
Personalizing Queries based on Networks of
Composite Preferences

Georgia Koutrika
Stanford University, USA
and
Yannis Ioannidis
University of Athens, Greece

People's preferences are expressed at varying levels of granularity and detail as a result of partial
or imperfect knowledge. One may have some preference for a general class of entities, e.g., liking
comedies, and another one for a �ne-grained, speci�c class, e.g., disliking recent thrillers with
Al Pacino that are intended for families. In this paper, we are interested in capturing such
complex, multi-granular preferences to personalize database queries and in studying their impact
on query results. In particular, we organize the collection of one's preferences in a preference
network (a directed acyclic graph), where each node refers to a subclass of the entities that its
parent refers to, and whenever they both apply, more speci�c preferences override more generic
ones. We study query personalization based on networks of preferences and provide e�cient
algorithms for identifying relevant preferences, modifying queries accordingly, and processing these
queries to obtain personalized answers. Finally, we present results of both synthetic and real-
user experiments, which (a) demonstrate the e�ciency of our algorithms, (b) provide insight
as to the appropriateness of the proposed preference model and (c) show the bene�ts of query
personalization based on composite preferences compared to simpler preference representations.
Categories and Subject Descriptors: H.1 [Models and principles]: ; H.2.8 [Database Applications]:

General Terms: Theory, Algorithms, Experimentation
Additional Key Words and Phrases: preference modeling, preference hierarchies, personalization

1. INTRODUCTION
Personalization has come about as a result of a long evolutionary process accelerated by the
rapid development of the World Wide Web and personal communication technologies. The
Web has enabled people with varied goals and characteristics to access an ever-growing
amount of information. The emergence of hand-held electronic devices, such as palmtops
and cellular phones, has increased the possibilities for information access from anywhere,
anytime. In this context, finding the “right information” remains a difficult problem ac-
centuated by the growing rate at which new information becomes available and the hetero-
geneity of people searching for information. To help users cope with information overload,
personalization methods, such as recommendations (e.g., [Balabanovic and Shoham 1997;
Das et al. 2007; Linden et al. 2003]) and query personalization (e.g., [Koutrika and Ioan-
nidis 2004; Liu et al. 2004; Pitkow et al. 2002]), have been proposed both by industry and
academia.

Query personalization is based on the observation that “different users may find differ-
ent answers relevant when searching” because of different preferences and goals [Pitkow
et al. 2002]. It generates personalized results by dynamically enhancing a query with re-

ACM Journal Name, Vol. V, No. N, August 2009, Pages 1–0??.

2 ·
lated preferences stored in a user profile and changing the order and possibly the size of
results. Which preferences are related to a request and how these affect the final answer
is dynamically determined based on the query, the profile and the personalization logic
applied. For instance, preferences for dramas are not related to a search for comedies and
preferences for actors may not be related to searches regarding movie directors. A person-
alized answer is always ranked according to the user’s preferences; depending on the query
personalization logic, it may contain all results that match the query or only a subset that
satisfies some of the related preferences.

In this paper, we are interested in modeling and using user preferences for query per-
sonalization in the context of databases. Our interest in databases stems from the fact that
databases comprise an important part of the (deep) Web, as witnessed by the prolifera-
tion of database-driven web sites (e.g., e-commerce and social bookmarking sites), where
different notions of user information are very important.

Modeling preferences and ranking query results based on preferences hide many chal-
lenges. Existing works have studied various aspects of these problems, such as qualitative
(e.g., [Chomicki 2003; Kiessling 2002]) vs. quantitative preference formulations (e.g.,
[Agrawal and Wimmers 2000; Koutrika and Ioannidis 2004]), different types of prefer-
ences (e.g., likes and dislikes [Kiessling 2002; Koutrika and Ioannidis 2005b]), context and
preference combinations for result ranking (e.g., [Holland and Kiessling 2004; Stefanidis
et al. 2007]), and so forth. In this paper, we study preference modeling at various levels of
granularity and result ranking that is aware of and respects the preference importance as
well as the natural relationships between multi-granular preferences.

