
Answering Queries based on Preference Hierarchies

Georgia Koutrika
Stanford University, USA

koutrika@stanford.edu

Yannis Ioannidis
University of Athens, Greece

yannis@di.uoa.gr

ABSTRACTPeople's preferenes are expressed at varying levels of gran-ularity and detail as a result of partial or imperfet knowl-edge. One may have some preferene for a general lass ofentities, e.g., liking omedies, and another one for a �ne-grained, spei� lass, e.g., disliking reent thrillers with AlPaino that are intended for families. In this paper, weare interested in apturing suh hierarhial preferenes topersonalize database queries and in studying their impaton query results. In partiular, we organize the olletionof one's multi-granular preferenes in a preferene hierar-hy (a direted ayli graph), where eah node refers to asublass of the entities that its parent refers to, and when-ever they both apply, more spei� preferenes override moregeneri ones. We study query personalization based on pref-erene hierarhies and provide e�ient algorithms for iden-tifying relevant preferenes, modifying queries aordingly,and proessing these queries to obtain personalized answers.Finally, we present results of experiments both syntheti andwith real users, whih (a) demonstrate the e�ieny of ouralgorithms, (b) provide insight as to the appropriateness ofthe proposed preferene model and () show the bene�tsof query personalization based on hierarhial preferenesompared to �at preferene representations.
1. INTRODUCTIONIn an ideal world, preferenes ould exist for every ob-jet in a domain of interest, e.g., movies, books, et. Suhelaborate preferenes would yield a perfetly �ne-grainedranking of alternatives and highly personalized ontent. Inanother ideal world, one ould express preferenes for gen-eral but well-de�ned, disjoint sets partitioning the objetsof disourse. Unfortunately, neither of these two extremesis found in pratie often. User preferenes are typially in-omplete and our knowledge of them is imperfet and par-tial. General and spei� preferenes oexist peaefully.People tend to have a mix of general and spei� pref-erenes. This mix may indiate lak of knowledge, lak of
Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

elaborate taste, or inability to identify those properties ofobjets that determine their preferenes. For instane, onemay have a general liking for adventures but a �ner-grainedtaste only for a subset of them, suh as those direted by S.Spielberg, whih are haraterized as favorites. On the otherhand, one may have liked some partiular books but maybe unable to identify a ommon harateristi that madethem attrative. Impliit olletion of user preferenes, forinstane by observing user behavior in the system, su�ersfrom similar problems. For instane, onsider a system thatbuilds user pro�les from user ratings for movies to providepersonalized ontent. Suppose that a user has given highratings to all omedies she has seen so far. This knowledgeallows the system to onlude that the user likes omediesbut does not su�e to di�erentiate among omedies. Sup-pose that the user ontinues to interat with the system andprovides some low sores for omedies starring Jak Nihol-son. Then, the system may enrih its knowledge of thisuser's preferenes by disriminating against omedies star-ring Jak Niholson, whih will be ranked lower than otheromedies. Note that not all forms of additional informationare useful. For instane, another user may have liked allomedies with Adam Sandler so far; this does not neessar-ily imply, however, that the user should like all omedies orall movies with Adam Sandler independently.In this paper, we are interested in apturing user prefer-enes at di�erent levels of detail and using them for person-alizing the results of database queries. In partiular, we pro-pose a framework that allows a pro�le to ontain any mix ofgeneral and spei� preferenes, where the latter are expli-itly stated rather than being impliitly alulated from theformer as in, e.g., [2, 17℄. We organize the olletion of one'smulti-granular preferenes in a preferene hierarhy (a di-reted ayli graph), where eah node refers to a sublass ofthe entities that its parent refers to, and whenever they bothapply, more spei� preferenes override more generi ones,whether the former represent a stronger or a weaker prefer-ene than the latter. Given the inreased expressive powerand freedom o�ered by this framework, we study query per-sonalization [17, 20℄ based on preferene hierarhies and pro-vide e�ient algorithms for identifying relevant preferenes,modifying queries aordingly, and proessing these queriesto obtain personalized answers. We evaluate the impatof these �ner-grained answers on users. Furthermore, weraise the question of whether or not inreased expressivity isahieved at the expense of performane and answer it in thenegative through an appropriate experimental performaneevaluation. In summary, our ontributions are:



• We introdue a framework that is based on the oneptof preferene hierarhies, whih allows the representationof generi and spei� preferenes and their relationshipsin a lean and �exible way (Set. 3).
• We present a system arhiteture and algorithms forquery personalization based on preferene hierarhies.There are three basi issues: (a) �nding preferene re-lationships, (b) onstruting a hierarhy of related pref-erenes for a query, and () using this hierarhy to gen-erate personalized answers that respet the semantis ofquery personalization and the relationships between thepreferenes of the hierarhy (Set. 4).
• We study the overall impat of the inreased expressivityallowed by our framework through several experimentsboth syntheti and with real users that evaluate the pref-erene model and the algorithms. We show that moreaurate, �ner-grained result rankings an be ahievedwithout losing in performane (Set. 5).

2. RELATED WORKPreferenes have reeived attention from researhers indi�erent disiplines (e.g., [10, 6℄). In IR and Databases,preferenes are assoiated with the searh proess either asexpliit preferenes entered through a query interfae, long-term preferenes gained with preferene mining [11℄ or pref-erenes based on user feedbak [4℄. IR-based representa-tions of preferenes inlude bags of words [13℄, vetors ofterms [3℄ et. In databases, early e�orts go bak to eight-ies [18℄. Sine then many approahes followed falling intotwo ategories. In qualitative approahes, preferene rela-tions are de�ned using logial formulas [8℄ or speial pref-erene onstrutors [15℄ and are embedded into relationalquery languages through a relational operator that seletsfrom its input the set of the most preferred tuples (winnow[8℄, BMO [15℄). Several algorithms for omputing skylinequeries, whih are speial ases of preferene queries, exist(e.g., [5℄). Quantitative approahes aim at an absolute for-mulation of preferenes. Preferenes in queries are spei�edindiretly using soring funtions that assoiate a numerisore with every tuple of the query answer [2℄. Several al-gorithms have been proposed for the e�ient omputationof top-K objets (e.g., [21℄). Preferenes that hold only inspei� ontexts have been also studied [12, 20℄.Our work is loser to [17, 20℄ in that we share the idea ofrepresenting preferenes as query onditions assoiated witha degree of interest for personalizing queries. In ontrastto these e�orts that fous on other problems of preferenerepresentation, suh as di�erentiating preferenes based ontheir intensity [17℄ and studying ontext-dependenies [20℄,we fous on the omplexity of preferenes and its implia-tions. One ritial departure from these works is that we liftthe entral assumption that preferenes hold independentlyof eah other. We apture preferenes of di�erent granu-larity and we de�ne preferene relationships on the basis ofpreferene mappings. The latter are essentially based on theonept of ontainment mappings for onjuntive queries [1,7℄ but they are simpler beause they an be resolved with 1to 1 mappings of atomi onditions in the preferenes om-pared. Finally, we experimentally ompare our algorithmswith their simpler ounterparts, whih assume prefereneindependene.

3. FRAMEWORKWe onsider that for every user there is a pro�le storinguser preferenes for personalizing queries. Without loss ofgenerality, we fous on SPJ queries over relational databases.
3.1 Preference FormulationWe onsider a database D. R and A are used to denote arelation and an attribute, respetively, in the database. Weuse the symbols Ri on some index i and Aj on some index
j, when more than one relation or attribute are disussed.A set of attributes is denoted A.A preferene for a set of tuples of a relation R in thedatabase D is expressed as a degree of interest d ∈ [0, 1]in a ondition q that desribes the qualifying tuples in R,and is denoted R : (q, d). d = 0 indiates no interest, and
d = 1 indiates extreme interest. Depending on the form ofondition q, we distinguish the followin types of preferenes:Atomi preferene If q is a single, atomi, seletion or join,ondition, then a preferene for q is alled atomi.Composite preferene If q is a onjuntion of multiple atomionditions, then a preferene for q is alled omposite.Seletion preferene Consider a set A of attributes tran-sitively onneted to R based on joins on the databasegraph. For any onjuntion q of atomi seletions in-volving the attributes in A and atomi joins transi-tively onneting these attributes to R, a user's pref-erene for tuples in R satisfying q is expressed by adegree d of interest in q, and is a seletion preferene.Join preferene Consider a onjuntion of atomi join on-ditions q representing the transitive join of relations

