalist needing photos for an article,
may need to examine, filter or group photos of relevant
events. An astronomer looking for patterns may need
to examine large numbers of photos related to a partic-
ular area of the sky. Museums have digitized significant
parts of their collections, both for preservation and for
wider dissemination. These vast digital archives must
be curated, which requires analysis and organization of

Figure 1. PhotoSpread Interface (image retouched for clarity).

materials. Last but not least, an amateur photogra-
pher may also want to organize and analyze his travel
or family photos.

Fortunately, as our needs for photo analysis grow, com-
puter display sizes have grown as well, either as indi-
vidual, or multi-displays. This gain in screen real-estate
has introduced new opportunities for coordinated, side-
by-side photo set viewing. However, photographers
with large collections of data-rich photos, like our biol-
ogist colleagues, currently use three types of tools that
are not well integrated with each other: Photo browsers
display images, spreadsheets afford computation over
metadata, and databases (like MS Access) store the
metadata. We will argue in this paper that no tool
by itself fully addresses the increasing analysis needs.

To address this lack of appropriate software, we de-
signed and implemented PhotoSpread, a spreadsheet
tool where photos and groups of photos are first class
citizens. To illustrate, Figure 1 shows a typical Photo-
Spread sheet. Like any spreadsheet tool, PhotoSpread
displays an array of cells, but in addition to atomic data
values, like strings and integers, groups of photos can
be displayed within any cell. For example, the load
command populated cell A1 with a set of photos from
an external source. These photos are from camera traps
at Jasper Ridge Nature Preserve. PhotoSpread decides
how best to utilize the given real estate in the cell to
display all or a subset of the photos. Users can change
cell dimensions by dragging the grid lines. The size
and number of the photos in the cells are automatically
adjusted.

Anchored to the right of the spreadsheet grid is a
workarea. This “big cell” shows the contents of the
currently active cell—in this case C3—for better view-
ing. The metadata for a particular photo can be viewed
via the blue rollover tooltip window, and can be edited
in the workarea (not shown in this figure). If the cur-
rent cell contains a formula, the formula is shown, and
can be edited, in the formula window at the top of the
workarea. Keep in mind that Figure 1 shows our in-
terface in a small area. On a large display, the photos,
especially those in the workarea, can be much better
appreciated.

Say we want to organize these photos along two di-
mensions: the species and the age of each animal. To
keep this example simple, we limit ourselves to two
species, bobcat and deer, and two age groups, adult
and juvenile. Figure 1 shows how we have arranged
these values into a grid.

Cell C3 corresponds to adult (B3) bobcats (C2), so
we enter the formula =A1[species = C2 & age = B3].
(As in Excel, dollar signs $ could be added to control
how a formula is copied into other cells.) As soon as
the formula is entered, the appropriate photos from A1
are displayed in C3. When we copy the formula into the
other three grid cells, we populate our display as de-
sired. Our biologist collaborators tell us that this type
of photo array (concurrently displaying the results of
multiple queries) is critical for visually identifying pat-
terns or anomalies, and is not available in any tools they
use.

Cells E3 and E4 show the average temperature across the
adult and juvenile rows. For instance, the average for

adults (in E3) is computed as =average(C3:D3.temp).
Here, C3:D3 is a range of cells containing the adult pho-
tos, and the .temp component extracts their tempera-
ture tag. As mentioned earlier, such metadata com-
putations are important for biologists as they analyze
their photos.

In addition to using formulas to organize and view pho-
tos and other data, PhotoSpread introduces a novel way
of entering or updating metadata. Say for example that
we see in our grid a photo that is misclassified, e.g., the
photo appears in the cell for adult deer, but it is re-
ally an adult bobcat. We can simply drag the photo
from cell D3 to the cell for adult bobcats C3, and this
action forces the metadata to change, so that the photo
complies with the formula of its new cell. Later in this
paper we present other semantics for dragging, so that a
new copy of the photo is made, or so that the metadata
is not changed but instead the underlying formula of
the receiving cell is automatically changed to cover the
new photo. In addition, strings can be moved to cells
with photos (or vice versa) to tag photos. All these sim-
ple and intuitive drag-and-drop actions give the user a
number of options for adding or changing the metadata
of photos, as the photos are being analyzed and stud-
ied. Again, our biologist collaborators tell us that this
type of re-tagging is very common, and that tagging by
moving photos is preferable to using traditional editors.

In summary, PhotoSpread introduces two important ex-
tensions to common spreadsheet systems:

• Tagged sets are first class objects. Sets of objects,
and in particular, sets of photos, can reside and be
displayed in any cell. The objects—photos and other
data types—can be conveniently tagged. A powerful
formula language can select and manipulate objects,
referring to tags in expressions. The language builds
on widespread knowledge of standard spreadsheet for-
mulas.

