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Abstract

Entity Resolution (ER) is the process of identifying
groups of records that refer to the same real-world entity.
Various measures (e.g., pairwise F1, cluster F1) have been
used for evaluating ER results. However, ER measures
tend to be chosen in an ad-hoc fashion without careful
thought as to what defines a good result for the specific
application at hand. In this paper, our contributions are
twofold. First, we conduct an extensive survey on existing
ER measures, showing that they can often conflict with
each other by ranking the results of ER algorithms differ-
ently. Second, we explore a new distance measure for ER
(called “generalized merge distance” or GMD) inspired
by the edit distance of strings, using cluster splits and
merges as its basic operations. A significant advantage of
GMD is that the cost functions for splits and merges can
be configured to adjust two important parameters: sensi-
tivity to error type and sensitivity to cluster size. This flex-
ibility enables us to clearly understand the characteristics
of a defined GMD measure. Surprisingly, a state-of-the-
art clustering measure called Variation of Information is
also a special case of our GMD measure, and the widely
used pairwise F1 measure can be directly computed using
GMD. We present an efficient linear-time algorithm that
correctly computes the GMD measure for a large class
of cost functions that satisfy reasonable properties. As a
result, both Variation of Information and pairwise F1 can
be computed in linear time.

1 Introduction

Entity Resolution (ER) is the problem of identifying
groups of records that represent the same real-world en-
tity and then merging the matching records. For example,
two companies that merge may want to combine their cus-
tomer records: for a given customer that dealt with both
companies, they create a composite record that combines
the known information. In this paper, we will consider
the task of evaluating the results of an entity resolution
process.

Usually when we compare entity resolution algorithms,
we run them on a data set and compare the results to a
“gold standard”. The gold standard is an entity resolution
result that we assume to be correct. In many cases, the
gold standard is generated by a group of human experts.
On large data sets where the task is too large to be han-
dled by a human, it is not uncommon to run an exhaustive
algorithm to generate a result, and treat that result as the
gold standard. Then we can compare the results of other
approximate or heuristic-based algorithms to this standard
in the same manner we would compare them to a human-
generated gold standard.

A key component of this type of evaluation is a method
of assigning a number to express how close a given ER
result is to the gold standard. Many ER measures (e.g.,
pairwise F1, cluster F1) have been proposed for compar-
ing the results of various ER algorithms [1, 2, 3, 4], but
there is currently no agreed standard measure for evaluat-
ing ER results. Most works tend to use one ER measure
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Set ER Result
Gold Standard {〈a, b〉, 〈c, d〉, 〈e, f, g, h, i, j〉}

R1 {〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e, f, g, h, i, j〉}
R2 {〈a, b〉, 〈c, d〉, 〈e, f, g〉, 〈h, i, j〉}
R3 {〈a, b, c, d〉, 〈e, f, g, h, i, j〉}

Table 1: Comparing two ER results

over another without a clear explanation of why that ER
measure is most appropriate. The pitfall of using an arbi-
trary measure is that different measures may disagree on
which ER results are the best.

Let us consider a brief example. Using letters to rep-
resent records, consider an entity resolution problem with
an input set of records I = {a, b, c, d, e, f, g, h, i}. Three
possible ER results are shown in Table 1, along with the
gold standard. We have used angle brackets to denote
groups of records that have been determined to refer to
the same real-world entity in a result. For example, the
algorithm that generated result R1 decided that records a,
b, c, and d all refer to distinct entities, while records e, f ,
g, h, i, and j all refer to the same entity.

Suppose we are evaluating two ER results R1 and R2,
against the gold standard G. Using an ER measure that
evaluates a result based on the number of base record
pairs that match, R1 could be a better solution because
it found 15 correct pairs (i.e., all base record pairs in
〈e, f, g, h, i, j〉) while R2 only found 8 correct pairs. On
the other hand, if we use a measure that evaluates results
based on correctly resolved entities in the gold standard,
R2 could be considered better than R1 because R2 con-
tains two correctly resolved entities 〈a, b〉 and 〈c, d〉 while
R1 only has one correct entity 〈e, f, g, h, i, j〉. As another
example, suppose that we compare R2 and R3. One mea-
sure could be more focused on high precision and prefer
R2 over R3 because R2 has only found correctly match-
ing base records while R3 has found some non-matching
base records (e.g., a and c do not match). On the other
hand, another measure might consider recall to be more
important and prefer R3 over R2 because R2 has not
found all the matching base record pairs (unlike R3).

Surprisingly, such conflicts between ER measures can
occur frequently. Section 8.2 thoroughly discusses con-
flicts and empirically demonstrates the frequency of con-
flicts. It is tempting to suggest that when conflicts arise,

one of measures involved must be faulty in some way.
However, since different applications may have different
criteria that define the “goodness” of a result, we cannot
simply claim one measure to be better than another.

The main contributions of this paper are twofold. We
provide a survey of ER measures that have been used to
date, experimentally demonstrate the frequency of con-
flicts between these measures, and provide an analysis of
how the measures differ. In studying these measures, we
noticed a missing component in the space of existing mea-
sures. So the second main contribution of this paper is a
new measure for evaluating ER and an exploration of its
relationships to other measures.

Our new measure is inspired by the edit distance of
strings [5, 6]. Rather than the insertions, deletions and
swaps of characters used in edit distance, our measure
is based upon the elementary operations of merging and
splitting clusters. We therefore call this measure “merge
distance”. A basic merge distance that simply counts the
number of splits and merges may be a good choice for
certain applications, but as we have mentioned, no single
ER measure is better than all the others. However, if we
generalize merge distance by letting the costs of merge
and split operations be determined by functions, we ar-
rive at an intuitive, configurable measure that can support
the needs of a wide variety of applications. Surprisingly,
at least two state-of-the-art measures are closely related to
generalized merge distance: the Variation of Information
(V I) [7] clustering measure is a special case of general-
ized merge distance while the pairwiseF1 [3] measure can
be directly computed using generalized merge distance.

We further propose a linear-time algorithm (called the
Slice algorithm) that efficiently computes generalized
merge distance for a large class of cost functions that sat-
isfy reasonable properties. As we argue in this paper (Sec-
tion 6) gold standards can be very large, so computing
measures can be expensive, especially with the quadratic
algorithms used for many measures. To the best of our
knowledge, the Slice algorithm is the first provably scal-
able algorithm for ER measures. A non-trivial result is
that the pairwise F1 and V I distances can be computed
using our Slice algorithm in linear time.

In summary, our contributions are as follows:

• We define our models for ER and ER measures, and
conduct an extensive survey on ER measures (Sec-
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tions 2∼4).

• We propose generalized merge distance (GMD), a
new measure that uses the elementary operations of
cluster splits and merges to measure the distance
from one ER result to another. We propose an ef-
ficient linear-time algorithm (called the Slice algo-
rithm) that computesGMD for a large class of cost
functions that satisfy reasonable properties (Sec-
tions 5∼6).

• We conduct various experiments on ER measures.
Although most papers use a single measure to eval-
uate algorithms, we show that ER measure con-
flicts can occur frequently in practice where ER al-
gorithms are ranked differently depending on the
ER measure. Next, we show how the GMD mea-
sure can be configured on two important parame-
ters: sensitivity to error type and sensitivity to clus-
ter size. Finally, we demonstrate the scalability of
the Slice algorithm (Section 8).

2 Entity Resolution Model
In Entity Resolution (ER), our task is to determine:

1. the number of real-world entities in the input data,
and

2. which pieces of information in the input data refer
to the same real-world entity.

We define the problem formally as follows.
An ER problem consists of a set I of N input records.

The result of an ER algorithm is a partition of I . A par-
tition of a set S is a set of sets {s1, s2, s3, . . . , sn} such
that:

1.
⋃

i si = S,

2. for all pairs si, sj , si ∩ sj = ∅, and

3. for all sets si, si 6= ∅.

We refer to each si as a cluster. Although clusters are
sets, we will denote them using 〈, 〉 to distinguish them
from sets that are not to be understood as members of a
partition. For shorthand, we may in some cases represent
a cluster as a simple string of records, i.e., the partition
{〈a, b, c〉, 〈d, e〉} can be written as simply {abc, de}. In
this example, two real world entities were identified, with

a, b, c representing the first, and d, e representing the sec-
ond.

Many ER algorithms [8, 9] return only a set of records,
rather than a partition of the base records. They use a
merge function to condense multiple records into a single
record in the result. As an example, the result of resolving
r1 = {name : J. Smith } and r2 = {name : John S. }
might be the merge of the two records, r3 = {name :
John Smith }. Results that are not partitions are not di-
rectly covered by our model, but if we instrument any
such algorithm to keep track of the lineage of records
in the result, then we can use the lineage information to
transform the result into a partition of the base records. In
our example, this would mean remembering that r3 was
the result of merging the base records r1 and r2, and thus
we would consider those two base records as members of
the same cluster.

3 Evaluating ER Results
To evaluate an ER algorithm, we must compare its results
to a gold standard. We define the gold standard S as a
partition of the input records I . So we would like to as-
sign a number to characterize how far away a result R is
from the gold standard S. Let g(R,S) be the function that
performs this task of assigning a number.

We would first like to discuss a few properties that g
may have. First, for g to be useful, we would like to be
able to compare the values g(R1, S) with g(R2, S) to de-
termine whether R1 or R2 is closer to S. If g(R,S) gen-
erally increases as R and S get closer to each other, then
we call g a similarity measure. If g generally decreases
under the same circumstances, then we call g a distance
measure. We note that if g(x, y) is a similarity measure,
then gd(x, y) = −g(x, y) is a distance measure.

Another property of g(x, y) has to do with its range.
If g(x, y) ∈ [0, 1] for all x, y, then we say g is normal-
ized. In some applications, it may be desirable to use a
normalized similarity or distance measure. If g is not nor-
malized, but has some other bounded range, it is trivial to
normalize g to the range [0, 1].

To provide some examples, Hamming distance and edit
distance of strings are non-normalized distance measures.
The Jaccard coefficient of sets is a normalized similarity
measure.
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We have so far avoided using the term “metric”, as a
metric is a formally defined mathematical concept. We
now consider whether we should expect a distance mea-
sure g to be a metric. A proper metric must satisfy the
following five properties: [10]

1. g(x, y) is non-negative: g(x, y) ≥ 0,

2. g(x, y) satisfies the triangle inequality:
g(x, y) + g(y, z) ≥ g(x, z),

3. g(x, y) is symmetric: g(x, y) = g(y, x),

4. g(x, x) = 0,

5. if g(x, y) = 0, then x = y.