Ri and Rj . A user's preferene for tuples from Ri thatjoin to tuples in Rj is expressed by the degree d ofinterest in q, and is alled a join preferene.Seletion preferenes indiate interest in attribute values.Join preferenes indiate to what degree related entities aremutually in�uened by preferenes. From a di�erent per-spetive, that of using preferenes to personalize query re-sults, a preferene R : (q, d) an be interpreted as follows:given a query involving R, d shows the user interest in on-sidering q for personalizing the query results. Sine a prefer-ene for a set of tuples is essentially aptured as a preferenefor a ondition that desribes this set, in what follows, weonsider the terms �preferene for tuples� and �preferenefor a ondition� equivalent and we use them interhange-ably. We use the symbol p or pi (if a set of preferenes isdisussed) to refer to a preferene.Preferene tree. A preferene R : (q, d) an be repre-sented as a preferene tree g(V, E). This is a rooted tree,whih an be thought as an extension of the traditionalshema graph, with the following harateristis. Nodes inV map to relations, attributes, and values in q, and an bepossibly repliated if the orresponding relation, attributeor value is used more than one in q. Edges in E onnet(a) a relation node to another relation node, representing ajoin ondition in q or (b) an attribute to its ontainer rela-tion or () an attribute to a value, representing a seletionin q. Join edges are tagged with the orresponding joiningattributes, and seletion edges are tagged with the operatorused in the seletion ondition. R maps to the tree's root.For seletion preferenes, the tree leaves are always values.A preferene tree an take either of two forms. It anontain one single path mapping to a join preferene or it



Table 1: Example PreferenesUser preferene Preferene formulation
p1 I quite like si-� moviesdireted by S. Spielberg MOVIE : MOVIE.mid=GENRE.mid and GENRE.genre=`si�' and MOVIE.mid=DIRECTED.mid andDIRECTED.did=DIRECTOR.did and DIRECTOR.name= `S. Spielberg' 0.7
p2 I love adventure moviesintended to families MOVIE : MOVIE.mid=GENRE1.mid and GENRE1.genre=`family' andMOVIE.mid=GENRE2.mid and GENRE2.genre=`adventure' 0.9
p3 It is really important to mewho is the diretor of a movie MOVIE : MOVIE.mid=DIRECTED.mid andDIRECTED.did=DIRECTOR.did 1.0
p4 Hithok is a great diretor DIRECTOR : DIRECTOR.name = `A. Hithok' 0.9an ontain a set of paths onneting its root to a set ofvalues apturing a seletion preferene.Example. Consider the following toy database.MOVIE(mid, title, year, duration) GENRE(mid, genre)CAST(mid, aid) ACTOR(aid, name)DIRECTED(mid, did) DIRECTOR(did, name, nationality)Table 1 shows some preferenes in natural language (inthe left olumn) and how they an be represented using thepreferene model (in the right olumn). Observe how theremay be more than one instane of any relation or attributein a preferene, e.g., the relation GENRE and its attributegenre are referened more than one in p2. Figure 1(a) de-pits the preferene tree for p2. For the sake of presentation,we do not show tags on the edges, sine for our toy databasethey are understood. Observe how repeated relations andattributes are mapped to di�erent nodes in the preferenetree. As a notational onvention, di�erent ourrenes of arelation (mapping to di�erent nodes in the tree) are writ-ten as a onatenation of the relation name and a sequentialnumber. To distinguish when an attribute is used with a dif-ferent ourrene of the same relation, the attribute takesthe relation's sequential number in their representation. Fig-ure 1(b) shows the preferene tree for p3, whih omprises asingle path in ontrast to the tree for p2, whih maps to a setof paths from the root to the value nodes. Preferene treesan �unfold� omplex onditions, suh as self-joins, and mapthem to distintive paths on the tree. To illustrate, onsiderthe following, rather non-typial, preferene for 2008 moviesby Frenh diretors who have also direted movies releasedin 2000, whose tree is depited in Figure 1().MOVIE1.year=2008 and MOVIE1.mid=DIRECTED1.mid andDIRECTED1.did=DIRECTOR1.did andDIRECTOR1.nationality=`Frenh' andDIRECTOR1.did=DIRECTED2.did andDIRECTED2.mid=MOVIE2.mid and MOVIE2.year=2000Preferene Inferene. On the basis of the preferenesstored in a user pro�le, one an ompose impliit preferenes,i.e., preferenes that are not expliitly stored in the pro�lebut an be implied by those atually stored. In partiular,onsider a join preferene Ri : (qi, di) onneting Ri to re-lation Rj , and a join or seletion preferene Rs : (qs, ds). If

Rj = Rs, then these preferenes are omposeable.Given a set of omposeable preferenes, R1 : (q1, d1),
R2 : (q2, d2), ... Rm : (qm, dm), we ompose the impliitpreferene R : (q, d), suh that: (a) R=R1, (b) q is theonjuntion of the onditions q1, q2, ...qm and () its degree
d of interest is a funtion of the degrees of interest of thebase preferenes, i.e., d = f(d1, d2, ...dm). d should be anon-inreasing funtion (e.g., the produt) of the base de-grees of interest, d1, d2, ...dm, on the grounds that it annot

adventuregenre2GENRE2

MOVIE familygenre1GENRE1 (a) MOVIE DIRECTORDIRECTED

MOVIE DIRECTORDIRECTED(b)
MOVIE1 year1 2008

DIRECTED1 DIRECTOR1 Frenchnationality

DIRECTED2 year2 2000MOVIE2()Figure 1: Example preferene trees.exeed the degrees of interest of its supporting preferenes.For example, from p3 and p4 shown in Table 1, we an im-ply a preferene for movies direted by Hithok using theprodut of the degrees of interest, represented as:MOVIE : MOVIE.mid = DIRECTED.mid andDIRECTED.did = DIRECTOR.did andDIRECTOR.name = `A. Hithok' 0.9
3.2 Preference HierarchiesDepending on the form of the ondition q, seletion pref-erenes an be de�ned on a relation R at varying levelsof granularity, ranging from quite generi (e.g., an atomiseletion on R) to very spei� preferenes that ombinemultiple (atomi or impliit) seletions. Intuitively, onemay view a seletion preferene as de�ning a lass of en-tities with some partiular features. Given the preferenes
R : (qi, di) and R : (qj , dj), qi and qj may de�ne two di�erentlasses of entities from R. For example, �MOVIE.year = 2000�and �MOVIE.mid = GENRE.mid and GENRE.genre=`omedy'� de-sribe two independent lasses of movies: the lass of moviesreleased in 2000 and the lass of omedies. A movie anbelong to both lasses, hene, these preferenes an inde-pendently hold. However, the ondition �MOVIE.year = 2000and MOVIE.mid = GENRE.mid and GENRE.genre=`omedy'� ex-pliitly refers to a sublass of the entities that �MOVIE.year =2000� refers to. Consequently, whenever they both apply, themore spei� one, i.e., the one de�ning the sublass, over-rides the more generi one. In what follows, we formallyde�ne preferene overriding and independene.We �rst start with some observations. We an view a pref-erene Ri : (qi, di) as a possible onjuntive query, whihselets tuples from Ri that satisfy qi. On the basis of thisorrespondene, we an de�ne preferene overriding throughonjuntive query ontainment and ontainment mappings:Given two preferenes, Ri : (qi, di) and Rj : (qj , dj), weonsider the orresponding onjuntive queries Qi and Qj .We say that pi is overridden by pj if Qi is ontained in Qj(Qi ⊆ Qj). Qi is ontained in Qj i� there is a ontainmentmapping from Qi to Qj [1, 7℄. However preferenes mapto rooted trees, therefore, it is easily provable that pref-erene ontainment mappings an be performed in a more



adventuregenre2GENRE2

MOVIE familygenre1GENRE1

MOVIE familygenreGENREFigure 2: Preferene mapping.straightforward way, i.e., as �1 to 1� mappings of the atomionditions in the two preferenes (Fig. 2 shows an exam-ple). On the basis of the above, the de�nitions of prefereneoverriding and independene follow.Preferene Relationships. Given a set P of seletionpreferenes and two preferenes Ri : (qi, di) and Rj : (qj , dj)(denoted pi and pj , resp.) from P , we de�ne the following:Preferene Overriding If pi an be mapped to pj , suhthat (a) Ri ≡ Rj and (b) eah atomi ondition in qiis mapped to an atomi ondition in qj with the samerelations and attributes, then pi is overridden by pj (pjoverrides pi), denoted pi < pj . In this relationship, pjis spei�, pi is generi, and the following degree ofinterest orrespondenes hold (denoted by ←):
doi(pi ∧ pj)← doi(pj) (1)
doi(pi∧qpj)← doi(pi) (2)i.e., the generi preferene (pi) holds only in the ab-sene of the spei� one (pj). If ∄p ∈ P s.t. pi < p <