• Drag-and-Drop (Re)Organization. Simple actions on
photos and strings change metadata and formulas.
Tagging photos through direct drag/drop manipu-
lation has been found to be effective for tagging
data [14], and PhotoSpread allows the user to con-
figure such manipulations to his needs.

PhotoSpread has been implemented as both a stand-
alone and Web application using Flex. In the current
implementation, photos and other objects are stored
in memory. However, we are developing a storage layer
that uses a backend database for storage and query pro-
cessing. All the PhotoSpread features described in this
paper have been implemented.

While the extensions for tagged sets and drag-and-drop
organization are very natural, we had to address a num-
ber of challenges to ensure a usable and effective real-
ization:

• Data Model and Formula Language. Should the sys-
tem support explicit photo “containers” (work areas
that hold photos, like a directory does in a conven-
tional system) or can we use the spreadsheet cells as
containers? Can we extend our notion of “photo sets”
to sets of strings, tags, numbers, etc.? Such an ex-
tension would enable us to extract all the tags in a
particular photo set, and then assign these tags to an-
other set. What formula language should we define,
so that Excel users feel at ease, but can have access to
the new set and tag features? We answer these ques-
tions in the Model section below, where we present
our data model and associated formula language.

• Drag-and-Drop (Re)Organization. There are two fun-
damental types of sets of objects: materialized sets
(containers) and virtual sets defined via formulas.
The semantics of moving (or copying) a photo or
other object from/to a set depend on the type of set.
For example, moving a photo between two material-
ized sets is just like moving a photo from one physical
pile to another. But what is the meaning of moving
a photo to or from a virtual set (i.e. formula cell)?
Does copying a photo create a new instance or just
a reference to the original photo? In the section on
Reorganization, we explore the options, and deter-
mine what choices give the user a powerful way to
reorganize photos.

• Interface Issues. In the section on the Interface De-
sign, we discuss some of the interface design chal-
lenges we faced. For example, what is the best way
to use the large workspace area? Is this area a spe-
cial type of cell (or container) or is it simply a window
into an active spreadsheet cell? What is the best way
to display photos in the limited-size cells? If all the
photos do not fit in a cell display area, which ones do
we show? How does one select multiple photos for a
set operation?

After describing our design following the outline above,
we conclude by comparing PhotoSpread to existing so-
lutions and by discussing how it is currently being used
by our biologist colleagues.

BASIC MODEL AND FORMULAS
In this section we describe the underlying PhotoSpread
model for the spreadsheet, its objects, and their an-
notations. Our general philosophy is to use Excel as
a starting point. We chose this approach not because
Excel is necessarily the best available spreadsheet appli-
cation, but because it is the most popular package, and
well known in particular to our current target audience.
We extend Excel to handle and display in a cell a set
of objects, and in particular a set of photos annotated
with tags. The full details of our model and formula
language are presented in [16]; here we only summarize
the key points, mainly using examples.

As in Excel, our spreadsheet is a two-dimensional array
of cells, where each cell is referred to by its column and

row identification. For example, cell C2 is at column C
and row 2. Each cell has a display, i.e. an associated
rectangular “screen canvas” where its “contents” can be
displayed. Each cell Xi can be in one of two states:

• Cell Xi can be a container holding a set of material-
ized objects, i.e., objects that are stored in the Pho-
toSpread database. Excel, by comparison, can only
store a single object in a cell. Objects can be moved
in and out of containers, just as if containers were
physical piles of objects. Cell Xi’s canvas shows some
or all of its contained contents.

• Cell Xi can instead be a formula defining a virtual
set of objects. Cell Xi’s display can show either the
formula (when Xi is active) or some of the objects
that are selected by the formula.

Initially, all cells are empty containers. A cell can be
transformed into a formula cell by typing a formula into
the formula editor. As in Excel, cell contents are lost
when a new formula is entered, although the actual ob-
jects are retained in the PhotoSpread database.

In the current system objects can be integers, decimal
numbers, dates, strings, or they can be photos. We rep-
resent each object by an unordered set of tags, where
each tag is an attribute–value pair. For example, a par-
ticular photo may have tags date: 1/1/08, location:
Paris, VALUE: <bits>, ID: 12345. All objects have a
VALUE tag that holds the physical object representation,
and an internal ID tag that uniquely identifies the ob-
ject in the PhotoSpread database. In the future we are
planning to add a PROVENANCE tag that indicates the
origins of a photo.

Note that non-photo objects are also represented by a
set of tags. For example, the number “123” may be rep-
resented by size: small, VALUE: 123, ID: 23456.
Here size is a user-defined tag. We will see that han-
dling all objects in this flexible and uniform fashion
gives us significant power in selecting, grouping and or-
ganizing not just photos but any values in PhotoSpread.

Our model allows multiple tags with the same attribute
name, as well as multiple tag values. For example,
a photo with tags species: squirrel and species:
fox; cat shows a squirrel and either a fox or a cat.