We also define a similarity metric as a similarity mea-
sure s(x, y) where the function g(x, y) = c− s(x, y) is a
metric for some value of c.

Of the five properties of metrics, we consider Proper-
ties 1 and 4 as reasonable enough to assume outright of
any distance measure that we consider in this paper. Prop-
erties 2, 3, and 5, however, are subject to debate. Prop-
erty 5 requires that the distance between distinct values
be non-zero. However, when using common similarity
measures such as precision or recall, it is certainly possi-
ble for two distinct values to have 100% similarity (zero
distance). Property 2 does not have to hold where we only
compare two sets R and S at a time (i.e., we do not mea-
sure the distance of a sequence of more than two ER re-
sults).

The question of symmetry (Property 3) is more inter-
esting. Consider the following two cases:

1. R = {〈a〉, 〈b〉} and S = {〈a, b〉}
2. R = {〈a, b〉} and S = {〈a〉, 〈b〉}

In the first case, our ER algorithm has missed a match.
In the second, it has found a match where there should
not have been one. If false negatives and false positives
are considered equally bad, then the two cases have equal
distance and our similarity or distance measures may be
symmetric. However, in many cases, we may wish to con-
sider measures that have different penalties for different
types of errors. So in the most general case, symmetry
may not be a property of a method of evaluating the re-
sults of ER.

Functions that satisfies all properties of a metric except
for Properties 2, 3, or 5 are called semimetrics, quasi-

metrics, or pseudometrics, respectively [10]. Since the
measures we consider in this paper may not satisfy the
three properties above, they may be referred to as premet-
rics [10]. In this paper we will avoid the use of the term
“metric” altogether and use the more general term “mea-
sure”.

4 Existing Measures
We review state-of-the-art measures for evaluating ER re-
sults and motivate our edit distance measure. There are
many measures used in the Information Retrieval (IR) and
AI communities that measure the quality of clustering.
Evaluating clusters is a broader topic than evaluating ER
results because ER is a special case of clustering, in which
the clusters tend to be small and items in each cluster are
typically quite distinct from items in other clusters [11].
Hence, the ER literature has historically only adopted a
small subset of all clustering measures for IR.

4.1 Pairwise Comparison
The pairwise comparison approach counts the number
of pairs of base records to evaluate ER results. To de-
fine pairwise measures, we define a function Pairs(P )
that takes in a partition P and returns the set of distinct
pairs of records that are in the same cluster in P . For
example, if P = {〈a, b, c〉, 〈d, e〉}, then Pairs(P ) =
{(a, b), (b, c), (a, c), (d, e)}. We can now define the simi-
larity measures pairwise precision and pairwise recall:

PairPrecision(R,S) =
|Pairs(R) ∩ Pairs(S)|

|Pairs(R)|
PairRecall(R,S) =

|Pairs(R) ∩ Pairs(S)|
|Pairs(S)|

A number of ER papers [12, 13, 14, 15] use pairwise
precision and pairwise recall to evaluate ER results while
earlier works [16, 17, 18] use the rate of false positives
(i.e., 1-PairPrecision(R,S)) and the rate of false neg-
atives (i.e., 1-PairRecall(R,S)) for evaluation. A few
works [15, 19] use a variant of pairwise recall while tak-
ing into account the reduced number of record compar-
isons due to blocking techniques. Another work [20] uses
a variant of pairwise precision where precision is penal-
ized based on the difference of |R| and |S|.
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pF1 The pairwise F1 measure [3, 21, 22, 23, 24, 25, 26,
11, 27, 28, 29, 2, 30] is the dominant measure in the ER
literature and is defined as the harmonic mean of pairwise
precision and pairwise recall:

pF1(R,S) =
2× PairPrecision(R,S)× PairRecall(R,S)
PairPrecision(R,S) + PairRecall(R,S)

For example, if R={〈a, b〉, c, d} and S={〈a, b〉, 〈c, d〉},
Pr = 1

1 and Re = 1
2 , making the pairwise F1 = 2×1×(1/2)

1+(1/2)

= 2
3 = 66.67%.

4.2 Cluster-level Comparison
The cluster-level comparison approach sums the similar-
ity of clusters to evaluate ER results instead of counting
pairs of base records.

cF1 The cluster F1 measure [31, 28, 29, 2] counts clus-
ters that exactly match and is defined as the harmonic
mean of the cluster precision and cluster recall. The clus-
ter precision is defined as |R∩S|

|R| while the cluster recall

is defined as |R∩S|
|S| . Notice that we are now comparing

R and S at the cluster level instead of the base record
level as in pF1. Returning to our previous example where
R={〈a, b〉, c, d} and S={〈a, b〉, 〈c, d〉}, the precision is 1

3
while the recall is 1

2 because exactly one cluster matches
among three clusters inR and two clusters in S. The Clus-
ter F1 is thus 2×(1/3)×(1/2)

(1/3)+(1/2) = 2
5 = 40%. We denote the

cluster F1 measure as cF1.

K The K measure [32, 2] sums the similarities of all
cluster pairs and is defined as the geometric mean of
the Average Cluster Purity (ACP) and the Average Au-
thor Purity (AAP). (Here, Author can be thought of as
a cluster in the gold standard.) The ACP is defined
as 1

N Σr∈RΣs∈S
|r∩s|2
|r| where N is the number of base

records. (Notice that the records r and s are consid-
ered as sets of base records.) Similarly, the AAP is de-
fined as 1

N Σs∈SΣr∈R
|r∩s|2
|s| . The K measure is then√

ACP ×AAP . For example, the ACP value for R and
S is (22/2)+(12/2)+(12/2)

4 = 3
4 while the AAP value is

(22/2)+(12/1)+(12/1)
4 = 1, making the K value

√
3
4 × 1=

86.6%.

ccF1 The closest cluster F1 measure [8] sums the sim-
ilarities of all “closest” cluster pairs and is defined as the
harmonic mean of the closest cluster precision and closest
cluster recall values. The closest cluster precision is de-
fined as Σr∈R maxs∈S(J(r,s))

|R| where J(r, s) is the Jaccard

similarity |r∩s|
|r∪s| . The closest cluster precision is thus the

sum of the maximum Jaccard similarity coefficients for all
r’s divided by |R|. Similarly, the closest cluster recall is
defined as Σs∈S maxr∈R(J(s,r))

|S| . For example, the closest

cluster precision for R against S is (2/2)+(1/2)+(1/2)
3 = 2

3

while the closest cluster recall is (2/2)+(1/2)
2 = 3

4 , making
the closest cluster F1 = 2×(2/3)×(3/4)

(2/3)+(3/4) = 12
17 = 70.59%.

We denote closest cluster F1 as ccF1. Reference [20] uses
a variant of ccF1 that uses a different similarity equation
and gives weights to the coefficients when adding them.

4.3 Basic Merge Distance
Edit distance is a common measure in other domains such
as string-to-string matching [5, 6] where the basic opera-
tions are inserts, deletes, updates, and swaps. In the ER
domain (as in clustering), there are fundamental “edit” op-
erations such as cluster splits and merges [33] that are fre-
quently used to resolve records.

A measure based on splits and merges was first pro-
posed by Al-Kamha et al. [34], which we call basic merge
distance. Since basic merge distance will be the basis for
our generalized merge distance measure, we will describe
basic merge distance in more detail than the other mea-
sures we have covered.

The basic merge distance (BMD) is defined as the
minimum number of cluster merges and splits required
to modify an ER result R into another result S. (In most
cases, we will have S = G, the gold standard.) In the
example from Table 1, only one merge is required to get
from R2 to G (i.e., BMD = 1). Result R1 is compara-
tively further away from G, as BMD = 2.

In addition, we require that the editing of clusters is
only done based on the given clustering information in R
and S. Specifically, a merge cannot create newly clustered
records that are not in the same cluster in S. For example,
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consider R = {〈a, c〉, 〈b, d〉} and S = {〈a, b〉, 〈c, d〉}.
Notice that by merging 〈a, c〉 and 〈b, d〉 into 〈a, b, c, d〉
and then splitting 〈a, b, c, d〉 into 〈a, b〉 and 〈c, d〉, we have
a BMD of 2, which is better than splitting 〈a, c〉 and
〈b, d〉 into the records a, b, c, d, and then merging a, b
into 〈a, b〉 and c, d into 〈c, d〉 (resulting in a BMD of
4). However, the first approach creates new clusterings
in 〈a, b, c, d〉 (i.e., a clusters with d, and b clusters with
c) that do not appear in the clusters of S, violating our
condition. Intuitively, editing R to S requires removing
the clustering information found inR only and adding the
new information in S.

We now formalize the definition of BMD.

Definition 4.1. A split is an operation c → c1, c2 where
c1 ∩ c2 = ∅, c1 ∪ c2 = c, and c1, c2 6= ∅. The result of
applying a split to a partition P is (P − {c}) ∪ {c1, c2}.
A split is a valid operation on P if and only if c ∈ P .

Definition 4.2. A merge is an operation c1, c2 → c where
c = c1 ∪ c2. The result of applying a merge to a partition
P is (P − {c1, c2}) ∪ {c}. A merge is a valid operation
on P if and only if c1, c2 ∈ P .

As a matter of notation, the result of applying an op-
eration o (which can be either a merge or split) to a par-
tition P can be written P : o. Note that the result of an
operation on a partition is still a partition, so we may ap-
ply operations to a partition in sequence. The application
of operations o1 and o2 to P in sequence can be written
P : o1 : o2. However, we will use commas to separate
operations instead: P : o1, o2.

Definition 4.3. A path from partition R to partition R′

is a sequence of operations o1, o2, . . . , on where R′ =
R : o1, o2, . . . , on and oi is a valid operation on R :
o1, o2, . . . , oi−1 for all oi. We say that a path is a legal
path from R to R′ if for any operation that is a merge
o1 = c1, c2 → c, then there exists a cluster p ∈ R′ where
c ⊆ p.

Definition 4.4. The BMD from a partition R to a par-
tition S is the number of operations in the shortest legal
path from R to S.

While the BMD measure also operates at the clus-
ter level, we categorize it separately from cluster-level
comparison approaches because clusters are dynamically
edited using basic operations instead of being statically
compared.