pj , i.e., pj is the most generi speialization of pi in P ,then pi is properly overridden by pj , denoted pi ⊑ pj .Preferene Independene If Ri ≡ Rj but pi 6< pj and pj 6<
pi, then pi and pj are independent and it holds that:

doi(pi ∧ pj)← r(doi(pi), doi(pj)) (3)i.e., both preferenes an hold together.Given a set P of seletion preferenes over the same rela-tion R in the database D, P is mapped to a hierarhy thatre�ets the relationships among its preferenes, suh thateah node refers to a sublass of the entities that its parentrefers to, and whenever they both apply, the more spei�preferene overrides the more generi one.Preferene Hierarhy. A preferene hierarhy GH(VH ,
EH) orresponding to a set of preferenes P is a diretedayli graph. Nodes in VH map to preferenes in P . Giventwo nodes vi and vj in VH , mapping to preferenes pi, pj

∈ P , respetively, an edge in EH from vi to vj , e(vi, vj),denotes that pi is properly overridden by pj . When a pref-erene is not overridden by any other preferene, it is alleda leaf. When it does not override any preferenes, it is alleda root. Note that the term �root� is loosely used here; byde�nition, a hierarhy has one root, while our de�nition al-lows more than one root in a preferene hierarhy.Figure 3 illustrates a preferene hierarhy (on the left side)orresponding to a set of preferenes (on the right side). Forlarity, relations are abbreviated, e.g., M stands for MOVIE,DD stands for DIRECTED, and so forth. Roots are the prefer-enes p1 and p6 while p4 and p5 are leaves. We also observethat the degrees of interest at one level of the hierarhy arenot derived from the degrees of interest at upper or lowerlevels of the hierarhy. For instane, p2 is a strong pref-erene, whereas the more spei� p5, whih di�erentiates asubset of tuples satisfying p2, states a weak preferene.
3.3 Combining PreferencesIn the absene of an expliit preferene for a partiulartuple in the database, we an ompute a degree of inter-est in this tuple by ombining the known preferenes for it.

M.year = 2000,  0.75

M.year = 2000 and M.mid=G.mid and G.genre = ‘comedy’,    0.8

M.year = 2000 and  M.mid=CA.mid and CA.aid=A.aid and 

A.name = Jack Nicholson’,     0.85

M.year = 2000 and  M.mid=CA1.mid and CA1.aid=A1.aid and 

A1.name = ‘Jack Nicholson’ and M.mid=CA2.mid and 

CA2.aid=A2.aid and A2.name = 'Adam Sandler',   0.7

M.year = 2000 and and M.mid=G.mid and G.genre = ‘comedy’ and 

M.mid=CA.mid and CA.aid=A.aid and A.name = ‘Jack Nicholson’,    0.4

M.mid=G.mid and G.genre = 'adventure',   0.95

���� ������ �� p1 :

p2 :

p3 :

p4 :

p5 :

p6 :Figure 3: A set of preferenes as a hierarhy.For instane, if we have a preferene for movies by S. Spiel-berg and a preferene for adventures, we an ompute theombined preferene for adventures by S. Spielberg.Ranking Funtion. Consider a set P ′= {pi|pi, i = 1 . . . n′}of independent preferenes over the same relation. The de-gree of interest in their onjuntion is a funtion r, alledranking funtion, of their degrees of interest:
doi(P') = doi(p1 ∧ . . . pn′) = r(doi(p1), . . . doi(pn′ )) (4)There are many possible ranking funtions that ould beused, e.g., the maximum or the average, depending on theappliation, the objets of interest, and so forth. For in-stane, for hoosing movies, ranking them based on thebest preferene they meet may su�e, whereas when buy-ing a ar, where many of the ar features matter, a funtionsuh as the average of preferenes may be more appropriate.However, a tuple may satisfy a set of preferenes that arenot independent and, hene, annot be freely ombined.Tuple ranking. Consider a set P of preferenes for thesame relation R. The degree of interest in a tuple t ∈ Rsatisfying P is: doi(t) = doi(P ′), with P ′ ⊆ P s.t.:
• ∀pi, pj ∈ P

′, pi, pj are independent and
• ∀pi ∈ P

′, ∄ pj ∈ P that is more spei� from pi.Example. Consider the preferenes shown in Figure 3and a 2000 omedy with J. Niholson, whih, in priniple,satis�es preferenes p1, p2, p3 and p5. Taking into aounttheir relationships, not all preferenes ount and the degreeof interest in this movie m is omputed as follows (using themaximum of degrees as the ranking funtion:)
doi(m) = doi(p1 ∧ p2 ∧ p3 ∧ p5)

p1<p2= doi((p1 ∧ p2) ∧ p3 ∧ p5)
(1)
= doi(p2 ∧ p3 ∧ p5)

p2<p5= doi((p2 ∧ p5) ∧ p3)
(1)
= doi(p5 ∧ p3)

p3<p5= doi(p5) = 0.4

4. ALGORITHMSThe query personalization system onsists of a number ofmodules (Figure 4). Preferene Constrution extrats andomposes preferenes from the user pro�le that are relatedto a query. A user an ask for or the system may auto-matially determine the number of related preferenes thatshould be built from the user pro�le on the basis of manyfators, suh as the extent of personalization desired (fewvs. many preferenes), the number of results desired (sat-isfying more preferenes may generate very foused or evenempty results), and so forth. Sine there may be generi andspei� preferenes, the relationships between them need tobe established. Preferene-Hierarhy Integration is respon-sible for onstruting the hierarhy of related preferenes forthe query. This module plaes eah preferene found fromthe �rst module in the right �position� in the hierarhy. Itollaborates with the Relationship Finder, whih determines



Preference 
Construction

Query 

User profiles

Hierarchical 
Preference 

Query
Answering

hierarchy

Database

ranked tuples

Preference-
Hierarchy 
Integration

Relationship
Finder

preferences
...Figure 4: System Arhiteture.the kind of relationship for a pair of preferenes. Finally, Hi-erarhial Preferene Query Answering, takes into aountthe hierarhy of related preferenes and returns results thatmeet the initial query and the user preferenes. Again, thenumber of preferenes that a personalized answer should sat-isfy an be determined by the user or the system dependingon the size of the results returned and the personalized an-swer's fous desired. For instane, if the initial query is verygeneral and returns many results, then a user may wish toapply a larger number of preferenes on the query in orderto shape an answer of manageable size.

4.1 Relationship FinderGiven two seletion preferenes, p and p′, de�ned over thesame relation R, there are three mutually exlusive ases:(a) p is overridden by p′; (b) p′ is overridden by p; or () pand p′ are independent. We have seen that preferene re-lationships are de�ned based on preferene mappings (Set.3.2). Sine preferenes map to rooted trees, where the rootis a relation and the leaves are always values, the prefer-ene mapping problem an be formulated as a tree mathingproblem. While typially tree/graph searhing and math-ing problems are de�ned as mappings of nodes and edgesin two di�erent graphs [9, 19℄ and are often approximatedthrough mathing sets of paths on the graphs ompared,the preferene tree mathing problem is in fat de�ned as aone-to-one mapping of the paths that onnet the root to theleaves in two preferene trees. Moreover, it does not presentthe partiularities of a general graph searh problem sine itis ontained in the omparison of just two trees. The aboveobservations allow building a mathing solution that anorretly math two preferene trees by ounting the num-ber of mathing root-to-leaf paths between the two trees. Itis inspired by ATreeGrep, whih however ounts the numberof mismathing root-to-leaf paths between a query tree anda data tree [19℄. An additional twist of the preferene treemathing is that it needs to �nd the exat relationship oftwo trees rather than just tell whether they math or not.Our approah is the following. For the preferenes p and
p′, we onsider the sets P and P' of all root-to-leaf paths ontheir preferene trees, respetively. |P| and |P'| are the sizesof these sets. For e�ient path ounting and omparison,we adopt a string representation of a path (string enodingof trees in general has been proposed in [22℄.) To generatea path representation, we onatenate the names of nodesin the path. For instane, the string representation of p1 inFigure 3, whih omprises a single path, is �Myear2000�. Twopaths si ∈ P and s′i ∈ P' math i� their string representa-tions are the same. Then, the relationship of p and p′ anbe determined by ounting the number M of pairs (si, s