Multi-granular, composite user preferences and ranking. In an ideal world, pref-
erences could exist for every object in a domain of interest, e.g., for every movie, for
every book, etc. Such elaborate preferences would yield a perfectly fine-grained ranking
of alternatives and highly personalized content. In another ideal world, one could express
preferences for general but well-defined, disjoint sets partitioning the objects of discourse.
Unfortunately, neither of these two extremes is found in practice often. User preferences
are typically incomplete and, furthermore, our knowledge of them is imperfect and partial.
Different factors may contribute to this phenomenon, as we explain below.

People tend to have a mix of general and specific preferences. This mix may indicate
lack of knowledge, lack of elaborate taste, or inability to identify those properties of ob-
jects that determine their preferences. For instance, one may have a general liking for
adventures but a finer-grained taste only for a subset of them, such as those directed by
S. Spielberg, which are characterized as favorites. On the other hand, one may have liked
some particular books but may be unable to identify a common characteristic that made
them attractive. Implicit collection of user preferences, for instance by observing user be-
havior in the system, suffers from similar problems. For instance, consider a system that
builds user profiles from user ratings for movies to provide personalized content. Suppose
that a user has given high ratings to all comedies she has seen so far. This knowledge
allows the system to conclude that the user likes comedies but does not suffice to differ-
entiate among comedies. Suppose that the user continues to interact with the system and
provides some low scores for comedies starring Jack Nicholson. Then, the system may
enrich its knowledge of this user’s preferences by discriminating against comedies starring
Jack Nicholson, which will be ranked lower than other comedies. On the other hand, what
the system knows about the user may not suffice for making generalizations. For instance,
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 3

assume that another user may have liked all comedies with Adam Sandler so far; this fact
does not necessarily imply, however, that the user should like all comedies or all movies
with Adam Sandler independently.

Paper focus and contribution. Given that general and specific preferences can peace-
fully coexist, in this paper, we study query personalization based on multi-granular pref-
erences. We represent preferences as degrees of interest in query conditions following a
similar philosophy to previous works [Koutrika and Ioannidis 2004; Stefanidis and Pitoura
2008]. The key difference from earlier work, however, is that we allow a profile to contain
any mix of general and specific preferences, where the latter are explicitly stated rather
than being implicitly calculated from the former.

For personalizing the results of a query, we adopt the query personalization framework
presented in earlier work [Koutrika and Ioannidis 2005b], which is based on the following
principles:

• A preference is related to a query if the former can be integrated into the latter based
on the syntactic characteristics of both.

• A personalized answer should satisfy at least l of the top k user preferences related to
a query, in order of decreasing degree of interest.

Parameters l and k provide a quantitative way to describe the desired answer. Parameter
k determines which of the related user preferences should be considered for application to
a particular query. It also provides a way to control the cost of query personalization, as
the fewer the preferences integrated into a query, the more efficient that query typically is.
Parameter l captures the minimum number of user criteria (i.e., preferences) that an answer
should meet, thereby offering a degree of flexibility to personalizing a query answer. We
discuss possible ways to specify parameters l and k in Section 4.1.

At query time, a mix of generic and specific preferences may be related to a query but
these may not be freely combinable to determine the ranking of the query results. For
example, a preference for comedies can be combined with a preference for actor Adam
Sandler but they are both overridden by a preference for ‘comedies with Adam Sandler’.
We formally define preference overriding relationships based on containment mappings.
Given a set of preferences related to a query, we automatically identify such relationships
and we organize them in a preference network (a directed acyclic graph). Each node in the
network refers to a subclass of the entities that its parent refers to. Whenever they both
apply, the more specific preference (e.g., a preference for comedies with Adam Sandler)
overrides the more generic one (e.g., a preference for comedies), whether the former rep-
resents a stronger or a weaker preference than the latter. To the best of our knowledge, this
is the first systematic study of multi-granular preferences and preference relationships in a
quantitative way.

Handling multi-granular preferences and preference relationships can lead to increased
complexity and, thus, higher execution times. One approach would be to build an appro-
priate set of queries that expand the initial query with combinations of preferences that
are allowable based on the preference relationships and return ranked results. For exam-
ple, we could execute a query that returns comedies without Adam Sandler and another
query that returns comedies with Adam Sandler. However, such queries may be quite com-
plex and time-consuming even for a few preferences with no relationships among them
[Koutrika and Ioannidis 2005a]. Organizing the preferences in a network helps preference
processing in the following ways. It helps keep track of the preference relationships and

ACM Journal Name, Vol. V, No. N, August 2009.