4.4 Variation of Information
Another closely related work to merge distance measure
is a state-of-the-art clustering measure called Variation of
Information [7] (V I) where we measure the “informa-
tion” lost and gained while converting one clustering to
another as follows:

V I(R,S) = H(R) +H(S)− 2I(R,S)

Functions H and I represent, respectively, the total en-
tropy of the individual clusters and the mutual informa-
tion between R and S.

H(R) = −
∑
r∈R

|r|
N

log
|r|
N

I(R,S) =
∑
r∈R

∑
s∈S

|r ∩ s|
N

log
|r ∩ s| ×N
|r| × |s|

5 Generalized Merge Distance
The definition of basic merge distance (Section 4.3) im-
mediately raises some questions on how we can gener-
alize it. In some cases, we may want to penalize splits
more than merges, or vice versa. Further, the “badness”
of a split or merge may depend on the sizes of the clusters
that are being merged or split. In this section, we define a
generalized merge distance (GMD) that creates a larger
space of possible measures. In Section 5.3 we show that
this space includes distance measures closely related to
the pairwise precision and recall measures of Section 4.1,
as well as the V I measure of Section 4.4.

Definition 5.1. The fm, fs generalized merge distance
GMDfm,fs

(R,S) from a partition R to another parti-
tion S is the minimum cost of a legal path from R to S,
where:

• the cost of a merge operation x, y → z is
fm(|x|, |y|), and

• the cost of a split operation z → x, y is fs(|x|, |y|).

Clearly, the BMD measure described in Section 4.3
is the same as the GMD measure when fm(x, y) =
fs(x, y) = 1.

We assume some reasonable properties of the functions
fm and fs:
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1. Operations cannot have negative cost: fm(x, y) ≥ 0
and fs(x, y) ≥ 0.

2. The cost functions are symmetric: fm(x, y) =
fm(y, x) and fs(x, y) = fs(y, x).

3. The cost functions monotonically increase with their
parameters: fm(x, y) ≤ fm(x + j, y + k) and
fs(x, y) ≤ fs(x+ j, y + k) for non-negative j, k.

Given the above three properties, we can prove there
exists a minimum cost legal path from a partition R to a
partition S where all of the split operations precede the
merge operations. This result vastly reduces the search
space for a minimum cost path and thus leads to an effi-
cient algorithm for computing GMD.

We begin by noting that merge and split operations are
often commutative. That is, R : o1, o2 = R : o2, o1 for
many pairs of operations. In fact, operations are always
commutative except when the input of one operation is
the output of another.

As an example, consider the path defined by operations
o1, o2, o3, o4, o5 in Table 2. Operations o1 and o3 can be
executed in either order, as their inputs and outputs do not
overlap. Operation o4, on the other hand, takes the output
of o3 and one of the outputs of o2 as input. Therefore, o4

must be performed after both o2 and o3.

Table 2: Example path
Operation Result
— 〈abc〉, 〈de〉, 〈f〉, 〈g〉
o1: 〈abc〉, 〈de〉 → 〈abcde〉 〈abcde〉, 〈f〉, 〈g〉
o2: 〈abcde〉 → 〈ae〉, 〈bcd〉 〈ae〉, 〈bcd〉, 〈f〉, 〈g〉
o3: 〈f〉, 〈g〉 → 〈fg〉 〈ae〉, 〈bcd〉, 〈fg〉
o4: 〈fg〉, 〈bcd〉 → 〈bcdfg〉 〈ae〉, 〈bcdfg〉
o5: 〈ae〉, 〈bcdfg〉 → 〈abcdefg〉 〈abcdefg〉

The commutativity of operations in a path can be rep-
resented with a precedence graph.

Definition 5.2. The precedence graph G for a path
o1, o2, . . . , on is a directed graph that specifies the order
in which the operations must take place. We build the
graph by creating a vertex for each operation. For each
pair of operations oi, oj with i < j, if an output cluster
p of oi is an input of oj and there is no k between i and

j where ok also has p as an input, then we add an edge
from oi to oj .

〈a, b, c, d, e〉

〈b, c, d〉

〈a, e〉

〈f, g〉

〈b, c, d, f, g〉

o1

o2

o4

o5

o3

〈a, b, c〉 〈d, e〉 〈f〉 〈g〉

〈a, b, c, d, e, f, g〉

Figure 1: A precedence graph.

Figure 1 shows the precedence graph for the path from
our example. For clarity, the edges are labeled with the
cluster that creates the dependence between two opera-
tions. Dashed lines in this figure are not part of the prece-
dence graph; they are present only to show the inputs and
outputs of operations that would not be apparent from the
precedence graph alone. The graph clearly illustrates that
o3 can commute with o1 and o2, but no other pairs of oper-
ations are commutable. To construct a path with all splits
preceding all merges, we can often simply use commuta-
tivity to move the split operations to the front. However, if
there is an edge from a merge to a split in the precedence
graph, commutativity will not help. In that case, we must
invoke a more complex transformation which we call a
“merge-split swap”.

We will first illustrate a merge-split swap with an exam-
ple, and then formally define the transformation. In our
running example, merge operation o1 has an edge to split
operation o2 (which we would like to move “up” to the
beginning of the path). We will “swap” the order of the
operations by replacing o1 with a split operation o′1 with
an edge to a merge operation o′2 that replaces o2. The in-
put of o′1 will be 〈a, b, c〉, the larger of the two inputs of
o1. We then split that input into two clusters, one of which
has the same size as the smaller of the outputs of o2. We
will arbitrarily choose 〈a, b〉 as the output of size 2, and
thus o′1 = 〈a, b, c〉 → 〈a, b〉, 〈c〉. We will define o′2 as the
merge of the “leftover” cluster 〈c〉 with the smaller of the
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inputs to o1. So o′2 = 〈c〉, 〈d, e〉 → 〈c, d, e〉.
Note that the sequences o1, o2 and o′1, o

′
2 do not pro-

duce the same result (the former yields 〈a, e〉, 〈b, c, d〉 and
the latter yields 〈a, b〉, 〈c, d, e〉). However, the two se-
quences each produce 2 clusters of the same size. To
compensate for the different output, we modify operations
“downstream” from o′1, o

′
2 so they work with the new clus-

ters, as shown in Figure 2.

〈a, b〉

〈c〉

〈c, d, e〉

〈f, g〉

〈c, d, e, f, g〉

o′
1

o′
2

o′
4

o′
5

〈d, e〉 〈f〉 〈g〉

o3

〈a, b, c〉

〈a, b, c, d, e, f, g〉

Figure 2: Precedence graph for the transformed path.

We note that the result of the transformed path
is the same as the result of the original path:
{〈a, b, c, d, e, f, g〉}. But suppose the original path
only had operations o1, . . . , o4. Then the result be-
fore the transformation would be {〈a, e〉, 〈b, c, d, f, g〉},
and the result of the transformed path would be
{〈a, b〉, 〈c, d, e, f, g〉}—a different result! As it turns out,
as long as the original path was a legal path, the result
after the transformation will be the same. Removing o5

from the path changes the result in such a way that o1 be-
comes an invalid merge (〈a, b, c, d, e〉 is not a subset of
any cluster in the result). Lemma 5.1 will prove that the
merge-split swap transformation can be applied to any le-
gal path without changing the result of the path.

Figure 3 provides a generalized depiction of the merge-
split swap transformation. It will be useful as a reference
for the following formal definition.

Definition 5.3. The merge-split swap transformation is
defined as follows. Consider a path with a merge oper-
ation m = π1, π2 → π12 with an edge to a split oper-
ation s = π12 → π3, π4 in the precedence graph. Let
|π1| ≥ |π2| and |π3| ≥ |π4|.

Figure 3: A merge with an edge to a split is rewritten into
a split with an edge to a merge.

We construct two new operations: s′ = π1 → π′1, π
′
4

and m′ = π′1, π2 → π′3. When constructing these oper-
ations, we choose a π′4 ⊆ π1 where |π′4| = |π4|. (It is
possible in this scenario that |π′1| = 0, which would make
s′ and m′ illegal operations. However, in this case we
can consider s′ and m′ to be zero cost no-ops) The trans-
formation begins by replacing operation m with s′, and
replacing s with m′.

The remaining changes to the path simply fix subse-
quent operations to use π′3 and π′4 as input, instead of
π3 and π4. Defining this process formally, we construct
a one-to-one mapping M of records. We will employ
an extended notation that allows us to apply M to sets
and operations, e.g. M(S) = {M(x) : x ∈ S} and
M(π1, π2 → π12) = M(π1),M(π2) → M(π12). For
all records r 6∈ π3 ∪ π4, we define M(r) = r. For the
records in π3 and π4, we defineM such thatM(π3) = π′3
and M(π4) = π′4.

The merge-split swap transformation is complete when
we replace each subsequent operation o in the path with
M(o).

Definition 5.1. Given a legal path p from R to S, apply-
ing a merge-swap split transformation results in a legal
path p′ from R to S with cost less than or equal to the
cost of p.

Proof. In this proof, we will reuse the terms intro-
duced in the definition of the merge-split swap: clusters
π1, π2, π3, π4, π

′
3, π
′
4, operations m, s, s′,m′, and map-

ping M .
We make three claims about p′:

1. Path p′ is a path from R to S.

2. Path p′ is a legal path from R to S.

3. The cost of p′ is less than or equal to the cost of p.
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To prove Claim 1, we first name the operations in our
paths to o1, . . . , on and o′1, . . . , o

′
n, respectively. Suppose

that the split to be transformed is ok = s, and there-
fore o′k = m′. We note that R : o′1, . . . , o

′
k = M(R :

o1, . . . , ok). That is, after applying p′ up through the kth
operation, then we have the same result as applying the
first k operations of p and then applying M to each set
in the resulting clusters. For each subsequent operation o,
o′ = M(o), so it is clear that R : o′1, . . . , o

′
k+i = M(R :

o′1, . . . , o
′
k+i) for positive i. Therefore, R : p′ = M(R :

p) = M(S).
Now, the operation m was a merge of π1 and π2. Since

p is a legal path, π1 ∪ π2 must be a subset of some cluster
πf in S. Since π1 ∪ π2 = π3 ∪ π4, we can write πf =
π3 ∪ π4 ∪ πextra. Applying M to πf , we get π′3 ∪ π′4 ∪
πextra = π1 ∪ π2 ∪ πextra. So M(πf ) = πf . Since M
is an identity function for all records not in π1 or π2, the
other clusters in S are also unaffected by the application
of M . Therefore, M(S) = S, which proves Claim 1.