′

i) ofmathing paths. Setting aside the ase that these sets areatually the same, the following hold. If M = |P| it is p < p′.If M = |P'| then p′
< p. If none of the above holds, then

p′ and p are independent. This proess is aptured in thealgorithm Find_Relationship. In ase of inequalities, the

Algorithm Find_RelationshipInput: preferene p, preferene p′Output: relationshipBegin1. read the sets P and P' of root-to-leaf paths for p, p′, resp.2. If |P| ≤ |P'| {relationship := math(P, P') }Else {relationship := math(P', P) }3. output <p relationship p′>Endproedure mathInput: set P1, set P2Output: relationshipBegin1. M := 0; found := true2. While found=true and ∃ unexamined path si ∈ P1 {2.1 If si mathes some s′i ∈ P22.1.1 {M := M+1 }2.2 Else2.2.1 {found := false } }3. If M= |P1|3.1 If M= |P2|3.1.1 {relationship := `is the same to' }3.2 Else3.2.1 {relationship := `is overridden by' }4. Else3.1 {relationship := `is independent from' }4. output relationshipEndproess is slightly di�erent: it mathes paths without onsid-ering the seletion values, and performs an additional hekfor the atomi seletions to determine their relationship. Inthe presentation of subsequent algorithms, we assume sele-tions with equalities. This assumption does not a�et thealgorithms in any way but it helps the presentation.
4.2 Preference ConstructionIn personalizing a query, only seletion preferenes relatedto (and not in on�it with) the query are valid for modi-fying its results. We assume that we are interested in thetop K preferenes in the order of degree of interest. We de-�ne preferene relatedness and on�its on the basis of thesyntati harateristis of the query and the preferenes.Related Preferene. A preferene R : (q, d) is relatedto a query Q, if Q already involves R.Con�iting Preferene. A preferene R : (q, d) is on-�iting with a query Q, if: (a) it is related to the query; (b)when q is inserted into the original query quali�ation, re-plaing any part of the latter that oinides with it, i.e., joinsor seletions on a ommon attribute, the resulting queryquali�ation and the original one ontain at least one om-mon impliit seletion; and () this seletion is spei�ed overa single-value attribute of the query results.To illustrate, onsider a query for fantasy movies by RobertZemekis and the preferenes listed in Table 1. p1 is relatedto but on�iting with the query (assuming that eah moviehas one diretor). p2 is related and not on�iting beauseGENRE.genre is a multi-value attribute for movies.Algorithm Hierarhial-RP. Preferenes stored in a pro-�le an help us derive impliit preferenes. The algorithmHierarhial-RP does not only return preferenes relatedto a query that are expliitly stated in the pro�le, but it analso ompose related preferenes starting from the storedones and iteratively onsidering additional stored prefer-enes that are omposeable with the ones already known.The algorithm onsiders a pro�le U , a query Q, and a limit
K on the preferenes to be extrated from U , and generates



Algorithm Hierarhial-RPInput: query Q, a user pro�le U , KOutput: a preferene hierarhy GH (VH , EH )Begin1. VH :=∅ , EH :=∅2. L := {(pi,Pi)|pi ∈ U related to Q }3. While L<>∅ and K > 0 {3.1. remove head (p,P) from L3.2. If p is a seletion preferene {3.2.1. add p to VH ; K = K − 13.2.2. GH :=Hierarhial_Trav(GH, (p,P)) }3.3. Else {3.3.1. Foreah pj ∈ U omposeable with p {If (p ∧ pj) is not on�iting with Q {P'j=∅Foreah si ∈ Pj and s ∈ Padd si&s in P'jadd (p ∧ pj ,P'j) to L } } }4. output GH (VH , EH )Enda hierarhy of the top K related preferenes for Q. For thispurpose, it maintains a list L of seletion and join prefer-enes that are related to the query ordered in dereasingdegree of interest. Initially, this list ontains all preferenesstored in the pro�le that are related to the query. At eahround, the most signi�ant preferene is proessed based onits type. If it is a join preferene (ln: 3.3), the algorithmonsiders all stored preferenes that are omposeable withit to infer new preferenes that are related to the query.These are inserted into L. Reall that the degree of interestin an inferred preferene is a non-inreasing funtion of thedegrees of interest of its supporting preferenes (Set. 3.1).Therefore, all new preferenes will not be more signi�antthan the join preferene proessed. This property ensuresthat seletion preferenes are proessed in the right order ofdegree of interest (ln: 3.2), and thus the �nal output of thealgorithm will omprise the top K seletion preferenes re-lated to the query. Eah seletion preferene found is plaedin a hierarhy with the help of Hierarhial_Trav, whihperforms the Preferene-Hierarhy Integration (Set. 4.3).In addition, for eah preferene, the algorithm onstrutsthe set of root-to-leaf paths from its preferene tree. Eahpath is enoded as a string for the purposes of �nding rela-tionships between pairs of preferenes, as we have disussedin Set. 4.1. Building the set of paths for a preferene that isstored in the pro�le is straightforward. When the algorithmbuilds a new preferene by omposing a join preferene pwith another preferene pj (ln: 3.3.1), then the set of pathsfor the new preferene is generated by onatenating eahof the paths that map to pj with the path that maps to p(sine p is a join preferene, it maps to a single path.)
4.3 Preference-Hierarchy IntegrationWe study the integration of a preferene p into a prefer-ene hierarhy GH(VH , EH), given that p is de�ned on thesame relation as the preferenes in the hierarhy.Problem statement. Given a preferene p and a prefer-ene hierarhy GH(VH , EH), the result of their integrationis a new hierarhy G

′

H(V ′

H , E ′H), suh that:
(a) V′

H = VH ∪ {p},

(b) ∀pi ∈ VH with pi ⊑ p,∃e(pi, p) ∈ E ′H , and
(c) ∀pi ∈ VH with p ⊑ pi, ∃e(p, pi) ∈ E ′HAlgorithm Hierarhial_Trav. A hierarhy may ontainmultiple roots, i.e., preferenes that do not override others(Set. 3.2). Preferenes that are properly overridden (⊑) by

Algorithm Hierarhial_TravInput: a preferene hierarhy GH (VH , EH ), preferene (p,P)Output: a preferene hierarhy GH (VH , EH )Begin1. is_root=true2. RQ=∅3. While ∃ root preferene pr ∈ VH not examined {3.1. Relationship=Find_Relationship(p, pr)3.2. If Relationship = `p is overridden by pr' {3.2.1. reate edge e(p, pr) in EH3.2.2. unmark pr }3.3. If Relationship = `pr is overridden by p' {3.3.1. is_root=false3.3.2. If ∄ visited edge e(pr , ∗) in EH {reate edge e(pr, p) in EH }Else {Foreah not visited edge e(pr, pi) in EHadd (pr , pi) in RQadd (pr ,−) in RQinserted=false } } }3.4. While RQ <> ∅ {3.4.1. get head element (pr , pi) from RQ3.4.2. If pi=− and inserted=false {reate edge e(pr, p) in EHinserted=false }Else {Relationship=Find_Relationship(p,pi)If Relationship = `p is overridden by pi' {remove edge e(pr, pi) from EHreate edge e(pr , p) in EHreate edge e(p, pi) in EHinserted=true }If Relationship = `pi is overridden by p' {If ∄ visited edge e(pi, ∗) in EH {reate edge e(pi, p) in EHinserted=true }Else {Foreah not visited edge e(pi, pj) in EHadd (pi, pj) in RQadd (pi,−) in RQ } } } }4. If is_root=true4.1 { mark node p as a root }5. output GH(VH , EH)End
p, or vie versa, may be found at di�erent plaes in the hier-arhy, under the same or di�erent roots. To ount the above,the algorithm Hierarhial_Trav starts from eah rootand performs a breadth-�rst traversal of the orrespond-ing subgraph. In order to �nd the ⊑-relationships betweenthe new preferene and the preferenes in the hierarhy, itsearhes for the following patterns. Eah pattern identi�esone or more ⊑-relationship on the basis of <-relationships.1. (p < pr and pr is the root of a subgraph) =⇒ p⊑pr2. (pi < p and pi is a leaf of a subgraph or all its hildren areindependent with p) =⇒ pi⊑p3. (pi < p < pj and pi, pj are nodes of the hierarhy with

pi ⊑ pj) =⇒ pi ⊑ p ⊑ pjFor instane, the last pattern says that given two pref-erenes pi and pj in the hierarhy with pi being properlyoverridden by pj , if the new preferene p overrides pi andis overridden by pj , then the edge between pi and pj is re-plaed by two edges that essentially plae p between the twopreferenes. This also shows that as the algorithm Hierar-hial_Trav may be alled for a sequene of preferenes,relationships in the hierarhy are added, modi�ed or en-rihed under the light of eah new preferene onsidered.If a preferene is not involved in any relationships, then itbeomes a new root in the hierarhy. In priniple, the algo-rithm goes down a subgraph as far as possible from its rootand its traversal is guided by two pruning rules:



��	
���� �� ���� ������ ����	
���� �������� �������������� ���� ��������

���� ���� ���� ����	
���� ��������	
���� �� ��������������� �������� ����
��	
���� ������ �������������������������� ���� ��������������������� ���� ��������������������������� ���� ���������������������
��	
���� ������ ������������������������ ���� ����������������� ���� ������������ ���� ������

Figure 5: Examples of preferene integration.1. Given a node in the hierarhy, the subgraph starting fromthis node is not explored if the preferene mapping to thisnode, is independent from or overrides p.2. Subgraphs with di�erent roots may overlap. Any edge al-ready visited is not visited again beause the underlyingsubgraph is already explored and an be safely pruned.It is proved that Hierarhial_Trav is orret : it or-retly plaes a preferene in a hierarhy by establishing allexisting ⊑-relationships with the preferenes in the hierar-hy. (Proof omitted for spae onsiderations.)The algorithm integrates a preferene p, represented as aset of path strings P, into a preferene hierarhy GH(VH ,
EH). A queue RQ keeps edges in the same subgraph to beexamined next. These are edges that have not been visitedbefore and are added always in RQ's tail. Find_Relationshipis responsible for �nding the relationship of eah pair of pref-erenes examined (Set. 4.1). If p is overridden by a root pr(ln:3.2), then the property of being root is transferred from
pr to p. If p overrides pr, then the algorithm will searhwithin the underlying subgraph to put p in the right posi-tion w.r.t. its relationships to the other preferenes in thissubgraph. For this purpose, all edges from pr to its hil-dren are added in the queue (ln:3.3.2). The algorithm goesdown a subgraph as long as there is a node pi that is over-ridden by p (otherwise the underlying part of the subgraphgets pruned.) Then, this node's outgoing edges are addedin RQ along with a dummy edge (pi,−), whose role will beexplained shortly. If there are no outgoing edges, then p be-omes a hild of this node. If p is overridden by pi, then thealgorithm `breaks' the edge between pi and its predeessor,and reates two edges, one onneting the predeessor to pand one from p to pi. The algorithm keeps trak whetherall hildren of the same parent are independent from p; inthat ase, p will beome a new hild for this node. Thatis the role of the dummy edge, whih is inserted into RQalong with a node's atual outgoing edges. When a dummyedge (pr,−) is piked from RQ and p has been found in-dependent from pr's hildren (i.e., inserted=false), then p

Algorithm Exlude&CombineInput: query Q, a onstraint La preferene hierarhy GH (VH , EH )Output: personalized results RBegin1. R=∅2. Foreah pi in VH {2.1. Ri:=execute_query(Q ∧ pi) }3. p:=getnextNodeBottomUp(GH )4. While ∃p {4.1. Foreah e(pi, p) in EH {4.1.1. Ri:=Ri-R }4.2. p:=getnextNodeBottomUp(GH ) }5. While ∃ at least L non-empty result sets {6.1. remove from all result sets the head with the greatest tid6.2. If tid is found in at least L sets {6.2.1. doi(tid) := r({di|di=doi(tid ∈Ri), ∀Ri having tid})6.2.2. add (tid, doi(tid)) in R } }7. output REndbeomes pr's new hild. Finally, if p does not override anyother preferene (i.e., is_root=true), it beomes a root.To illustrate the above, Figure 5 presents the onstrutionof the preferene hierarhy depited in Figure 3. Preferenes
p1 to p6 are presented to the algorithm in that order. Eahblok in the �gure shows the steps required for inserting onepreferene in the hierarhy. Eah step is desribed by theontents of RQ and the status of the hierarhy, with nodesalready examined in olor. For instane, the �rst step forinserting p3 visits the root p1, whih is overridden by p3.Hene, its outgoing edges plus a dummy edge are plaed in
RQ. In the seond step, the edge going to p2 is obtainedfrom RQ and as a result p2 is visited. This one is indepen-dent from p3, hene the algorithm will not searh below thispreferene. Finally, pulling out the dummy edge < p1,− >marks the end of p1'hildren examination and sine p3 hasbeen found independent from all of them, it is onneted to
p1. p5 provides an example of how the algorithm moves un-til it establishes all relationships that p5 partiipates. The�rst relationship (i.e., with preferene p2) is found in theseond step, but the algorithm goes on exploring the sub-graphs starting from p2's siblings, and ends in disoveringthe seond relationship (i.e., with preferene p3). Finally,observe how p6 beomes a root.
4.4 Hierarchical Preference Query AnsweringGiven a query Q and a set of K related preferenes thatform a hierarhy, the last step of personalization is responsi-ble for returning query results that (a) satisfy at least someof the preferenes, i.e., L ∈ [1..K] preferenes, and (b) re-spet the preferene relationships. Relying diretly on SQLto apture both requirements an lead to extremely om-plex, time-onsuming queries. The disadvantages of suhapproahes to query personalization have been studied inthe literature (e.g., in [17℄), and hene are not disussed anyfurther here. We desribe two new approahes.Algorithm Exlude&Combine. The algorithm is builtupon the following intuition. We an exeute a number ofsimple queries. Eah query Qi is a ombination of the initialquery Q and a preferene pi(i = 1..K) in the urrent hierar-hy and returns a set Ri of results. In this way, as Figure 6illuminates, we an go from a hierarhy of preferenes (Fig.3) to a �hierarhy of result sets�, where nodes and edges havethe following meaning: eah node Ri represents the resultsthat satisfy preferene pi (without taking into onsideration



preferences Result sets������ � �! �"#�#� # #!#� #" �� $ �� $ � �� $ ����� $ �� $�!�!�"
Result sets w.r.t. the hierarchy

Figure 6: Resultsets w.r.t. a preferene hierarhy.any preferene relationships) and eah edge from a node Rito a node Rj implies a di�erene operation on the resultsets of the respetive nodes in order to �nd the results thatsatisfy pi but not pj (i.e., respeting the relationship of piand pj). For instane, taking into onsideration the edgefrom R3 to R4 in Figure 6, we understand that R3-R4 is the`atual' set of results for whih p3 should hold beause themore spei� p4 does not hold for them. Consequently, wean traverse the hierarhy graph following the edges in theiropposite diretion, i.e., starting from the leaves and goingup to the roots. For eah node onsidered, we remove itsresults from the result sets of its parent nodes in the hier-arhy. In the end, the tuples remaining in eah result setwill be those that satisfy the respetive preferene (i.e., thepreferene that initially generated this set) but not any pref-erene more spei� than that (right side of Fig. 6). Then,tuples that our in at least L sets are those that satisfy atleast L preferenes, and omprise the �nal answer.The algorithm Exlude&Combine implements this ideaand it is easily proved that it is orret, i.e.,: for a query
Q and a hierarhy GH(VH , EH) of related preferenes, itgenerates all the tuples that satisfy at least L preferenesw.r.t. the preferene relationships in GH (proof omitted forthe sake of spae.) The algorithm proeeds into two steps.(Exlude) First it generates the partial result sets, eah onesatisfying a single preferene. Then, it exludes from eahset all tuples that satisfy other, more spei�, preferenes.Eah set is ordered on the tuple id tid. (Combine) As longas there are L non-empty sets, the algorithm removes thegreatest tid. If this is found in at least L sets, then its degreeof interest doi(tid) is omputed from the preferenes orre-sponding to these sets and (tid, doi(t)) is added in the list Rof results, whih is kept ordered on the degree of interest.Algorithm Repliate&Di�use. This algorithm is basedon the idea of visualizing a preferene hierarhy as a systemof pipes with preferene nodes ating as safety valves: Whena tuple enters the system at some node (as a result of satis-fying the orresponding preferene), it rolls down the pipes(edges) starting from this node as long as there is a safetyvalve that an be �opened�. A safety valve will remain losedto a tuple, if the latter satis�es the preferene orrespondingto the valve, but the valve leads to no other preferenes thatan be satis�ed. Moreover, a tuple satisfying a prefereneat any level of a hierarhy satis�es its anestors too. Thismeans that any tuple satisfying at least one preferene in thehierarhy will �enter� the system from the hierarhy's rootsand roll down following edges from general to more spe-i� preferenes, until it is olleted by valves mapping tothe most spei� preferenes satis�ed by it. The algorithmRepliate&Diffuse implements this idea in three steps,repeated for eah root of a given hierarhy. It reates a setof queries, eah one ombining the user query Q with a rootpreferene, in order of inreasing seletivity. (Create) Foreah root, the algorithm �rst exeutes the respetive query