One interesting question that arose in our design is how
to handle object copies. In particular, say object O is in
container cell C1 and we make a copy into cell D2 (see
Reorganization section for the respective interaction de-
tails). Is the object in D2 a different object than O, with
a different ID and the same VALUE, or is it the same
O? That is, should copying be executed by-value or by-
reference? We decided to go with the former. Allowing
an object to be in more than one container would save
storage but would complicate our system, as containers
would have to hold indirect references to objects. In-
direct references also complicate formula processing, as

discussed below. Thus, PhotoSpread handles object as
unique entities, even if they were generated from a copy
operation.

A formula defines a set of objects based on the contents
of other cells. Within a formula we refer to other cells by
their names, e.g., C2 or D5. We can also refer to ranges
of cells, e.g., B2:C3 refers to the union of the contents
of cells B2, B3, C2, C3. As in Excel, PhotoSpread allows
dollar signs $ in cell references to control how equations
are copied. For example, if a formula with reference A$2
is copied to a cell that is three horizontal units over and
two vertical units down, the reference becomes D$2. The
vertical coordinate 2 is not shifted because of the dollar
sign.

PhotoSpread provides three set operators in formulas,
which we illustrate with examples. union(C1, D3:D5)
represents the objects that are either in C1 or in D3 or
in D4 or in D5. intersect(C1, D3, F2) represents the
objects that appear in all three cells C1, D3, and F2.
minus(C1, D3) represents the objects that are in C1
but not in D3.

Filter expressions let us select particular objects from a
set. For example, C1[species=fox & date < 1/1/08]
selects the objects in C1 with a species:fox tag and
a date tag valued earlier than 1/1/08. Note that
quotes around string values are not required, because
the underlying computational engine can determine
this data type by context. To select C1 photos that
show both a fox and a deer, we can write either
intersect(C1[species=fox], C1[species=deer]) or
C1[species=fox & species=deer].

Note that filter expressions may include sets. For exam-
ple, say C1 contains two string objects, one with VALUE:
fox, and another with VALUE: deer. The formula
D1[species=C1] is equivalent to D1[species={fox,
deer}], and selects photos with either deer or foxes.
As illustrated in the Introduction, the power to refer to
cells with strings and other data types makes it possible
to display on the spreadsheet the values that are used
(via indirection) for filtering.

A value selection expression lets us extract values from
the tags on an object. For example, C1.location re-
turns the set of values associated with the attribute
location of any object in C1. Similarly, C1[species=
fox].location returns locations of any fox objects in
C1.

Finally, PhotoSpread allows aggregation operators like
maximum, minimum, sum, average and count. For in-
stance, count(C1) returns the number of objects in
C1. For instance, average(C1[species= fox].age) re-
turns the average age of foxes in C1.

Readers familiar with database query languages like
SQL will see that PhotoSpread provides a lot of the

Figure 2. Example of container to formula move.

power of such languages (we have left out some function-
ality such as GROUP BY and JOINS), using a formula
language that is relatively simple, and most important,
similar to that used by Excel. Furthermore, several of
our design decisions allow the underlying computation
engine to be of manageable complexity.

For instance, as we saw in an earlier example, when
a formula refers to a cell that is also a formula we
get a nested formula, which may then be simpli-
fied. For example, assume that C1 is defined by
union(D1, D2). Then the formula union(C1, D2) is
effectively union(D1, D2, D2), which can be simplified
to union(D1, D2).

We can further simplify formulas when they refer to
container cells, due to our ‘no duplicate object’ assump-
tion. For example, if C1 and C2 are containers, then
intersection(C1, C2) is empty! However, if C2 is a
formula, then we cannot tell if the result is empty. For
instance, if C2 is defined by union(C1, D3) and D3 is
a container, then intersection(C1, C2) is equivalent
to container C1.

This example illustrates that it is convenient to expand
a nested formula until all cell references are to contain-
ers, because at that point intersection and minus op-
erations can be simplified. We call formulas that only
refer to containers base formulas. When discussing re-
organizations in the next section we will also see that
it is useful to convert a formula to its equivalent base
formulation.

DIRECT CONTENT (RE)ORGANIZATION
Like any spreadsheet, PhotoSpread formulas can group
and filter displayed photos (and other objects). How-
ever, with PhotoSpread one can go further and (i) orga-
nize or reorganize photos, and (ii) tag photos by drag-
ging and dropping. That is, drag/drop operations can
be used to conveniently change photo metadata.

How this direct manipulation reorganization works de-
pends on three factors:

• Whether the source/destination cell is a container or
a formula;

• Whether the action is a copy or a move;

• Whether the intended semantics are force (metadata
change) or not.

Due to space limitations we cannot discuss all the com-
binations of factors in detail. Instead we discuss a few
key scenarios from which the reader can infer the other
cases. For now let us assume we are moving/copying
a single photo. Also note that we defer interface is-
sues (e.g., how does one tell PhotoSpread that a drag
is a copy with force semantics) to the Interface Design
section that follows.