Further, since records r and M(r) are always in the
same cluster in the result, if any merge operation o is a
legal merge in p, then the corresponding operation M(o)
in p′ must also be a legal merge. The only questionable
merge remaining is m′, which is legal since π′3 is a subset
of πf ∈ S. Therefore, p′ is a legal path, which proves
Claim 2.

To prove Claim 3 we note that applying M to an opera-
tion o cannot change the size of the clusters involved, and
therefore, the cost ofM(o) must be the same as the cost of
o. So all corresponding operations in p and p′ have equal
cost, other than m, s, s′ and m′. The only difference in
cost can come from the cost difference between s and s′,
and m and m′. The combined cost for m and s is:

fm(|π1|, |π2|) + fs(|π3|, |π4|)
The combined cost for m′ and s′ is:

fm(|π′1|, |π2|) + fs(|π′1|, |π′4|)
Recall from Definition 5.3 that |π1| ≥ |π2|, |π3| ≥ |π4|,

and |π′4| = |π4|. We also have that |π1| + |π2| = |π3| +
|π4| = |π′3|+ |π′4| and |π1| = |π′1|+ |π′4|.

From these facts, we find that |π′1| ≤ |π1|, |π′1| ≤ |π3|,
and of course |π′4| = |π4|. Comparing the cost expres-
sions with these three facts, we see that all arguments to
the fm and fs functions are lower or equal for operations

m′ and s′ than they are for m and s. By the monotonicity
property of the split and merge functions, the cost for m′

and s′ must be less than or equal to the cost of m and s.
Therefore the cost of p′ is less than or equal to the cost of
p. This proves Claim 3 and therefore we have proven the
lemma.

Theorem 5.1. For any partitions R and S, there exists
a minimum cost legal path from R to S where the prece-
dence graph for the path has no edge from any merge op-
eration to a split operation.

Proof. Consider a minimum cost legal path p from R to
S. If the precedence graph of p has a merge with an edge
to a split, we can apply a merge-split swap transformation
in order to obtain a path that (according to Lemma 5.1)
must also be a legal and minimum cost path from R to
S. In fact, we can repeat the transformation until there
no longer exists an edge from a merge operation to a split
operation in the precedence graph of the path.

Theorem 5.2. For any partitions R and S, there exists
a minimum cost legal path from R to S where all split
operations precede all merge operations.

Proof. This result follows directly from Theorem 5.1 and
the rules of commutativity. Since there is no edge from
a merge operation to a split operation in the precedence
graph, the split operations may all be commuted to the
beginning of the path.

We will use the term “splits-first path” to refer to a path
with all split operations preceding all merge operations.
We note that any splits-first path from R to S is also a
legal path, as if there were an operation that merged two
clusters that are not merged in S, then subsequent opera-
tions cannot be splits, and thus the result of the path could
not be S.

We also define the “split point” of a splits-first path.

Definition 5.4. In a splits-first path from R to S, we can
apply all of the split operations to R to get a partition we
call the split point. We denote the split point of a path p
applied to a partition R as R : splits(p).
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5.1 Operation Order Independence
Definition 5.5. A fragment of partitions R and S is any
set of the form s ∩ r where r ∈ R, s ∈ S, r ∩ s 6= ∅.
We denote the set of all fragments of R and S as R u S.
Since every record is in exactly one fragment, R u S is a
partition as well.

As an example, suppose R = {〈a, c, e〉, 〈b, d, f〉}
and S = {〈a, b, c〉, 〈d, e, f〉}. In that case, R u S =
{〈a, c〉, 〈e〉, 〈b〉, 〈d, f〉}.

If a splits-first path fails to break R down to the frag-
ments by the end of the split phase, then it cannot possibly
result in S after the merge phase is complete. Therefore,
the fragments of R and S can be seen as the minimum
required splitting performed by a splits-first path from R
to S.

Definition 5.2. Given a splits-first path from R to S, any
cluster in R : splits(p) is a subset of some f ∈ R u S.

Proof. Consider any cluster π ∈ R : splits(p). Since
π ∈ R : splits(p), it is the result of a series of split
operations on R. Therefore, π ⊆ r for some r ∈ R. The
remaining operations in the path are all merges, so π ⊆ s
for some cluster s ∈ S. Now we have that π ⊆ r ∩ s, and
r ∩ s ∈ R u S. So any cluster in R : splits(p) must be a
subset of some f ∈ R u S.

We now define a term for a path that performs this min-
imum required splitting:

Definition 5.6. A bare necessities path from R to S is any
splits-first path p from R to S where R : splits(p) =
R u S.

For many split and merge functions, there always exists
a bare necessities path fromR to S that is also a minimum
cost path. In fact, if the functions satisfy a property we
call “operation order independence”, then any bare neces-
sities path from R to S is in fact a minimum cost path.

Definition 5.7. We say that a function F is operation or-
der independent if it satisfies F (x, y) + F (x + y, z) =
F (x, z) + F (x+ z, y) for all x, y, z.

We call this property operation order independence be-
cause it implies that the order in which certain operations
are performed is unimportant. Suppose that we wish to

merge three clusters πx, πy , and πz (with sizes x, y, and
z, respectively) all together into a single cluster. If we
merge πx and πy together first, and then merge the result-
ing cluster with πz , observe that the resulting cost would
be given by the left-hand side of the equation in Defini-
tion 5.7. The cost of merging πx and πz together first,
and then merging πy with the result is given by the right-
hand side of the equation, and therefore with operation
order independence, these two paths would have the same
cost.

Now that we have defined operation order indepen-
dence, we note two simple classes of functions that sat-
isfy this property: F (x, y) = k and F (x, y) = kxy. (One
can easily verify the property holds for these classes by
plugging them into the equation in Definition 5.7.) The
first class includes the BMD measure of Section 4.3 and
the second class of measures can be used to directly com-
pute (see Section 5.3) the pairwise precision and recall
measures of Section 4.1. We also note that functions of
the form F (x, y) = k1 + k2xy also satisfy this property,
and these may provide an interesting “blend” of the two
classes above. These are not the only functions that sat-
isfy this property, and it turns out that the class of func-
tions that satisfy the property (studied in [35]) is, in fact,
quite vast.

The class of operation order independent functions has
been studied in [35]. That paper proves the general form
of an operation order independent function to be:

F (x, y) = B(x, y) + f(x+ y)− f(x)− f(y)

In this formulation, f(x) is any arbitrary function. On
the other hand, B(x, y) is a function that must satisfy
many properties, including skew symmetry: B(x, y) +
B(y, x) = 0. Since we assume the property of symmetry
on our cost functions, we require thatB(x, y) = 0. There-
fore, the most general form for operation order indepen-
dent functions is f(x+ y)− f(x)− f(y). We can verify
that if f(x) = −k then F (x) = k and if f(x) = k

2x
2

then F (x, y) = kxy. This result shows that there is actu-
ally a large class of functions that satisfy operation order
independence.

Definition 5.3. Given clusters π1, π2, . . . , πn, if fm is op-
eration order independent, then all sequences of merges
that result in

⋃
πi have equal cost.
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Proof. Consider the class of pairs P with the left element
being a cluster and the right element being a numerical
cost associated with that cluster. We map the clusters πi

to the corresponding pair (πi, 0), indicating that we can
obtain any πi with zero cost. We can now define an op-
erator ⊕ on P that performs the merge of the clusters in
two pairs, and computes the total cost necessary to obtain
that cluster:

(p1, x)⊕ (p2, y) = (p1 ∪ p2, x+ y + fm(|p1|, |p2|)
Due to the properties fm has (symmetry and operation
order independence), it is easy to show that ⊕ is both as-
sociative and commutative.

Any sequence of merges of the base clusters that results
in
⋃
πi maps to an application of the ⊕ operator on all of

the πi clusters. Since ⊕ is commutative and associative,
the order of merge operations does not affect the cost to
generate the result. So all sequences of merges with that
result have equal cost.

Definition 5.4. If fs is operation order independent, then
all sequences of splits starting from a cluster π that result
in π1, π2, . . . , πn have equal cost.

Proof. We note that any sequence of splits leading to the
πi clusters can be reversed to obtain a sequence of merges
from the πi clusters to π. If we let fm = fs, then the
cost of the merge sequence is equal to the cost of the split
sequence. By applying Lemma 5.3, we get that all such
sequences have equal cost.

Theorem 5.3. If both fm and fs are operation order in-
dependent, then any bare necessities path from R to S is
a minimum cost legal path from R to S.

Proof. Take any minimum cost splits-first path pmin from
R to S. (By Theorem 5.2 such a path always exists.)
Now take any bare necessities path p from R to S. By
Lemma 5.2, every cluster in R : splits(pmin) is a subset
of some cluster inR : splits(p) (which isRuS by defini-
tion of a bare necessities path). Given this subset relation-
ship, it is clear that we can append split operations to the
splits phase of p such that we arrive at R : splits(pmin).
Further, we can append merge operations to the end of the
splits phase to merge these clusters back down to R u S.
With this process, we can extend p to a new path p′ from
R to S where R : splits(p′) = R : splits(pmin).

The new path p′ contains all of the operations of p plus
some extra operations in the middle. Therefore, the cost
of p′ is greater than or equal to the cost of p. However,
by Lemma 5.3 and Lemma 5.4, the cost of p′ must be
equal to the cost of pmin, since R : splits(p′) = R :
splits(pmin). Path pmin is a minimum cost legal path
from R to S, and p must have lower or equal cost. So the
bare necessities path p is also a minimum cost legal path
from R to S.

We now demonstrate that a bare necessities path may
be easily constructed for any given partitions R and S.
Let p0 be the null path that performs no operations, so
R = R : p0. We define the splits in this path inductively:
pi+1 = pi, π → π1, π2 where π ∈ R : p0, and non-empty
π1 and π2 are, respectively, π ∩ s and π − s for some
s ∈ S. We extend the path until all clusters in R : pi are
subsets of clusters in S.

We then extend the path further with only merge op-
erations: π1, π2 → π1 ∪ π2 where π1, π2 ⊆ s for some
s ∈ S. This completes a bare necessities path from R to
S.

This construction suggests an algorithm for computing
GMD when the merge and split functions are operation
order independent functions, since it suffices to construct
a bare necessities path and compute its cost. We will de-
scribe such an algorithm (called the Slice algorithm) in
Section 6.

5.2 Merge Precision and Recall

Another idea inspired by Theorem 5.2 is that we can con-
sider the costs of splitting and merging separately. When
a cluster in the result must be split in a path to the gold
standard, it is usually due to a false positive in the result.1

When two clusters are merged, it is usually due to a false
negative. Therefore, the total cost of the split operations
is much like an inverse measure of precision, and the to-
tal cost of the merge operations is much like an inverse
measure of recall.