4 ·
the preferences to use for ranking each tuple. In addition, our personalized query answer-
ing algorithms can work directly on the network. They exploit the containment mappings
implied by the network to decide how to traverse the network, i.e., which preferences to
process and in what order resulting in reduced preference processing. Exploiting contain-
ment mappings for optimizing performance and in general exploiting the characteristics
of preferences (not only the characteristics of the queries) to optimize queries with prefer-
ences has not been considered in previous works so far.

We evaluate our framework and algorithms both for effectiveness and efficiency. We
study the effect that the increased expressive power and freedom offered by our framework
has to users through a user evaluation. Naturally, we raise the question of whether increased
expressiveness is achieved at the expense of performance and we answer it in the negative
through an appropriate experimental performance evaluation.

In summary, our contributions are the following:

• We introduce a framework for multi-granular preference modeling that is based on the
concept of networks of preferences, which allow the representation of both generic and
specific preferences and their relationships in a concise and flexible way (Section 3).

• We present a system architecture for query personalization based on preference net-
works (Section 4).

• We describe efficient algorithms that, given a query and a user profile, derive the top
k preferences that are related to the query, identify the relationships among them and
organize them in a network (Section 5).

• We use the preference network to support algorithms for computing the personalized
results of a query. Our algorithms process preferences in an efficient way by exploiting
the containment mappings captured in the network (Section 6).

•• We study the overall impact of the increased expressiveness allowed by our framework
through both synthetic and real-user experiments that evaluate the preference model
and the algorithms. We show that more accurate, finer-grained result rankings can be
achieved without losing in performance (Section 7).

2. RELATED WORK
Preference is a fundamental notion in applied mathematics [Fishburn 1999], philosophy
[Hansson 2001] and AI [Wellman and Doyle 1991]. In Databases, preferences have been
used for cooperative query answering, i.e., for providing answers with extra or alternative
information that may be meaningful to the user [Cuppens and Demolombe 1989; Gaaster-
land et al. 1992]. Recently, preferences have attracted renewed interest in the database
community. This has been triggered by the observation that the strict Boolean information
access model assumed in databases is some times restrictive. Query criteria are considered
as hard by default, and a non-empty answer is returned only if it satisfies all criteria. On
the contrary, in Information Retrieval, query criteria (terms) are considered soft and an
answer contains results ranked according to how well they match the query. Recent years
have witnessed the emergence of approaches aiming at the introduction of soft criteria or
preferences in database queries, resulting to preference queries, with some early efforts
going back to eighties [Lacroix and Lavency 1987]. These approaches are divided into the
following categories:
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 5

Qualitative approaches aim at a relative formulation of preferences, such as a user
prefers comedies over westerns. Such a formulation is natural for a human and results
in partial orders of results. Absolute specification of the significance of a preference is
not possible. Preferences between tuples in the answer to a query are specified directly,
using binary preference relations [Borzsonyi et al. 2001; Chomicki 2003; 2004; Kiessling
2002; Kiessling and Kostler 2002]. Two frameworks have been independently proposed in
which preference relations are defined using logical formulas [Chomicki 2003] or special
preference constructors [Kiessling 2002]. Preference relations are embedded into relational
query languages through a relational operator that selects from its input the set of the most
preferred tuples (winnow [Chomicki 2003], BMO [Kiessling 2002]).

Quantitative approaches aim at an absolute formulation of preferences, such as a user
likes comedies very much and westerns to a lesser degree. Such a formulation allows for
total ordering of results and the straightforward selection of those that match user prefer-
ences. Preferences in queries are specified indirectly using scoring functions that associate
a numeric score with every tuple of the query answer [Agrawal and Wimmers 2000; Hris-
tidis et al. 2001].

There is extensive work on executing and optimizing preference queries, in particular:

• skyline queries [Borzsonyi et al. 2001; Chomicki 2004; Kossmann et al. 2002; Papa-
dias et al. 2003; Pei et al. 2005], which are a special case of qualitative preference
queries. Semantic optimization techniques have been proposed [Chomicki 2004]. Sky-
line queries have been also studied over uncertain data (e.g., [Pei et al. 2007]), streams
(e.g., [Sarkas et al. 2008]) and in P2P environments (e.g., [Vlachou et al. 2007]).