To start, let us assume that photo X is dragged from
source cell S1 to destination cell D2, and that both S1
and D2 are containers. In this case, copy and move work
as expected, as if one were moving a physical photo
from one pile of photos to another. That is, moving
a photo removes it from S1 and adds it to D2. Photo
X’s metadata is not changed. Copying a photo creates
a new copy at D2, with the same metadata (except for
the ID tag; a new ID is generated). Since metadata does
not change, force semantics are not applicable here.

Next, assume that source S1 is a container, and desti-
nation D2 is a formula. The key issue here is how cell
D2 “absorbs” X, driven by whether force semantics are
on:

• Force Semantics (default in PhotoSpread). Consider
a move action with force semantics. In this case, X’s
metadata is changed to satisfy the D2 formula. For
example consider the scenario of Figure 2: Cell D2
contains the formula C1[species=fox], which refers
to container C1. Since one of the C1 photos is a fox,
this fox photo is currently displayed in D2. Source
cell S1 contains a misclassified photo X: the image
is not of a wolf (as currently annotated) but of a
fox. To correct the error, the user drags X into D2.
What needs to change so that X is displayed in D2?

Three things happen because of this move action
(with force semantics): Step 1, X’s metadata is mod-
ified, so the species: wolf tag becomes species:
fox (if no species tag existed, it would be added).
Alternatively the species: fox tag could be added
to the photo without replacing the species: wolf
tag so that the photo has both tags. Step 2, photo
X is moved from S1 to container C1. Note the photo
is not moved to D2. Cell D2 is simply a filtered view
of C1, so if X is to be seen in D2, it belongs in C1.
Step 3, photo X is now automatically displayed in D2
(showing two foxes) since it now satisfies the formula.

In general, to determine the necessary changes we
first transform a formula like D2 to a base formula
that refers only to containers (see Model section).
Then we determine the changes necessary to make X
be one of the results of D2. In some cases the changes
are not unique. For example, say D2 = union(C1,
C2). To satisfy this formula, X can either be placed
in C1 or in C2. There are several options for han-
dling non-unique transformations: (1) ask the user for
clarification, (2) pick any choice, or (3) disallow such
transformations. For now, in PhotoSpread we have
taken option (3), but are likely to switch to option (1)
because our biologist collaborators prefer that option.

The example in the Introduction showed how move
with force semantics can be useful for either adding
new tags to photos or re-tagging photos that were
incorrectly tagged. While PhotoSpread does have a
tag editor for individual photos (in the workarea),
forced moves allow a much more intuitive and rapid
organization of photographs.

Copying X from a container to a formula works as
with a move, except that a new photo is created with
the same tags, which are then forced as appropriate.

• Non-Force Semantics. When the user moves (or
copies) photo X from container S1 to formula des-
tination D2 with non-force semantics, she does not
wish to change X’s tags. So to make X appear in
D2 the underlying engine changes the formula at D2.
In particular, the engine can change the formula to
union(prev, S1[ID=Xid]), where Xid is the unique
identifier of photo X, and prev is the original D2 for-
mula. Notice that X remains in cell S1 (for both move
and copy actions): since the user is moving to a for-
mula and does not want to change X, the engine’s only
alternative is to leave X where it is.

Figure 3 illustrates a non-force move. Photo X with
ID=23 in container S1 is moved to cell D2 with formula
= C1[species=fox]. The non-force move changes
the D2 formula to =union(C1[species=fox], S1[ID=
23]), causing both fox photos to be displayed in D2.
Photo X remains in S1.

Non-force semantics are relevant when users want
quickly to construct a complex formula without the
formula editor. For example, by dragging and drop-
ping, a user can rapidly create a virtual set of particu-

Figure 3. Example of non-force move.

lar photos without having to write out a formula such
as union(C1[Id=123], C1[ID=234], C2[ID=345]).

Non-force semantics can also be helpful when a for-
mula has exceptions. For instance, a biologist may
know that all “squirrels” have a particular disease,
but she also knows of two individual “gophers” that
are afflicted. To view all the sick animals, she can
define a formula to display photos with species =
squirrel and then manually add photos of the two
sick gophers.

The options when a user moves a photo X out of a
formula source S1 are analogous: the compute engine
changes X’s tags (force) or the formula (non-force) so
that X does not appear in S1. In this case, force seman-
tics are probably not very useful since there are many
ways to change tags such that X moves out of S1. In
PhotoSpread, the default semantics when S1 is a for-
mula is therefore non-force.

Finally, there are two ways to generalize the function-
ality we have described. First, users can re-organize
groups of photos by control/option selecting the target
photos in the source cell and then dragging the selection
as a group.