Algorithm Repliate&DiffuseInput: query Q, a onstraint La preferene hierarhy GH (VH , EH )Output: personalized results RBegin1. R=∅2. Foreah root pr ∈VH in order of seletivity {2.1. QP = ∅2.2. Rr :=execute_query(Q ∧ pr)2.3. Foreah tid ∈Rr {2.3.1. execute_query(Qr(tid))2.3.2. update all Rs, ∀ps following pr }2.4. Foreah root ps ∈ VH after and inlud. pr with Rs<>∅2.4.1. add eah outgoing edge e(ps, pi) ∈ EH in QP2.5. While QP <> ∅ {2.5.1. get head element e(pi, pj) from QP2.5.2. Foreah tid ∈RiTemp:=execute_query(Qj(tid))If tid is found in Tempremove tid from Riadd tid in Rj2.5.3. If Rj<>∅add eah outgoing edge e(pj , pk) ∈ EH in QP }2.6. While ∃ at least L non-empty result sets {2.6.1. remove from all sets the head with the greatest tid2.6.2. If tid is found in at least L sets {
doi(tid) := r({di|di=doi(tid ∈Ri), ∀Ri having tid)add (tid, doi(tid)) in R } } }3. output REnd %&%' %(%)%* %+,-./0. -.%12,/0.%&%' %(%)%* %+ 324456.%&%' %(%)%* %+Figure 7: Example of repliate-di�use steps.and reates the set of results that satisfy the root prefer-ene. (Repliate) For eah tuple in this set, it �nds whihroot preferenes following the urrent one in order of sele-tivity are also satis�ed, and reates a �replia� of the tupleon the orresponding nodes. (Di�use) Then, it �lets� tuplesroll down the hierarhy. In the end, all tuples are foundonly in nodes orresponding to the most spei�, indepen-dent preferenes they satisfy. Figure 7 illustrates these stepsfor the root p1. The algorithm retrieves Q's tuples that sat-isfy p1, i.e., three tuples depited as di�erent shapes. Next,it examines whether any of these satisfy p6. Assume thatthe triangle and square tuples do, so they are repliated onthis node. Then, all tuples move freely down the hierarhyuntil they get stopped by some valve. For instane, we �ndthat the square tuple satis�es the independent p4 and p6.The algorithm uses a query Q, a onstraint L, and a hi-erarhy GH(VH , EH) of related preferenes to generate per-sonalized results for Q. For eah root pr in the hierarhy,it exeutes a query Q ∧ pr. For eah tuple returned by thisquery with tuple id tid, the algorithm exeutes a param-eterized query Qr(tid), whih heks whether tid satis�esany other root preferene following pr in order of seletiv-ity (ln:2.3). In this way, tid is plaed in the result sets ofall root preferenes (after and inluding pr) that it satis-�es. Then, the algorithm traverses the hierarhy vertiallyin order to plae the tuples found in the roots in nodes or-responding to independent preferenes. A queue QP keepsedges to be examined next, initially ontaining the outgo-ing edges from those roots that have non-empty tuple sets



(ln:2.4). New, not visited, edges are added in QP 's tail.When an edge e(pi, pj) is piked from QP (ln:2.5.1), the al-gorithm exeutes a parameterized query Qj(tid) that hekswhih of the tuples from pi's tuple set satisfy pj . All tuplesfrom Ri that satisfy pj are moved to Rj . If Rj is non-empty,
pj 's outgoing edges, if exist, are added in QP . One all tu-ples have been distributed to the right nodes, the algorithmomputes the degree of interest of the tuples that satisfyat least L preferenes in a similar fashion with the algo-rithm Exlude&Combine, all tuple sets are emptied andthe whole proess is repeated for the next root preferene. Itis proved that the strategy that the algorithm follows leadsto orret answers, i.e., ontaining all tuples that satisfy atleast L preferenes w.r.t. the preferene relationships.
5. EXPERIMENTSThe novelty of our framework stems from allowing bothgeneri and spei� preferenes to be expliitly stated in apro�le with user-spei�, �freely� seleted, degrees of inter-est assigned to them and raising the assumption that prefer-enes an hold independently of eah other (�independeneassumption�). With this level of expressivity being temptingand found in many real-life senarios, two questions arise.
• �Simpliity or expressivity?� One question is whetherthe proposed model an have a higher impat than asimpler approah to preferene modeling or whether�simple is still beautiful�.
• �Expressivity or performane?� Personalization of aquery using a preferene hierarhy requires sophisti-ated algorithms. Is expressivity ahieved at the ex-pense of performane and to what extent? Does thistradeo� justify the use of this framework instead of asimpler one that keeps the �independene assumption�?These questions are entral in our experimental study.To address the former, we evaluated the preferene modelthrough a limited user study. For the latter, we performedan extensive experimental evaluation of our algorithms.

5.1 User StudyWe onduted an empirial evaluation of our approahwith 11 human subjets with or towards a diploma in om-puter siene. We used a real database ontaining informa-tion about movies from IMDB (www.imdb.om), and we builta web interfae that allowed users to manually reate theirpreferene pro�les and perform searhes. In order to gain in-sight as to the appropriateness of the proposed hierarhialpreferene model and its bene�ts for query personalizationompared to �at preferene representations, eah user pro-vided two pro�les in the system, one ontaining only inde-pendent preferenes (Flat_Profile) following the modelpresented in [16℄ and one following the model presented(Hier_Profile). An initial test for the appropriatenessof the hierarhial model took plae during the reation ofthese pro�les. Two interfaes were o�ered: one for provid-ing simple, independent preferenes, and an advaned onefor desribing more omplex preferenes. Users were askedto hoose one interfae for formulating their preferenes. 8of 11 people went with the advaned interfae, 2 startedwith the simple interfae and swithed to the advaned oneand 1 used only the simple interfae. The natural sele-tion of the advaned interfae was a �rst indiation in fa-vor of the Hier_Profile. Then, the users were asked toreate a seond �view� of their preferenes using the other