1In some configurations, a minimum cost path may split clusters that
are found together in the destination. Consider R = {〈a, b, c〉, d}, S =
{〈a, b, c, d〉}, fs(x, y) = 0, and fm = x3 +y3. A minimum cost path
will split 〈a, b, c〉 to avoid the large cost of a merge with a cluster of size
3.
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We can further use Theorem 5.2 to normalize these
measures. The cost of all the split operations can never
be more than the cost of splitting all clusters in R down
into individual base records. Likewise, the cost of all the
merge operations can never be more than the cost of merg-
ing individual base records up into the clusters in S. Let⊥
represent a partition in which each base records is alone
in its own partition. We can then normalize merge pre-
cision and recall using the factors MDfm,fs

(R,⊥) and
MDfm,fs

(⊥, S), respectively.
Let Cm(R,S) and Cs(R,S) refer to the total cost of

merges and splits (respectively) in a minimum cost path
from R to S. We can then define merge precision and
recall as follows:

Definition 5.8. The fm, fs merge precision from R to S
is defined according to the following formula:

MPfm,fs
(R,S) = 1− Cs(R,S)

GMDfm,fs
(R,⊥)

The fm, fs merge recall from R to S is defined according
to this similar formula:

MRfm,fs
(R,S) = 1− Cm(R,S)

GMDfm,fs(⊥, S)

Note that we subtract the normalized distance from 1 to
turn these measures into similarity measures, rather than
distance measures.

With a definition of precision and recall from the merge
perspective, it is possible to use the standard methods
(e.g., F1) to combine the two into a single number.

5.3 Relationship to Other Measures
Several other measures are closely related to GMD.
First, the BMD measure in [34] is exactly our GMD
measure when fm(x, y) = fs(x, y) = 1. Second, the V I
measure (Section 4.4) is a special case of GMD where
fm and fs are chosen as follows:

Theorem 5.4. V I(R,S) = GMD(R,S) when fm(x, y)
= fs(x, y) = h(x + y) − h(x) − h(y), with h(x) =
x
N log x

N .

Proof. First, we note that fm and fs here are order oper-
ation independent functions, as they have the form shown

in Section 5.1 to be the most general form of an order in-
dependent function. Theorem 5.3 therefore tells us that
the GMD from R to S is the cost of any bare necessities
path from R to S.

Construct a bare necessities path p = o1, o2, . . . , om

with R : p = S. We will use the shorthand notation R(i)

to refer to R : o1, . . . , oi, with R(0) = R and R(m) =
S. We show by induction that GMDfm,fs(R,R(k)) =
V I(R,R(k)) for all 0 ≤ k ≤ m. We note that
GMDfm,fs

(R,R(0)) = V I(R,R(0)) = 0 which pro-
vides with a base case for our induction.

Now, assuming the inductive hypothesis,
GMDfm,fs

(R,R(i−1)) = V I(R,R(i−1)), we will
show that GMDfm,fs

(R,R(i)) = V I(R,R(i)). Let us
evaluate the change in V I when we perform operation oi.

∆V I = V I(R,R(i))− V I(R,R(i−1))

= H(R) +H(R(i))− 2I(R,R(i))

−H(R)−H(R(i−1)) + 2I(R,R(i−1))

= H(R(i))−H(R(i−1))

− 2(I(R,R(i))− I(R,R(i−1)))
= ∆H − 2∆I

In the above equation, we have introduced ∆H =
H(R(i)) − H(R(i−1)) and ∆I = I(R,R(i)) −
I(R,R(i−1)). The value of ∆H is the change in entropy
created by performing the operation, and ∆I is the change
in information shared with R.

We must handle the case of a split separately from the
case of a merge. So for the time being, suppose that oi is
a split: oi = π → π1, π2. First, let us consider ∆H:

∆H = H(R(i))−H(R(i−1))

= −
∑

r∈R(i)

h(|r|) +
∑

r∈R(i−1)

h(|r|)

= −h(|π1|)− h(|π2|) + h(|π|)
= h(|π|)− h(|π1|)− h(|π2|)
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Now, we consider ∆I:

∆I = I(R,R(i))− I(R,R(i−1))

=
∑
r∈R

∑
s∈R(i)

|r ∩ s|
N

log
|r ∩ s| ×N
|r| × |s|

−
∑
r∈R

∑
s∈R(i−1)

|r ∩ s|
N

log
|r ∩ s| ×N
|r| × |s|

The only difference between these two summations is in
the terms involving π for the first sum, and π1, π2 in the
second sum. Since oi is a split in a splits-first path, it
is preceded only by splits, and therefore π, π1, π2 are all
subsets of some single cluster r∗ ∈ R. Therefore, for any
r ∈ R where r 6= r∗, r ∩ π = ∅, and the same is true of
π1 and π2. This fact brings ∆I down to the following:

∆I =
|r∗ ∩ π|
N

log
|r∗ ∩ π| ×N
|r∗| × |π|

− |r
∗ ∩ π1|
N

log
|r∗ ∩ π1| ×N
|r∗| × |π1|

− |r
∗ ∩ π2|
N

log
|r∗ ∩ π2| ×N
|r∗| × |π2|

=
|π|
N

log
|π| ×N
|r∗| × |π| −

|π1|
N

log
|π1| ×N
|r∗| × |π1|

− |π2|
N

log
|π2| ×N
|r∗| × |π2|

=
|π|
N

log
N

|r∗| −
|π1|
N

log
N

|r∗| −
|π2|
N

log
N

|r∗|
=
|π| − |π1| − |π2|

N
log

N

|r∗|
=

0
N

log
N

|r∗|
= 0

Now, we continue to compute ∆V I .

∆V I = ∆H − 2∆I
= h(|π|)− h(|π1|)− h(|π2|)− 2× 0
= h(|π1|+ |π2|)− h(|π1|)− h(|π2|)
= fs(|π1|, |π2|)

So the cost of the operation oi is exactly ∆V I , which
allows us to prove the inductive step in the case that oi is

a split:

V I(R,R(i)) = V I(R,R(i−1)) + ∆V I

= GMDfm,fs
(R,R(i−1)) + fs(|π1|, |π2|)

= GMDfm,fs(R,R(i))

Now, we need to repeat this procedure assuming that oi

is a merge: oi = π1, π2 → π. Starting with computing
∆H:

∆H = H(R(i))−H(R(i−1))

= −
∑

r∈R(i)

h(|r|) +
∑

r∈R(i−1)

h(|r|)

= h(|π1|) + h(|π2|)− h(|π|)

Note that ∆H in the merge case is the opposite of ∆H in
the split case.

Now, we proceed to compute ∆I . The merge case is
trickier, though, as π1 and π2 may have components of
many clusters of R. Since the path is a bare necessities
path, we can let π1 =

⋃
f∈F f for some set of fragments

F ⊂ R u S. We will use the notation fj to refer to an
individual element of F . Similarly, let π2 =

⋃
g∈G g,

withG ⊂ RuS, and gj referring to an individual element
of G.

Since F,G ⊂ R u S, each element of these sets is a
subset of some cluster in R. That is, for each fj , there is
a corresponding cj ∈ R where fj ⊆ cj . Likewise, for
each gj , there is a corresponding dj ∈ R where gj ⊆ dj .
We will continue to use cj and dj to refer to the clusters
in R that fj and gj came from, respectively. We note that
π1 ∪ π2 = ∅, so

We begin with the ∆V I equation from earlier, and sim-
plify it by leaving only the terms that use the clusters in-
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volved in the merge operation:

∆I =
∑
r∈R

∑
s∈R(i)

|r ∩ s|
N

log
|r ∩ s| ×N
|r| × |s|

−
∑
r∈R

∑
s∈R(i−1)

|r ∩ s|
N

log
|r ∩ s| ×N
|r| × |s|

=
∑

j

|cj ∩ π|
N

log
|cj ∩ π| ×N
|cj | × |π|

+
∑

j

|dj ∩ π|
N

log
|dj ∩ π| ×N
|dj | × |π|

−
∑

j

|cj ∩ π1|
N

log
|cj ∩ π1| ×N
|cj | × |π1|

−
∑

j

|dj ∩ π2|
N

log
|dj ∩ π2| ×N
|dj | × |π2|

=
∑

j

[ |fj |
N

log
|fj | ×N
|cj | × |π| +

|gj |
N

log
|gj | ×N
|dj | × |π|

]

−
∑

j

[ |fj |
N

log
|fj | ×N
|cj | × |π1| +

|gj |
N

log
|gj | ×N
|dj | × |π2|

]

=
∑

j

|fj |
N

(
log
|fj | ×N
|cj | × |π| − log

|fj | ×N
|cj | × |π1|

)

+
∑

j

|gj |
N

(
log
|gj | ×N
|dj | × |π| − log

|gj | ×N
|dj | × |π2|

)

=
∑

j

[ |fj |
N

log
|π1|
|π| +

|gj |
N

log
|π2|
|π|
]

=
|π1|
N

log
|π1|
|π| +

|π2|
N

log
|π2|
|π|

=
|π1|
N

log |π1|+ |π2|
N

log |π2| − |π1|+ |π2|
N

log |π|

=
|π1|
N

log
|π1|
N

+
|π2|
N

log
|π2|
N
− |π|
N

log
|π|
N

= h(|π1|) + h(|π2|)− h(|π|)

Again, we continue to compute ∆V I .

∆V I = ∆H − 2∆I
= h(|π1|) + h(|π2|)− h(|π|)
− 2(h(|π1|) + h(|π2|)− h(|π|))

= h(|π|)− h(|π1|)− h(|π2|)
= h(|π1|+ |π2|)− h(|π1|)− h(|π2|)
= fm(|π1|, |π2|)

So the cost of the operation oi is exactly ∆V I , which
allows us to prove the inductive step in the case that oi is
a merge:

V I(R,R(i)) = V I(R,R(i−1)) + ∆V I

= GMDfm,fs(R,R(i−1)) + fm(|π1|, |π2|)
= GMDfm,fs

(R,R(i))

We have proven the inductive step in the case that oi

is either a merge or a split, and therefore we have proven
the inductive step completely. Therefore, by induction,
GMDfm,fs(R,R(k)) = V I(R,R(k)) for all 0 ≤ k ≤ m,
and therefore GMDfm,fs(R,S) = V I(R,S).