Second, we can generalize to cells that have strings as
opposed to photos. We have analyzed all combinations
of factors when strings are involved in a re-organization,
and we have identified two main scenarios that are use-
ful, and are implemented in PhotoSpread:

• String Case 1: Source container S1 has one or more
strings, which are dragged to photo destination D2
(container or formula) with force semantics. For ex-
ample, say the string species: fox is dragged to D2.
The result is to add the tag species: fox to the D2
photos if they do not have a species tag, or to change
their species tag to species: fox if a species tag
is present. If the copied string is simply fox, Pho-
toSpread prompts the user for the attribute to use.
Note that non-force semantics are not as useful here,
because they result in a cell containing a mixture of
photos and tags.

• String Case 2: Photos from source S1 are dragged
onto destination D2 containing one or more strings
(with force semantics). The effect is analogous: the
metadata of the dragged photos is changed to include
the D2 tags. The photos do not actually move, unless
their new metadata causes them to move.

In summary, PhotoSpread offers a variety of methods
for changing the location of photos and for tagging and
retagging photos. In talking to scientists that handle
large number of photos, we have found that each has
their own style of working, manually or with existing
tagging tools. Some like the paradigm of moving tags
onto photos, others prefer to move photos to “places”
that represent their characteristics. Yet others prefer
to manually enter tags using a tag editor. PhotoSpread
offers all the choices within the same framework: A user
that prefers to move tags, can lay out an array of tags
at the bottom or top of his spreadsheet, and then move
these tags onto photos or groups of photos as necessary.
If a user prefers moving photos, she can set up an array
of photo “piles” (defined with formulas), as we did in the
example in the Introduction. At any time, the user can
inspect and modify tags of individual photos by using
the object editor we provide as part of the workspace.

INTERFACE ISSUES
Next, we discuss design issues for the user interface.
Many of the biologists we worked with were most com-
fortable using Windows operating systems and Mi-
crosoft office software, especially Excel. Therefore much
of our design is based on these products’ interfaces.

Screen Layout
We considered many options for the main application
layout. In many spreadsheet applications, by default,
the entire window is used to present the spreadsheet.
Our design deviates from this layout by including the
separate workspace, roughly one-third the size of the
window. The workspace reduces the overall size of the
spreadsheet and the average size of a cell in the sheet,
but allows users to enlarge the contents of a given cell.
This allows biologists to focus on photos of interests
while maintaining the context of working within the
larger spreadsheet.

Workspace
The dedicated workspace allows users to enlarge the
contents of a selected cell, such as C1. User actions in
the workspace have the same effect as if they had been
executed in the respective cell. For instance, a user can
delete a C1 image by choosing “Delete Image” from a
context menu in the workspace while it is displaying
the contents of C1. This operation has the same ef-
fect as deleting the image by interacting with cell C1
directly. In this way, the workspace contents are always
intimately tied to the spreadsheet cell that is in focus.

An alternative would have been to have the workspace
function as an external library, containing objects that
may or may not exists in the spreadsheet. We decided
against this approach to stay as close to the spreadsheet
paradigm as possible. In most spreadsheet applications,
values and formulas only exist within the spreadsheet
and there is no notion of an external library of values.

In addition to enlarging the contents of a cell, the
workspace provides functionality to view and edit meta-
data, edit cell formulas, load images into cells and facili-
tate tagging. By rolling over an object in the workspace,
users can view the object’s metadata, and by right click-
ing the object, users can edit its metadata using an in-
place editor.

Located at the top of the workspace are a text field, a
drop-down menu (which in Figure 1 is set to the choice
“Edit Formula”), and a “Submit” button. Using the
drop-down menu, a user can choose to edit a cell’s for-
mula, load images into a cell, or tag objects that are
located in a cell. The text field allows users to enter
information relevant to the various actions, such as the
text of a formula. Clicking the submit button executes
the requested action.

To facilitate formula editing, the text field provides con-
text sensitive auto-suggest hints, such as attribute types
and function names. Any attribute type ever defined in
the spreadsheet will appear as an option in the auto-
suggest list.

To load images into a cell the user enters either a list
of image URLs, Flickr image IDs, or Flickr set IDs into
the text field. The images are retrieved from the local
disk or over the Web as appropriate.

Finally, the user can enter an attribute A into the text
field to accelerate tagging. While A is present in the
text field, any string dropped onto selected photos in
the workspace is taken to be a value assigned to the
photos’ A attribute.

For example, if a biologist wanted to add tags with at-
tribute Gender and value Male or Female to photos in
the workspace, she might type Gender into the text
field, Male into cell A2, and Female into cell B2. She
could then proceed screen by screen, each time select-
ing all males and dragging string Male from A2 onto the
selected photos; females would be tagged analogously.

Controlling Motion
As described in the Reorganization section, users can
drag and drop objects within the spreadsheet, and the
result of this action depends on the intended semantics.
We considered both moded and non-moded alternatives
as affordances for communicating force, or non-force in-
tent during drag/drop interactions.