interfae. Hene, 10 people had to reate a Flat_Profileand 1 had to elaborate his preferenes in a Hier_Profile.The largest group of users omplained for having to �re-formulate� their preferenes as simpler ones, and expressedtheir early onerns regarding the system's ability to provideaurate personalization when it relies on these simple, par-tially orret, pro�les. These observations seem to indiatethat people tend to trust more a system that aptures theirpreferenes more aurately. Finally, the type of hierarhiesexpeted in pratie depends on the way user informationis (expliitly or impliitly) olleted. Also, di�erent peo-ple have di�erent types of preferenes, depending on theirbakground, their expetations et. In our experiments, the�full-�edged� hierarhies that ould be derived from the hier-arhial pro�les had an average depth of 3, and the averagenumber of preferenes stored per pro�le was 21.The following trial was onduted. All subjets were given4 preseleted queries plus 2 of their own hoie. Eah usersubmitted these queries three times in arbitrary order. Querieswere exeuted one without personalization (No_Pers),one using the user's Hier_Profile and one using theuser's Flat_Profile. The system randomly rotated theseoptions so that the user would not be aware of the queryproessing performed and hene evaluate query answers un-biased. As parameters for personalization, we hose K tobe half of the preferenes in a pro�le and L=1. We rankedresults based on the average degree of interest of the pref-erenes satis�ed and returned (up to) top-10 results. In thease of No_Pers, the �rst 10 results for the query werereturned. Users evaluated query answer using two soresmeasuring [16℄: (a) the di�ulty to �nd something interest-ing, if anything was found at all (degree of diffiulty)and (b) how satisfatory was the answer (answer sore)(both sores in the range [0, 10℄.) They were also asked tore-rank the tuples returned for eah query and put them inan order that they thought loser to their preferenes.Figures 8(a) and 8(b) present the average answer soreand degree of di�ulty, respetively, per query for eah ofthe three di�erent runs, i.e., No_Pers, Hier_Profileand Flat_Profile. The use of the hierarhial pro�lessubstantially redues the di�ulty to �nd interesting tupleswithin an answer and attrats distintively higher answersores. Using the �at pro�les improves answers (to a lesserdegree than Hier_Profile). However, we observe thatoften the improvement is marginal ompared to No_Persand the degree of di�ulty in many ases remains high. Fig-ure 8() illuminates the reasons behind this phenomenon.This �gure shows how lose the ordering of results using thehierarhial pro�le or the �at pro�le is to the user's order-ing of the same results for eah query. There are severalstandard methods for omparing two lists that are permu-tations. We used the normalized Kendall tau distane (τ )[14℄, whih lies in the interval [0,1℄ with 1 indiating maxi-mum disagreement. τFU ompares the list of results basedon the Flat_Profile and the same list when re-orderedby the user. τHU ompares the list of results returned usingHier_Profile and the same list re-ordered by the user.Figure 8() plots the average distanes for eah query. Weobserve that when the Flat_Profile was used, users oftendisagreed with the system-based ordering of results beauseit did not quite respet their real, more elaborate, prefer-enes. A loser look at the user-ordered results revealedthat often 1 to 3 tuples appeared out of order in the sys-



(a) Answer sore (b) Degree of di�ulty () Result rankingFigure 8: Impat of hierarhial preferenes and bene�ts of query personalization.tem answers due to the less aurate pro�les applied. Onthe other hand, more aurate, �ner-grained result rankingsould be ahieved with the hierarhial pro�les being morelose to user expetations. The auray ahieved also de-pends on the query. For example, for the query Q5, noneof the pro�les had adequate (or di�erent) information fordi�erentiating the output of this query. Finally, the �gurebrings up another issue: one would expet that sine the hi-erarhial pro�les aptured the exat user preferenes, τHUwould be 0 in all ases. Users still moved tuples in the re-sults for di�erent reasons (e.g., they knew some additionalinformation, suh as reviews for ertain movies, or while in-speting the results they were able to evaluate them basedon properties they had not aptured in their pro�les.)
5.2 Performance StudyOur approah for evaluating the performane of query per-sonalization using the hierarhial preferene model is thefollowing (spei� details are given per experiment.) We di-vide the query personalization proess in two main phases:a preferene onstrution phase, whih builds a hierarhy ofrelated preferenes for a query and a hierarhial preferenequery answering phase, whih generates personalized resultsusing this hierarhy. We study eah phase separately andidentify the ritial fators that a�et their performane be-fore disussing the overall performane of personalization.Two parameters play signi�ant roles:
• the number K of seletion preferenes manipulated
• the number E of ⊑-relationships existing among themWe test our algorithms and we ompare them with simpleralgorithms that operate on the assumption of independentpreferenes. We generate syntheti pro�les and hierarhiesdepending on the requirements of eah experiment, as we ex-plain in the following subsetions, and we build the indexesrequired for the proessing. Times are shown in ms.

5.2.1 Preference ConstructionThis phase involves two tasks: it extrats related prefer-enes from a pro�le and builds their hierarhy. We want toevaluate the performane of eah task. Hene, we measure:
• the total time required to extrat K seletion prefer-enes from a user pro�le - Timeextrat
• the total time required to �nd the relationships among

K preferenes and build their hierarhy, i.e., the totaltime required by the Preferene-Hierarhy Integrationand Relationship Finder modules - TimehierOur experiments (not inluded here due to spae on-straints) have shown that the time Timehier for proess-ing independent preferenes, as well as the extra time inTimeextrat for preparing the strutures required in prefer-ene omparisons, suh as representing preferenes as trees

of path strings, are negligible. This observation allows us toonsider that when having only independent preferenes, therequired exeution time for this phase is equal to the timeTimeextrat, and hene, the overhead from the proessingof hierarhial preferenes is re�eted in Timehier.Timeextrat depends on the number K of preferenes han-dled, as Figure 9(a) on�rms. However, this task does notsimply read preferenes stored in a pro�le but it also buildsnew preferenes from the stored ones. Depending on thedatabase shema and the number of seletion preferenesde�ned per relation, it may be able to retrieve K stored se-letion preferenes with a few database aesses or it mayneed to searh in relations further away from the initialquery relations and ompose preferenes out of many storedones. In order to gain insights into the impat of this phe-nomenon over Timeextrat, we generated the shema of ahypotheti database omprised of 100 relations, eah onehaving 3 attributes, one of whih possibly joining this rela-tion to another. Then, we generated two syntheti pro�ledatabases of 100 pro�les eah. Pro�les in both databasesontained 100 seletion preferenes eah but were generatedin a di�erent way: a pro�le in profDB1 was generated withthe onstraint that eah attribute of the database ould beused in at most one preferene, while a pro�le in profDB2was generated with the onstraint that eah attribute of thedatabase should be used in at most three seletion prefer-enes. Figure 9(a) shows Timeextrat as a funtion of K overall (100) pro�les of eah database. The di�erene in exeu-tion times an be interpreted as the algorithm's e�ort toollet K preferenes depending on how preferenes are dis-tributed over the database. When preferenes are sparselyplaed (e.g., in profDB1), it takes substantially more e�ortas K inreases beause it needs to searh more in a pro�le.In order to measure Timehier, we built a syntheti hier-arhy generator, whih takes as inputs the number K ofpreferenes, the number E of preferene relationships, andgenerates a hierarhy with these harateristis, i.e., on-taining E ⊑-relationships between K preferenes, generatedin a random way but w.r.t. ertain onstraints, e.g., de�n-ing at most one relationship per pair of preferenes. The setof preferenes and relationships of a hierarhy are fed intothe Relationship Finder, whih is now in position of helpingPreferene-Hierarhy Integration to build the same hierar-hy from srath. The latter is presented with the set ofpreferenes in random order and is allowed to pose to the Re-lationship Finder only questions regarding <-relationships.Figure 9(b) shows the exeution times as a funtion of Kassuming E=5. Eah point in the �gure is the average ofexeution times for 100 hierarhies with the same harater-istis. We observe that the time Timehier for the onstru-tion of a hierarhy is not greatly a�eted by K and it is



(a) Extration for di�erentdatabases (b) Extration & hierarhy integra-tion vs. K
() Extration & hierarhy integra-tion vs. E

(d) Query answering vs. K (e) Query answering vs. E (f) Overall performane vs. K

(g) Overall performane vs. E (h) Impat of expressivity vs. K (i) Impat of expressivity vs. EFigure 9: Times for personalizing queries using K preferenes organized in a hierarhy with E relationships.negligible ompared with Timeextrat. On the other hand,Figure 9() shows the exeution times as a funtion of E as-suming K=50. Timeextrat is onstant with E. We observethat as the preferene hierarhy gets more ompliated (i.e.,with E inreasing), Timehier deteriorates and �nally exeedsTimeextrat. Hene, we observe that eah task's ontribu-tion to the total exeution time for Preferene Construtionis di�erent: one task may dominate the other depending onthe parameter hanging. Ultimately, the overhead from on-struting a hierarhy for a query omes not from the numberof possibly omplex preferenes but from the number of re-lationships among them.
5.2.2 Hierarchical Preference Query AnsweringFor this phase, we want to evaluate the performane ofthe two algorithms proposed and the overhead ourred dueto the preferene hierarhies. Hene, we measure:
• the exeution time required by theExlude&Combinealgorithm - Timeexlude
• the exeution time required by theRepliate&Diffusealgorithm - Timediffuse
• the exeution time required by a Naïve algorithm thatworks with independent preferenes - TimesimpleWe builtNaïve as a simple version of Exlude&Combineby omitting the exlude step of the latter. Naïve exeutesthe set of queries that integrate one preferene in the ini-tial query, and ombines their results, w.r.t. the onstraintthat at least L preferenes are satis�ed, treating the pref-