Third, the pF1 distance can be computed directly using
GMD. The theorem below shows how to compute pair-
wise precision and pairwise recall using GMD. The pF1

distance is then the harmonic mean of the two values. We
use the symbol ⊥ to refer to a partition with each record
alone in its own cluster.

Theorem 5.5. PairPrecision(R,S)=1 − GMD(R,S)
GMD(R,⊥)

when fm(x, y) = 0 and fs(x, y) = xy.
PairRecall(R,S) = 1 − GMD(R,S)

GMD(⊥,S) when
fm(x, y) = xy and fs(x, y) = 0.

Proof. We will prove this theorem for fm(x, y) = 0 and
fs(x, y) = xy. The other case is symmetric.

A split operation π → π1, π2 has a cost of |π1| × |π2|.
When we apply this operation to a partition, the result will
be missing all pairs consisting of a record in π1 and a
record in π2. There are |π1| × |π2| such pairs, so it turns
out the cost of the split is the same as the reduction in the
number of pairs.

Since fm and fs are operation order independent func-
tions, Theorem 5.3 tells us that any bare necessities path
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fromR to S has minimum cost. The splits in a bare neces-
sities path will remove all pairs in Pairs(R)−Pairs(S)
and no other pairs. The merges all have zero cost, so
GMDfm,fs

(R,S) = |Pairs(R)− Pairs(S)|.
Now we follow through with the derivation:

1− GMDfm,fs
(R,S)

GMDfm,fs
(R,⊥)

= 1− |Pairs(R)− Pairs(S)|
|Pairs(R)|

= 1− |Pairs(R)| − |Pairs(R ∩ S)|
|Pairs(R)|

=
|Pairs(R ∩ S)|
|Pairs(R)|

= PairPrecision(R,S)

The various relationships are possible because of the
configurability of GMD. Since the fm and fs functions
used in this section are all operation order independent,
we can use the linear time Slice algorithm described in
the next section to compute all the measures above. This
is exciting, especially because the straightforward imple-
mentation of pF1 and V I would be quadratic in the worst
case.

6 Computing Measures
Computing measures efficiently is important because the
number of entities to resolve can be huge. Although
human-generated gold standards will rarely exceed thou-
sands of records, other gold standards are automatically
generated and could result in larger numbers of records.
For example, blocking techniques [36] are commonly
used to make ER scalable by dividing the data into (pos-
sibly overlapping) blocks and only comparing records
within the same block, assuming that records in different
blocks are unlikely to match. Since blocking techniques
may miss matching records, their results are compared
with an “exhaustive” ER solution without blocking, which
is considered as the gold standard [37]. While large ex-
haustive ER results may be very expensive to generate, it
need only be generated once, whereas the computation of
the distance measure will be performed multiple times for
a diverse set of blocking algorithms and parameters. The

distance computation can therefore take a great deal of
time, and a more efficient algorithm provides practition-
ers more time to tune their algorithms (e.g., experiment
with different matching thresholds) over a wide range of
options.

Many measures take (or appear to take) quadratic time
for computation, which could be prohibitive. For exam-
ple, a straightforward implementation of the pF1 measure
requires a quadratic number of base record pairs to be
compared against the actual matching pairs. Similarly,
the K measure sums the similarities of all pairs of clus-
ters need to be computed, requiring quadratic time com-
putation. The ccF1 measure finds the the closest clusters
for all clusters and requires a quadratic number of cluster
comparisons because finding each closest cluster requires
a linear scan of the other ER result in the worst case.

Surprisingly, the topic of efficiency of measure compu-
tation is not discussed in any ER paper. Fortunately in
this paper, we propose an efficient algorithm that com-
putes GMD in linear time for a large class of configura-
tions. We also show that the pF1 and V I measures can be
computed in linear time using our algorithm. It is an open
question if there are linear algorithms for the ccF1 and K
measures.

The algorithm we propose is called the Slice algorithm,
which computes GMD when fm and fs are operation or-
der independent functions. A complete description of the
Slice algorithm is given in Section 7.2. The gist of the
algorithm is to independently compute the cost of gen-
erating each cluster in S by splitting off the necessary
components from clusters in R and then merging them
together. For example, suppose R = {〈a, c, e〉, 〈b, d, f〉}
and S = {〈a, b, c〉, 〈d, e, f〉}. Cluster 〈a, b, c〉 must be
generated by merging two fragments (one from each clus-
ter in R): 〈a, c〉 and 〈b〉. The cost to split these fragments
from their clusters in R is fs(2, 1)+fs(1, 2), and the cost
to merge them is fm(1, 2). When computing the cost to
generate 〈d, e, f〉, we remember how many records have
already been split from the clusters in R to properly com-
pute the cost of splitting R further. In the example, no
splits are necessary to get the fragments 〈e〉 and 〈d, f〉 be-
cause 〈a, c〉 and 〈b〉 have already been split off. So the
cost to generate 〈d, e, f〉 is just fm(1, 2). We can then
add the costs of generating these two clusters to obtain
the total GMD.

We can compute the fragments needed to generate a
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cluster πS ∈ S by considering each record in πS and
looking up its location in R. We can then group the
records by their R location to obtain the fragments. This
step takes timeO(|πS |) and thus the entire algorithm runs
in time O(N).

7 Computing Merge Distance
In this section we provide the details of algorithms for
computing merge distance.

7.1 General Algorithm
A simple method for computing merge distance is the di-
rect application of Dijkstra’s algorithm. If we treat parti-
tions as nodes in a graph and merge and split operations
as the edges between nodes, then Dijkstra’s algorithm will
find a minimum cost path from R to S.

For this application, however, Dijkstra’s algorithm
would be highly inefficient. There are a few modifica-
tions to the algorithm that can help improve the perfor-
mance. For one, Theorem 5.2 allows us to prune all paths
that have a split after a merge has been performed. Fur-
ther, at any state, we may consider if it is possible to reach
the destination S through merges alone. If not, then more
splits are required, so we need not consider any merges
at this point. (See Lemma 5.2 for an explanation of this
idea.)

Finally, we may make use of the monotonicity prop-
erty of the merge and split cost functions to construct a
lower-bound on the cost from any state to the destination
S. Given this lower bound, we can apply theA∗ algorithm
instead of Dijkstra’s algorithm, which may help narrow
the search.

Unfortunately, we do not expect any of these optimiza-
tions to improve the exponential worst-case time for com-
puting merge distance. We instead focus on a specific
class of merge and split functions for which we have
found an efficient algorithm.

7.2 Slice Algorithm
In this section, we describe a linear time algorithm called
the Slice algorithm for computing generalized merge dis-
tance. The algorithm computes the cost of an arbitrarily

selected bare necessities path, and therefore produces the
correct answer only when the split and merge cost func-
tions are order operation independent.

The algorithm takes two partitions R and S, as well
as the functions fm and fs as input. The output of the
algorithm will be the fm, fs merge distance from R to S
(as long as fm and fs are operation order independent).
The gist of this algorithm is to find the cost to build each
cluster Si ∈ S by breaking off pieces from clusters in R
and then merging them together. We can find the cost to
build each Si independently and then compute the sum
for the total cost to move from R to S.

We now explain the details of the algorithm, and ex-
ecute it over an example input. For the purposes of
the example, let R = {〈a, c, e〉, 〈b, d, f〉} and S =
{〈a, b, c〉, 〈d, e, f〉}. We’ll refer to the individual clusters
with one-based indexes: R1, R2 and S1, S2.

The algorithm begins with a loop over all clusters in
R. Lines 4-8 set up the loop, which builds up a mapping
M from each record to the cluster in R it is a member
of. To save space, we will not show the entire contents
of M , but as examples, M [a] = 1 and M [b] = 2. The
loop also computes an array Rsizes that stores the size of
each cluster in R. The Rsizes array will be updated over
the course of the algorithm as we split pieces off of each
cluster in R. In our example, the Rsizes array will have
the value 3 for both entries.

The algorithm then continues compute the cost of
building each cluster Si ∈ S. The first step is determining
which clusters in R contain the records in Si. Lines 14-
21 build a structure pMap that, for each cluster Rj in
R, keeps a count of the records in Si that are in Rj . If
Rj ∩ Si = ∅, then there will be no entry in pMap for
Sj . Therefore there is at most one entry in pMap for each
record in Si. In our example, the pMap generated for S1

will have pMap[1] = 2 and pMap[2] = 1, since the two
records a, c are inR1, whereas the one remaining record b
comes from R2. When pMap is generated for S2, it will
have pMap[1] = 1 and pMap[2] = 2.

To build Si from the clusters in R, we must first split
off the parts of the clusters in R that have the records in
Si. We can perform this splitting with a single split op-
eration for each cluster that intersects Si. Once those k
pieces are split off, then we can merge them all together
with k − 1 merge operations. Lines 24-37 compute the
cost for this series of operations, consulting pMap to find
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Algorithm 1 Slice algorithm
Input: R, S: the result and gold standard. Ri and

Si are the ith clusters of R and S respectively
fm, fs: the cost functions for operations

Output: the fm, fs merge distance from R to S

1: MergeDistance(R, S)
2: // build a map M from record to cluster number
3: // and store sizes of each cluster in R
4: for all Ri ∈ R do
5: for all r ∈ Ri do
6: M [r]← i
7: end for
8: Rsizes[i]← |Ri|
9: end for

10: // begin computing cost
11: cost← 0
12: for all Si ∈ S do
13: // determine which clusters in R contain the records in Si

14: pMap← {}
15: for all r ∈ Si do
16: // if we haven’t seen this R cluster before, add it to the

map
17: if M [r] 6∈ keys(pMap) then
18: pMap[M [r]]← 0
19: end if
20: // increment the count for this partition
21: pMap[M [r]]← pMap[M [r]] + 1
22: end for
23: // compute cost to generate Si

24: SiCost← 0
25: totalRecs← 0
26: for all (i, count) ∈ pMap do
27: // add the cost to split Ri

28: if Rsizes[i] > count then
29: SiCost ← SiCost + fs(count, Rsizes[i] −

count)
30: end if
31: Rsizes[i]← Rsizes[i]− count
32: if totalRecs 6= 0 then
33: // cost to merge into Si

34: SiCost← SiCost + fm(count, totalRecs)
35: end if
36: totalRecs← totalRecs + count
37: end for
38: cost← cost + SiCost
39: end for
40: return cost

out how many records must be split off of each cluster
in R. In our example, the cost to construct S1 would be
computed as follows. First, pMap[1] is 2, so we would
have to split two records off of R1. Since R1 currently
has size 3 (according to Rsizes), the cost for this split
would be fs(2, 3 − 2). In the next iteration, we would
consider pMap[2] = 1, and split 1 record away from R2.
This split would cost fs(1, 3 − 1). Now that there are
two “fragments”, we compute the cost to merge them to-
gether: fm(2, 1). This would end the loop and the cost
for constructing S1 would be 2 ∗ fs(2, 1) + fm(2, 1).