The biologists we met with often work on specific, ex-
tended tasks. They dedicate some time to tagging pho-
tos, and then later spend time querying and organizing
the images. For these specific tasks, a moded inter-
face has advantages over a modeless interface, as biol-
ogists do not have to repeatedly indicate their inten-
tions, which remain consistent throughout a given task.
When scientists switch tasks, they simply switch modes
as well. A disadvantage of the moded choice would, as

always, be the potential for confusion as system behav-
ior changes in response to an action.

We opted for the non-moded choice, loosely basing our
interaction design on conventions for drag/drop behav-
iors in desktop GUIs. However, in order to make our
prototype accessible to both Macintosh and Windows
users among our participating biologists, we avoided re-
quirements for a two-button mouse.

If the user (left)-drag/drops a group of objects, de-
fault semantics are applied. As per the Reorganiza-
tion section above, defaults are Forced Move. Control-
drag/drop results in a Forced Copy operation. Finally,
shift-drag/drop raises a context menu with all the avail-
able Move/Copy and Force/Non-Force options. This
latter facility is similar to the right-drag/drop on Win-
dows. During our initial, informal trials, our biologists
were comfortable with these choices. In a fully devel-
oped system, separate Macintosh and Windows imple-
mentations would presumably be preferable.

We based the choice of Force for default semantics on
a workflow analysis of our initial target users. Our bi-
ologists explained that much of their time focuses on
tagging and editing photo metadata. Once their photos
are tagged, they use queries to organize and filter their
collections. They do not (currently) tend to spend time
manually laying out their photos. Force semantics al-
lows the biologists to quickly tag and edit photos, while
Non-Force only functions to rearrange the photo lay-
out within the spreadsheet. Force semantics are there-
fore more appropriate for the majority of the biologists’
tasks. Note that extended availability of PhotoSpread
for layout activities might change this behavior, and we
may have to revisit our choice.

Photo layout
Cells in PhotoSpread may contain an arbitrary num-
ber of objects, and in particular, an arbitrary number
of images. Although with a large display each cell can
be relatively large, it is still critical for PhotoSpread to
maximize the size and number of images that appear
in the cells. We simplify the problem by resizing each
image to be square. We also constrain resizing to retain
a minimum size of m. Users can thus generally perceive
some details in the images. For collections of realistic
size, some images are, of course, not displayed in their
cell. The display engine must thus determine a repre-
sentative set of images to present. Many algorithms,
including last-in-first-out (LIFO), FIFO, and more so-
phisticated summarization approaches are candidates
for use as display group constructors. We chose LIFO
so that the effect of drag and drop operations on a cell
containing many images is immediately visible.

DISCUSSION/EVALUATION
In this section we present a brief qualitative comparison
of PhotoSpread to existing systems, looking at specific

use scenarios. In particular, consider two tasks: Photo
query and analysis, and photo annotation.

When users analyze a large collection of annotated pho-
tos, they need to identify groups of photos based on
their metadata particulars. The users need to layout
the resulting photo groups in a way that is meaningful
for the domain and task at hand. Users also need to
combine groups of photos, extract their metadata, and
compute statistics over that extract. Existing photo
browsers and spreadsheet applications (such as Excel)
provide limited support for such querying and analysis.

Photo browsers typically allow users to filter collections
using keyword search, or through metadata based facil-
ities. PhotoSpread offers a more expressive query lan-
guage [16] than most photo browsers. PhotoSpread for-
mulas can be composed of cell references, cell ranges, set
operators, filter predicates, value selections and object-
type-specific aggregations. Also, queries are implicitly
saved within the cells in which they are defined, en-
abling users to easily chain queries or simultaneously
view the results of multiple queries. Finally, Photo-
Spread allows users to generate sets of related queries
using simple copy and paste operations.

Excel and other spreadsheet applications provide rich
metadata analysis and visualization tools. However,
they lack support for cells containing sets of data. Pho-
toSpread cells can contain sets of objects, including im-
ages, and formulas that operate on these sets. Further-
more, objects have properties which users can access
and manipulate within the spreadsheet. Also, Photo-
Spread allows for drag and drop operations, providing
an intuitive interface for manipulating objects.

Database systems like MS Access also support storage,
querying and visualization of data. However, their in-
terfaces are tailored for business data, and do not pro-
vide the spreadsheet and reorganization functionality
that PhotoSpread does.

The second task we consider is photo annotation. For
this task, a user starts with a large collection of pho-
tos with missing tags. Some tags, such as time or ge-
ographic coordinates, may be automatically generated
by the camera. But many tags, like an animal’s species,
or the name of a person in a photo require human in-
put. Thus, the user must associate individual tags or
groups of tags with individual or groups of photos. Af-
ter the initial tagging, additional tags may be entered
during the analysis phase, as conclusions are reached or
as errors are discovered.