erenes as independent. For this series of experiments, weused the movie database. We generated a set of 50 ran-dom queries representing hypotheti user queries, eah oneontaining one relation and one seletion on this relation.Note that experiments with other sets of queries with dif-ferent features, e.g., with one join and one seletion, showsimilar trends and are not disussed for the sake of spae.We also generated di�erent sets of hierarhies, eah set on-taining 50 hierarhies with K of preferenes and E edges.Eah hierarhy was meant to be ombined with one queryfrom the above set, and was generated as follows: we �rstomposed K independent seletion preferenes for our moviedatabase related to the query, with the onstraint that theyontained only one seletion (but any joins required.) Then,we ran an iterative proedure that randomly piked E pairsof preferenes and ombined them to omplex preferenes.In essene, at eah round, in a pair (pi, pj), pj was replaedby pi ∧ pj to form a more spei� preferene than pi.Exeution times for this phase depend on three parame-ters: K, E and L. Due to spae onstraints, we have seletedto show results for K and E, for whih we have observed themost signi�ant patterns. We only mention that all threetimes measured derease with L inreasing, beause theyproess fewer tuples, with Timediffuse being bene�ted themost, beause it proesses fewer queries.Figure 9(d) shows exeution times as a funtion of K with
E=5. Eah point in the �gure is the average of exeution



times for the 50 queries ombined with their respetive hier-arhies for the same K and E values. Exlude&Combinerequires more time than theNaïve approah. Sine they areboth built on the same philosophy, the overhead observedis due to the additional ations required to sort out resultsw.r.t. preferene relationships. The surprise omes fromthe time Timediffuse, whih is substantially lower even fromTimesimple. The �seret� of Repliate&Diffuse lies in itssystemati approah to proessing queries and results: ina nutshell, it exploits query seletivity, preferene relation-ships, and parameterized queries to exeute as few queries aspossible and proess a small number of tuples lose to thereal number of results returned. Figure 9(e) shows timesas a funtion of E with K=50. While Timeexlude de-teriorates when more preferene relationships need to beresolved, Timediffuse is atually bene�ted beause the to-tal number of queries exeuted is lower either due to fewerqueries of the type Q∧pi exeuted or to fewer parameterizedones. Hene, Repliate&Diffuse for generating resultsbased on preferene hierarhies exhibits a better behavior inontrast to a naïve approah that works with independentpreferenes beause it exploits preferene relationships.Overall, our results so far indiate that allowing omplexpreferenes in query personalization may make prefereneonstrution more expensive but bene�t query answering.How these phenomena shape the total exeution time?
5.2.3 Overall PerformanceTo omplete the piture regarding the e�ieny trade-o�s,we ompare the ontribution of all parts in the total proess-ing time of a query, and we plot the time Timeextrat re-quired to extrat K seletion preferenes, the time Timehierrequired to �nd the relationships among K preferenes andbuild the hierarhy and the time Timeanswer to generate thepersonalized results. For the latter, we onsider the timeTimediffuse, sine Repliate&Diffuse has been shown tobe the most e�ient. Figure 9(f) shows the exeution timesas a funtion of K for E=5 and Figure 9(g) shows the exeu-tion times as a funtion of E for K=50. When K inreasesthe exeution time of the hierarhial preferene query an-swering phase shapes the overall performane. On the otherhand, when E inreases, we witness the e�et of two oppo-site fores: dereasing time for generating results tends to�ompensate� to a ertain degree for the inrease in the timerequired for building the hierarhy. Thus, the whole person-alization proess behaves in a more balaned way. Finally,Figures 9(h) and 9(i) ompare the e�ieny of personaliza-tion using hierarhies with personalization using only sim-ple, independent preferenes. Simextrat and Simanswer arethe exeution times of the algorithms when extrating inde-pendent preferenes related to a query and when generatingthe personalized answer, respetively. Overall, taking ad-vantage of preferene relationships an help the algorithmsadapt more smoothly to hanges to K or E. Hene, perfor-mane is not sari�ed for expressivity but it an atuallybene�t from it.
6. CONCLUSIONS AND FUTURE WORKWe have presented a framework for the expliit formula-tion of preferenes at varying levels of granularity. We haveintrodued the onept of a preferene hierarhy, where eahnode refers to a sublass of the entities that its parent refersto, and whenever they both apply, more spei� preferenes

override more generi ones. We have provided algorithmsfor query personalization based on preferene hierarhies.Finally, we have evaluated the framework through a limiteduser study and performed an extensive experimental evalu-ation of our algorithms. The overall message is that moreaurate, �ner-grained result rankings an be ahieved withthe proposed hierarhial preferene model without tradingo� performane. In addition, the work presented here omeswith an interesting researh agenda of related issues, suh asthe e�ient management of omplex preferenes, e.g., by ex-ploiting preferene ommonalities and aess patterns in thesame or di�erent pro�les, designing an intuitive GUI that fa-ilitates de�ning and editing preferenes, and so forth. Ona parallel line of researh, we work on analyzing query logsfrom a portal in order to build ommunity pro�les repre-sented as hierarhies of preferenes.
7. REFERENCES[1℄ Y. S. A. Aho and J. D. Ullman. Equivalene of relationalexpressions. SIAM J. of Computing, 8(2):218�246, 1979.[2℄ R. Agrawal and E. Wimmers. A framework for expressingand ombining preferenes. In SIGMOD, 2000.[3℄ M. Balabanovi and Y. Shoham. Fab: Content-based,ollaborative reommendation. CACM, 40(3):66�72, 1997.[4℄ W.-T. Balke, U. Guntzer, and C. Lo�. User interationsupport for inremental re�nement of preferene-basedqueries. In IEEE RCIS, pages 511�523, 2007.[5℄ S. Borzsonyi, D. Kossmann, and K. Stoker. The skylineoperator. In ICDE, pages 421�430, 2001.[6℄ C. Boutilier, R. Brafman, H. Hoos, and D. Poole.Reasoning with onditional eteris paribus preferenestatements. In UAI, 2000.[7℄ C. Chekuri and A. Rajaraman. Conjuntive querontainment revisited. In ICDT, 1997.[8℄ J. Chomiki. Preferene formulas in relational queries.ACM TODS, 28(4):427�466, 2003.[9℄ D. Conte, P. Foggia, C. Sansone, and M. Vento. 30 years ofgraph mathing in pattern reognition. Int'l J. of PatternReognition and Arti�ial Intelligene, 18(3):265�298, 2004.[10℄ P. Fishburn. Preferene strutures and their numerialrepresentations. Theor. Comp. Si., 217:359�383, 1999.[11℄ S. Holland, M. Ester, and W. Kiessling. Preferene mining:A novel approah on mining user preferenes forpersonalized appliations. In PKDD, pages 204�216, 2003.[12℄ S. Holland and W. Kiessling. Situated preferenes andpreferene repositories for personalized databaseappliations. In ER, pages 511�523, 2004.[13℄ T. Joahims, D. Freitag, and T. Mithell. Webwather: atour guide for the world wide web. In IJCAI, 1997.[14℄ M. Kendall and J. D. Gibbons. Rank Correlation Methods.Edward Arnold, London, 1990.[15℄ W. Kiessling and W. Kostler. Foundations of preferenes indatabase systems. In VLDB, 2002.[16℄ G. Koutrika and Y. Ioannidis. Personalization of queries indatabase systems. In ICDE.[17℄ G. Koutrika and Y. Ioannidis. Personalized queries under ageneralized preferene model. In ICDE, 2005.[18℄ M. Laroix and P. Laveny. Preferenes: Putting moreknowledge into queries. In VLDB, pages 217�225, 1987.[19℄ D. Shasha, J. Wang, H. Shan, and K. Zhang. ATreeGrep:Approximate searhing in unordered trees. In SSDBM,pages 168�177, 2002.[20℄ K. Stefanidis, E. Pitoura, and P. Vassiliadis. Addingontext to preferenes. In ICDE, 2007.[21℄ Y. Tao, V. Hristidis, D. Papadias, andY. Papakonstantinou. Branh-and-bound proessing ofranked queries. Inf. Syst., 32(3):424�445, 2007.[22℄ M. J. Zaki. E�iently mining frequent trees in a forest. Inf.Syst., 17(8):1021 � 1035, 2005.