We note that on line 31, we update the Rsizes array
to reflect the fact that records have been split off of the
clusters in R. After computing the cost to construct S1,
Rsizes will have been updated to the sizes of the clusters
in R without records in S1. Specifically, Rsizes[1] =
3− 2 = 1 and Rsizes[2] = 3− 1 = 2.

The final details of the algorithm are to simply sum
up the costs to construct all the Si clusters, which is the
merge distance from R to S.

8 Experiments
As mentioned in Section 1, there are two aspects to our
paper: a general analysis of ER measures, and the pro-
posal of a generalized merge distance measure. Accord-
ingly, our evaluation mirrors these two aspects. The first
part of the experiments show that measure conflicts can
easily occur among different ER measures. Hence, sim-
ply choosing any ER measure for comparing the accuracy
of ER algorithms could be problematic. The second part
of the experiments demonstrates how the GMD measure
can be configured using two important parameters: sensi-
tivity to error type and sensitivity to cluster size. We then
demonstrate the runtime performance of the Slice algo-
rithm.

8.1 Data
To study the ER measures, we need an ER result R and
gold standard G. These sets can either be synthetic or
real. Synthetic data lets us study many scenarios and un-
derstand when each measure is advantageous. Real data,
on the other hand, provides a “sanity check” of the re-
sults found using synthetic data. In this section, we will
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use both synthetic and real data. We first discuss how
we generated the synthetic data and then describe the real
datasets used.

Synthetic Data We generate ER results that contain cer-
tain types of ER errors and have a given distribution of
record sizes. Notice that our generator is different from
ER benchmarks that produce inputs to ER algorithms. In-
stead, our generator produces possible ER results. An ER
result R is generated in two steps. First, the gold standard
G is generated using a given distribution of cluster sizes.
Second, R is generated from G by adding ER errors. The
possible types of errors in the ER results are categorized
below. Notice that the errors are not necessarily distinct
from each other (i.e., having one type of error may result
in also having another type of error).

• Broken Entity: A cluster is split into two clusters of
random sizes. For example, the record in the gold
standard G = {〈a, b, c, d, e〉} splits into 〈a, b〉 and
〈c, d, e〉, resulting in R = {〈a, b〉, 〈c, d, e〉}.
• Glued Entity: Two clusters are merged into a

single cluster. For example, the two records in
G = {〈a, b, c〉, 〈d, e〉} merge, resulting in R =
{〈a, b, c, d, e〉}.
• Misplaced Entity: A base record within a clus-

ter is detached and combined with another clus-
ter. For example, the record c in the gold stan-
dard G={〈a, b, c〉, 〈d, e〉} detaches from 〈a, b, c〉
and combines with 〈d, e〉, resulting in R =
{〈a, b〉, 〈c, d, e〉}.

Table 3 shows the parameters used to generate the ER
results that contain the various types of ER errors above.
We first generate a random gold standard G based on a
given number of entities E and a cluster size distribution.
We assume a Zipfian distribution with an exponent num-
ber e for the possible cluster sizes within the range [1, C]
where C is the maximum possible cluster size. The prob-
ability of a cluster having size k is thus 1/ke

ΣC
c=1(1/ce)

. Once
the gold standard G is generated, an ER result R is pro-
duced based on the gold standard. To generate broken
entity errors, we split each cluster in G into two clusters
of random sizes with probability b. To generate glued en-
tities, we glue each pair of entities with a probability of g.

We perform a transitive closure for all glued entities at the
end. Finally, to generate misplaced entities, we remove a
single record from a random cluster in G containing more
than one base record and attach it to a different random
cluster. We also avoid misplacing a record that has al-
ready been misplaced before.

Table 3: Parameters for ER Result Generation
Parameter Description Value(s)
E Number of entities [10K,160K]
e Zipfian exponent for cluster 1.5

size distribution in G

C Maximum cluster size 20
b Probability of a cluster broken [0.1,1.0]
g Probability of two clusters [1e-5,1e-4]

glued together

Real Data We used two real datasets. We used a com-
parison shopping dataset provided by Yahoo! Shopping,
which contains millions of records that arrive on a regu-
lar basis from different online stores and must be resolved
before they are used to answer customer queries. Each
record contains various attributes including the title, price,
and category of an item. We experimented on a random
subset of 5,000 records that had the string “iPod” in their
titles. We also experimented on a hotel dataset provided
by Yahoo! Travel where tens of thousands of records ar-
rive from different travel sources (e.g., Orbitz.com), and
must be resolved before they are shown to users. Again,
we experimented on a random subset of size 5,000 of the
hotel data. While we had a manually resolved gold stan-
dard for the hotel dataset, we did not have a gold standard
for the shopping dataset and thus created one by running
a pairwise comparison between all pairs of records using
a strict matching criteria and then performing a transitive
closure at the end.

We ran two ER algorithms on the hotel and shopping
datasets to produce ER results. The R-Swoosh algo-
rithm [8] uses a Boolean pairwise match function to com-
pare records and a pairwise merge function to merge two
records that match into a composite record. R-Swoosh
starts comparing records in pairs and merges those that
match. The merged records are compared again with
other records for new iterative matches. The matching and
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merging repeats until no records match with each other.
The match function for the shopping data compares the
title, price, and category values of two records. For the
hotel dataset, we compared the names and addresses of
hotels. We also used an ER algorithm by Monge and
Elkan [9] where records are sorted using an application-
specific key and then clustered with a sequential scan.
During the scan, each record is compared with the “rep-
resentative” records of clusters and added to its closest
cluster.

8.2 Measure Conflicts

Most of the papers surveyed in Section 4 use a single
measure (or two closely related measures, e.g., pairwise
precision and pairwise recall) to evaluate algorithms. In
this section we show that such a unilateral evaluation
can be problematic, since different measures can lead to
different rankings of algorithms. That is, measures can
“conflict.” For each measure M , we define a function
isBetter(M,R1, R2) that is true if R1 is significantly
better than R2 according to M . For GMD, this function
can be defined as GMD(R1) < GMD(R2)− ε. For any
other measure M that returns an accuracy value instead
of a distance, isBetter can be M(R1) > M(R2) + ε.
The constant ε is chosen such that isBetter returns true
only if the measure difference is non trivial. In our exper-
iments, we set ε = 0.01 for all measures. We now define
a measure conflict:

Definition 8.1. Two measures M1 and M2 conflict when,
given two algorithms A1 and A2 that produce the ER re-
sults R1 and R2, respectively, isBetter(M1, R1, R2) =
true and isBetter(M2, R2, R1) = true.

Measure conflicts occur because different measures
evaluate different aspects of ER results. For example,
pairwise precision only measures the portion of correctly
matching base record pairs among the result while pair-
wise recall measures the portion of all correctly matching
pairs found in the result. Similarly, the ER measures we
implement have different sensitivities to the various as-
pects of ER results.

To see how frequently conflicts could occur, we first
measure how “sensitive” the ER measures are for each er-
ror type in Figure 4. We used E = 10,000 entities and the

default Zipfian exponent e = 1.5 to generate the gold stan-
dard G. For each error type, we generated 10 ER results
with increasing numbers of errors. We evaluated each ER
result with pF1, cF1, K, ccF1, and a normalized version
of BMD (which we refer to as NBMD) that returns an
accuracy value within the range [0, 1]. The NBMD be-
tween an ER result R and the gold standard G is defined
as 1− BMD(R,G)

BMDmax
where BMDmax is the largest BMD

among the ER results against S for all the three experi-
ments in Figure 4. As a result, the NBMD value in one
of the plots (in this case Figure 4(c)) is 0 for the largest
number of errors. For each error type, all the accuracy
values of the measures are monotonically decreasing as
the number of errors increases. The number of errors (x-
axis) is defined as |R|-|G| for ER results with broken en-
tity errors, |G|-|R| for ER results with glued entity errors,
and the number of records misplaced for ER results with
misplaced entity errors.

One can see from Figure 4 that if we confine ourselves
to a single error type, any one measure is good enough to
evaluate ER algorithms/results. That is, if R2 has more
errors than R1, then isBetter(M,R1, R2) = true for all
measures M . In other words, there are no conflicts with
unimodal errors.

However, by comparing the accuracy values for ER re-
sults with different types of errors, we can identify many
conflicts. For example, say Algorithm 1 produces many
broken entities, and its result R1 contains 5,450 errors
(right most data points in Figure 4(a)). While resolving
the same input set, Algorithm 2 generates many glued
entities, and its result R2 contains 5,027 errors (right
most data points in Figure 4(b)). According to ccF1,
isBetter(ccF1, R1, R2) = true because ccF1(R1) =
0.72 while ccF1(R2) = 0.64. On the other hand, for cF1,
isBetter(cF1, R2, R1) = true because cF1(R2) = 0.49
while cF1(R1) = 0.36. As a result, ccF1 and cF1 conflict
on R1 and R2, i.e., ccF1 tells us Algorithm 1 is better,
while cF1 tells us Algorithm 2 is better!

Figure 5 shows the number of conflicts that occur for
each measure pair based on the data in Figure 4, sorted
in decreasing numbers of conflicts. Each plot compares
ER results of one error type to the ER results of another
error type. Since there are 10 ER results for each error
type according to Figure 4, we compare all 10×10 ER
result pairs for each pair of ER measures. For example,
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(a) Broken entity errors
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(b) Glued entity errors
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(c) Misplaced entity errors

Figure 4: Sensitivity comparison for single error types

between the NBMD and pF1 measures, we found 52
conflicts among the 100 ER result pairs (hence the 52%
conflict probability in the first plot of Figure 5). Overall,
the NBMD and pF1 measures conflict more frequently
than other pairs of measures. The average conflict prob-
ability of two measures was 21.6%, 9.1%, and 10.7% for
the three plots, respectively. Using these results, we can
compute the average conflict probability for all ER result
pairs (i.e., including the pairs that have the same error
type) as (21.6+9.1+10.7)×100

3×100+3×(10
2 ) = 9.5%. Hence, the chance

of measure conflicts is clearly not trivial.