Many existing systems have introduced methods to fa-
cilitate photo annotation. Some approaches include au-
tomated content analysis or tag suggestions, while oth-
ers concentrate on improving manual tagging interfaces.

Like TeamTag [14], PhotoSpread allows multiple meth-
ods for manually and semi-automatically tagging pho-
tos. Users can tag groups of photos with a single drag
and drop operation. In addition, users can assign mul-
tiple attribute-value pairs to groups of photos with a
single action. PhotoSpread also provides aids that sug-
gest attributes based on previously used attributes, or
on the contents of the text edit area. Similar meth-
ods allow users to edit existing photo metadata. Many
photo browsers and Web applications such as Flickr also
provide tagging interfaces. This support is usually lim-
ited to tagging one photo at a time, or a group of photos
with one tag at a time.

RELATED WORK
There has been a great deal of research on extending
the spreadsheet paradigm. Spreadsheets have been ex-
tended to include support for image analysis [11], end-
user programming [10], and data visualization. Most
work has concentrated on data visualization. Hasler [6],
Chi [8], Varshney [22], and Ma [12] extended spread-
sheets to support complex objects in cells, such as charts
and graphs. The commercial product Tableau [20] pro-
vides an intuitive drag and drop interface allowing users
to create charts and graphs from existing data sources
such as spreadsheets.

Many systems have been created to facilitate annota-
tion of photos. These systems generally do not use
the spreadsheet paradigm. Rodden [17] investigated the
methods used to tag personal photo collections, includ-
ing voice annotations. ZoneTag [1], meaning [13] and
context watcher [24] ease the process of tagging per-
sonal photograph collections by providing simple tag-
ging interfaces, automatic content generation including
tag suggestions, and integrating with third party photo
sharing sites such as Flickr. TeamTag [14] allows mul-
tiple users to collaboratively tag images. Hsieh et al.
provide a two-way mapping between structured data
and its visualization, allowing for manipulation of data
through the manipulation of its visualization [7]. Much
of the research for photo tagging concentrates on per-
sonal photo collections and not on scientific collections,
which typically are much larger and have more tags per
photo.

Next we discuss systems built for browsing and retriev-
ing images. Shneiderman [18], introduced tree maps
as an effective photo layout algorithm. PhotoMesa [2]
provides a zoomable interface to enable users to quickly
navigate through large photo collections. Snavely [19]
created 3D viewing environments out of 2D image col-
lections using image based rendering techniques. Other
systems have organized photos using timelines [5, 9] or
hierarchical faceted metadata and dynamically gener-
ated query previews [25]. Many applications, including
those above, provide mechanisms for image retrieval,
with the majority of systems [23] employing content
based image retrieval. Other research efforts support
photo retrieval through automatic organization based

on a number of features, such as time [3, 4] and loca-
tion [15,21].

Finally, there are a number of commercial systems that
facilitate photo annotation and retrieval. These in-
clude ACDSee, iPhoto, Picasa and Aperture. None of
these systems have the grid-plus-computation unifica-
tion of tagging, querying, and query refinement of Pho-
toSpread.

CONCLUSION
PhotoSpread combines photo computational notions
with organizational tasks. In initial, informal testing,
our biology collaborators report that it provides the fa-
cilities they need for their analysis of large annotated
photo collections. This result is not surprising, since we
developed PhotoSpread precisely to address their needs.

Before developing PhotoSpread, we observed the biolo-
gists as they applied their existing tools— often spread-
sheets and databases—to gather photos and metadata,
add tags, and study their collections.

Their spreadsheets contained only the metadata and
links to photo files. They could group and analyze the
metadata, but without seeing the respective photos as
they proceeded. It was therefore difficult for these users
to discover patterns that were hidden in the visuals of
the images.

Once these users identified photos of interest in this
purely textual context, they then needed to switch to
a photo browser to see the images. During this step,
connections to the results that had been computed over
the metadata were lost. Updating the metadata was a
painful process, both because it involved editing photos
individually, using a cumbersome editor, and because
the metadata was stored in multiple places.

Because PhotoSpread supports sets of photos within
cells, biologists can easily see, side by side, the groups
of photos they are interested in. As PhotoSpread sup-
ports tags for photos and other objects, its formulas can
naturally refer to object metadata. And since Photo-
Spread supports drag-and-drop reorganization, adding
or modifying tags is simplified, and can proceed in con-
cert with the data being analyzed. PhotoSpread of-
fers several options for reorganization within the same
spreadsheet paradigm. Biologists can therefore select
the method that best suits their style, such as moving
photos to formulas or moving strings to photos.

Of course, our biologist collaborators are requesting ad-
ditional features. The highest priority for them are tools
for managing photos across multiple repositories. Typi-
cally, photos are taken by multiple users or sets of cam-
era traps. In each instance, the photos “live” on some
computer, and are copied into an analysis tool like Pho-
toSpread. After the metadata is edited, it is important
to push back the changes to the original source. Some-

times the photos themselves are additionally changed
in an image editor. What is needed, in essence, is a dis-
tributed photo repository that provides PhotoSpread’s
computational facilities, plus object versions, recovery,
locking and other data management services. These ser-
vices are beyond the current PhotoSpread, but we will
be working to develop such tools.

Although in this paper we have focused on field biolo-
gists as our main PhotoSpread target users, we strongly
believe that analogous photo analysis requirements ex-
ist elsewhere. As discussed in the Introduction, mu-
seum curators, journalists, astronomers, and others
have large image collections that in addition to being
admired, need to be understood and dissected. Other
communities require support for other types of visual
entities such as video. We believe that PhotoSpread
can be extended to offer useful services to those com-
munities as well.

REFERENCES
1. S. Ahern, M. Davis, D. Eckles, S. King, M.

Naaman, R. Nair, M. Spasojevic, J. Hui-I Yang.
Zonetag: Designing context-aware mobile media
capture to increase participation. PICS ’06, p. 3,
2006.

2. B. Bederson. Photomesa: a zoomable image
browser using quantum treemaps and bubblemaps.
UIST ’01, pp. 71–80, 2001.

3. M. Cooper, J. Foote, A. Girgensohn, L. Wilcox.
Temporal event clustering for digital photo
collections. ACM Trans. Multimedia Comput.
Commun. Appl., 1(3):269–288, 2005.

4. A. Graham, H. Garcia-Molina, A. Paepcke, T.
Winograd. Time as essence for photo browsing
through personal digital libraries. In JCDL ’02,
pp. 326–335, 2002.

5. S. Harada, M. Naaman, Y. Song, Q. Wang, A.
Paepcke. Lost in memories: Interacting with photo
collections on PDAs. JCDL ’04, 2004.

6. A. F. Hasler, K. Palaniappan, M. Manyin,
J. Dodge. A high performance interactive image
spreadsheet (iiss). Comput. Phys., 8(3):325–342,
1994.

7. H. Hsieh and F. M. Shipman. Manipulating
structured information in a visual workspace.
UIST ’02, pp. 217–226, 2002.

8. E. Chi, J. Riedl, P. Barry, J. Konstan. Principles
for information visualization spreadsheets. IEEE
Comput. Graph. Appl., 18(4):30–38, 1998.

9. D. Huynh, S. Drucker, P. Baudisch, C. Wong.
Time quilt: scaling up zoomable photo browsers
for large, unstructured photo collections. CHI ’05,
pp. 1937–1940, 2005.

10. E. Kandogan, E. Haber, R. Barrett, A. Cypher, P.
Maglio, H. Zhao. A1: end-user programming for
web-based system administration. UIST ’05, pp.
211–220, 2005.

11. M. Levoy. Spreadsheets for images. Computer
Graphics, 28:139–146, 1994.

12. K. Ma. Image graphs – a novel approach to visual
data exploration. VIS ’99, pp. 81–88, 1999.

13. Merkitys-meaning. Available from
http://meaning.3xi.org/, 2007.

14. M. Morris, A. Paepcke, T. Winograd. Teamtag:
Exploring centralized versus replicated controls for
co-located tabletop groupware. CHI’06, 2006.

15. M. Naaman, Y. Song, A. Paepcke, H.
Garcia-Molina. Automatic organization for digital
photographs with geographic coordinates. JCDL
’04, pp. 53–62, 2004.

16. S. Kandel, A. Paepcke, M. Theobald, H.
Garcia-Molina. The Photospread query language.
T.R. available at
http://dbpubs.stanford.edu/pub/2007-27, 2007.

17. K. Rodden, K. Wood. How do people manage
their digital photographs? Proc. Human factors in
computing systems, pp. 409–416, 2003.

18. B. Shneiderman. Tree visualization with
tree-maps: 2-d space-filling approach. ACM Trans.
Graph., 11(1):92–99, 1992.

19. N. Snavely, S. Seitz, R. Szeliski. Photo tourism:
exploring photo collections in 3d. ACM Trans.
Graph., 25(3):835–846, 2006.

20. Tableau Software. Available from
http://www.tableausoftware.com/, 2007.

21. Kentaro Toyama, Ron Logan, and Asta Roseway.
Geographic location tags on digital images. ACM
Multimedia, pp. 156–166, 2003.

22. A. Varshney, A. Kaufman. Finesse: a financial
information spreadsheet. INFOVIS ’96, p. 70,
1996.

23. R. Veltkamp, M. Tanase. Content-based image
retrieval systems: A survey. TR UU-CS-2000-34,
C.S. Dept., Utrecht University, 2002.

24. Context watcher. Available from
http://contextwatcher.lab.telin.nl/contextwatcherportal,
2007.

25. K. Yee, K. Swearingen, K. Li, M. Hearst. Faceted
metadata for image search and browsing. Proc.
Human factors in computing systems, pp. 401–408,
2003.