Conflicts can also occur in real datasets as shown in
Table 4, which shows the measure results for the two ER
algorithms run on the shopping and hotel datasets. We
added the distance results for BMD and accuracy results
for the other measures. It is important to understand that
for BMD, a smaller distance indicates a more accurate
ER result. For the hotel dataset, the Swoosh algorithm
performs better than the Monge Elkan algorithm accord-
ing to the BMD measure (again, the algorithm with the
smaller distance is better), but not for pF1 (higher ac-

curacy is better). Hence, the pF1 and BMD measures
conflict. The pF1 measure also conflicts with cF1, which
considers the Swoosh result more accurate. The other K
and ccF1 measures do not conflict with other measures
because of the similar accuracies given to the two ER re-
sults (recall we set ε = 0.01). For the shopping dataset,
both pF1 and BMD consider the Swoosh algorithm to
be better than the Monge Elkan algorithm while the other
measures give similarly high accuracy values to both al-
gorithms. We do not find any conflicts in this case. The
results show that conflicts can indeed occur in real world
applications, and evaluations of ER algorithms need to
consider multiple measures (something that to date is sel-
dom done).

8.3 Configured GMD Results

In this section, we show how GMD can be configured to
measure accuracy in different ways. We first present the
key parameters – sensitivity to error type and sensitivity
to cluster size – that are configured in theGMD measure.
We then experiment on various configurations of these pa-
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Figure 5: Conflict frequencies

Table 4: Measure results for real-world algorithms and
datasets

BMD pF1 cF1 K ccF1

Hotel
Swoosh 427 0.34 0.88 0.95 0.93

Monge Elkan 435 0.61 0.86 0.96 0.93
Shopping

Swoosh 29 0.86 0.98 0.98 0.99
Monge Elkan 34 0.73 0.98 0.97 0.99

rameters and show how each configured GMD measure
can capture different qualities of ER results. Finally, we
discuss how to choose the right measure for evaluating ER
in a given application.

The GMD measure has two configuration “knobs”:
the merge and split cost functions fm and fs. The first pa-
rameter, sensitivity to error type, captures how sensitive
the GMD measure is to broken entity errors and glued
entity errors. If the GMD measure should be more sensi-
tive to broken entity errors than glued entity errors, we can
set fm to return larger values than fs, giving more penalty
for records that should have been merged. Similarly, if the
GMD measure should be more sensitive to glued entity
errors, we can set fs to return larger values than fm. The
second parameter, sensitivity to cluster size, captures how
much penalty the GMD measure gives to larger clusters
that need to be fixed. For example, we might want to make
sure large clusters are properly resolved while tolerating
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errors in smaller clusters. To increase the sensitivity to
cluster size, we can simply make both fm and fs return
larger values.

Table 5 shows five different configurations of the
GMD measure we will use in our experiments. The
BMD measure assumes constant costs for merges and
splits. TheGMDP measure can be used to compute pair-
wise precision (see Theorem 5.5). Similarly, the GMDR

measure can be used to compute pairwise recall. A har-
monic mean of pairwise precision and pairwise recall
computes pF1. The GMDH measure has hybrid cost
functions that have high sensitivities to record sizes as
well as constant overheads for each merge and split. Fi-
nally, the GMDV measure is equivalent to the V I mea-
sure.

Table 5: Configured GMD measures
BMD GMDP GMDR GMDH GMDV

fm 1 0 xy xy + 1 h(x+y)-h(x)-h(y)a

fs 1 xy 0 xy + 1 h(x+y)-h(x)-h(y)

ah(z) = z
N

log z
N

where N is the total number of base records.

Figure 6 compares the sensitivities of the configured
GMD measures in Table 5. We used the same gold stan-
dard and ER results used for Figure 4. Figures 6(a) and
6(b) demonstrate sensitivities to broken entity errors and
glued entity errors, respectively. The plots of GMDP

(using the symbol +) and GMDR (using the symbol ∗)
switch places because of their different sensitivities to the
two types of errors, while the relative ordering of the other
plots remain the same. Figure 6(c) shows that for mis-
placed entity errors, the sensitivities of the five config-
ured GMD measures do not differ much because there is
an even mix of broken and glued entity errors. However,
Figure 6(d) shows how the sensitivities to record size vary
among the configuredGMD measures. While adding the
same 10,000 misplaced entity errors to each ER result, we
increased the minimum size of clusters that could con-
tain misplaced entity errors from 1 to 5. The higher the
minimum size, the more “concentrated” the errors are in
large clusters. (Notice that when the minimum size is 1,
the GMD results are identical to the right-most points in
Figure 6(c).) As a result, the GMDP , GMDR, GMDH

measures, which have the most expensive cost functions,

show substantial increases in distances when the errors
are concentrated in large clusters. The GMDV measure,
which has logarithmic cost functions, is moderately sensi-
tive (although not clearly shown in the plot due to its small
distances) while the BMD measure is the least sensitive.

Choosing the Right Configuration With a config-
urable measure, a natural question is how to choose the
right configuration for evaluating a given application. The
selection can be done in two steps. First, determine
the type of error that is most significant to the applica-
tion. Second, determine whether resolving large clusters
is more important than resolving smaller clusters. For ex-
ample, one might be interested in correctly evaluating ER
algorithms that emphasize good precision and also makes
sure at least the large clusters are precisely resolved.

Table 6 shows how two ER algorithms can be com-
pared using configured GMD measures. The ER results
are identical to the ones used for Table 4. Each GMD
measure gives certain information on how the two al-
gorithms performed. For example, using the results of
GMDP and GMDR, we know that the Swoosh algo-
rithm is superior to the Monge Elkan algorithm in terms
of broken entity errors, but inferior in terms of glued en-
tity errors, for both of the datasets. Comparing the results
of BMD and GMDH , we suspect that the Swoosh algo-
rithm does a poor job in resolving large clusters because
Swoosh has much higher GMDH distances than those of
Monge Elkan, but similar BMD distances. (Recall that
GMDH is more sensitive to errors in large clusters than
BMD.)

Table 6: Configured GMD results for real-world algo-
rithms and datasets

BMD GMDP GMDR GMDH GMDV

Hotel
Swoosh 427 2087 158 2672 0.177

Monge Elkan 435 79 374 888 0.122
Shopping

Swoosh 29 28118 0 28147 0.084
Monge Elkan 34 0 12794 12828 0.078

8.4 Runtime Performance
As discussed in Section 6, ER datasets can be huge, and
the computation times for measures can be very signifi-

22



 0

 10000

 20000

 30000

 40000

 50000

 60000

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500

Di
st

an
ce

Number of Errors

BMD
GMDP
GMDR
GMDH
GMDV

(a) Broken entity errors

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Di
st

an
ce

Number of Errors

BMD
GMDP
GMDR
GMDH
GMDV

(b) Glued entity errors

 0

 50000

 100000

 150000

 200000

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Di
st

an
ce

Number of Errors

BMD
GMDP
GMDR
GMDH
GMDV

(c) Misplaced entity errors

 0

 50000

 100000

 150000

 200000

 1  2  3  4  5  6

Di
st

an
ce

Minimum Cluster Size with Errors

BMD
GMDP
GMDR
GMDH
GMDV

(d) Misplaced entity errors in large clusters

Figure 6: Sensitivities of GMD measures for different error types

cant. In this section we compare the computation times
for the BMD, pF1,cF1,K,ccF1, and V I measures. (We
omit the other configured GMD measures because their
runtimes are similar to that of BMD.) For BMD, we
used the Slice algorithm. For pF1, we used two imple-
mentations: one uses the Slice algorithm while the other is
a straightforward implementation that iterates through all
base record pairs of the ER result and the gold standard.
Similarly for V I , we used an implementation using Slice
(i.e., GMDV ) and a straightforward implementation that
iterates through all pairs of clusters between the ER result
and the gold standard. We implemented cF1, ccF1, and
K in a straightforward way (as described in Section 6)
because there are no better published algorithms. As a re-
sult, cF1 was implemented with a linear time algorithm
while ccF1 and K were implemented with quadratic time
algorithms. All the algorithms were implemented in Java,

and our experiments were run in memory on a 2.4GHz
Intel(R) Core 2 processor with 4GB of RAM.

Figure 7 shows the runtime plots for the measures. We
experimented on 10K to 160K entities with the Zipfian ex-
ponent e = 1.5, and each ER result R had |R|10 misplaced
entities. Any implementation using the Slice algorithm
is scalable to large ER results, with a runtime increasing
linearly by the number of entities. Although the straight-
forward implementation of pF1 is worst-case quadratic,
in this experiment it shows linear average behavior (be-
cause clusters are small — average size is 3.5 — making
the number of base records to iterate over small). The
straightforward implementation of V I is expensive even
for a small number of entities, highlighting the runtime
improvements when using Slice. The cF1 algorithm is
efficient and shows a linear increase in runtime. Finally,
the runtimes of the K and ccF1 algorithms grow quadrat-
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9 Conclusion
We have proposed an edit distance measure for ER (called
“generalized merge distance” or GMD) that computes
the shortest edit distance from an ER result to a gold stan-
dard using merges and splits as the basic operations on
clusters. A powerful feature is that the merge and split
costs can be configured based on record sizes. We pro-
posed an efficient algorithm (called Slice), which com-
putes GMD in linear time for a large class of merge and
split cost functions. Interestingly, the state-of-the-art V I
clustering measure is a special case of GMD, and the
dominantly used pF1 measure for ER can be directly com-
puted using GMD. As a result, both V I and pF1 can be
computed efficiently using our Slice algorithm.

We have shown in our experiments that evaluating ER
algorithms based on a single ER measure is problematic
because different measures conflict with each other. Such
conflicts occur because each measure focuses on certain
features in the ER results for computing accuracy. We
also showed that GMD can be configured on two impor-
tant parameters: sensitivity to error type and sensitivity to
cluster size. As a result, one could more precisely define
a measure that correctly evaluates a given application. Fi-
nally, we have demonstrated that the Slice algorithm is
scalable and can be used to evaluate very large datasets.

Thus, we believe that the GMD measure fills a hole in
the space of available ER measures, and that it clarifies
the relationship between the available ER measures.

There are interesting open issues for the GMD mea-
sure. We have already shown that the pF1 and V I mea-
sures are closely related to GMD. We believe that edit
distance measures for ER and clustering have yet to be
fully explored and suspect that GMD could be a funda-
mental way of generating ER and in general clustering
measures.
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