• top-n queries [Bruno et al. 2002; Chang and Hwang 2002; Tao et al. 2007], i.e., queries
that retrieve the best n objects that minimize a specific function. Core rank-aware query
operators [Ilyas et al. 2004] and special structures, such as the P-Cube [Xin and Han
2008], have been proposed. Special cases of top-n queries have been studied, such as
spatial top-n queries [Yiu et al. 2007], which rank objects based on the qualities of
features in their spatial neighborhood.

Preference Applications. Research on preference queries was mainly inspired by the
need to adopt an IR-like answer model, where an answer to a query contains results ranked
according to how well they match the query, as opposed to the strict Boolean model tradi-
tionally assumed in databases. Independent of the answer model assumed, the answer of a
query may be the same for all users. Recently, the need to personalize answers to fit dif-
ferent user preferences has been acknowledged [Pitkow et al. 2002]. User preferences may
comprise an ephemeral or long-term profile and are used to tailor system answers. The
trend for personalized answers emerged in the IR community. Personalized IR systems
use different representations of preferences, such as bags of words [Joachims et al. 1997],
vectors of terms [Balabanovic and Shoham 1997] and concept hierarchies [Liu et al. 2004],
to provide information filtering, recommendations or personalized results.

The idea of using preferences to customize system answers has been transferred to
databases and applications of preferences include recommendations [Satzger et al. 2006],
query personalization [Koutrika and Ioannidis 2004; Koutrika and Ioannidis 2005a; Koutrika
and Ioannidis 2005b; Stefanidis et al. 2007] and collaborative query results [Koutrika
2006]. In addition to finding interesting results for a query, a related problem is finding
interesting attributes that characterize a set of results [Miah et al. 2008; Wong et al. 2007].
Preference modeling is central to all these approaches. For instance, Satzger et al. [2006]

ACM Journal Name, Vol. V, No. N, August 2009.

6 ·
adopt the preference model presented in [Kiessling 2002]. Koutrika [2006; 2005a; 2005b;
2004] and Stefanidis et al. [2007] represent preferences as query conditions associated with
a degree of interest for personalizing queries. Personalizing queries based on preferences
that hold only in specific contexts has been also studied [Agrawal et al. 2006; Holland and
Kiessling 2004; Stefanidis and Pitoura 2008; Stefanidis et al. 2007; van Bunningen et al.
2006].

Preference modeling is only one of the challenges in preference applications. Other is-
sues include dynamically identifying the preferences that are related to a request, selecting
the most appropriate ones for the specific query and context and determining their effect on
the final answer. The personalized answer may contain all results of the initial query ranked
based on all the preferences that are appropriate under a specific context [Stefanidis et al.
2007]. Alternatively, a personalized answer may be shaped following an l out of k person-
alization logic: a personalized answer should satisfy at least l out of k preferences from
the user profile that are related to the user query [Koutrika and Ioannidis 2005b; Koutrika
and Ioannidis 2004]. A different approach is to view query personalization as an optimiza-
tion problem using as parameters the query cost, the answer size and the interest in the
answer and dynamically decide the appropriate personalized answer optimizing w.r.t. one
parameter given constraints on the others [Koutrika and Ioannidis 2005a]. Acquiring user
preferences is another great challenge. In the context of IR and Databases, preferences are
either entered explicitly through a query interface or acquired at query time using a pref-
erence elicitation mechanism [Balke et al. 2007; Lee et al. 2008]. Long-term preferences
can be learnt based on user feedback as well. There are studies for learning the order of
objects that reflects user preferences [Cohen et al. 1998; Joachims 2002] or for learning
preferences in object attributes (such as preferences formulated as described in [Kiessling
2002]) [Holland et al. 2003; Jiang et al. 2008].

Comparison to related work. Our work is closer to [Koutrika and Ioannidis 2004;
Koutrika and Ioannidis 2005b; Stefanidis et al. 2007] in that we share the idea of represent-
ing preferences as query conditions associated with a degree of interest and that we adopt
the “l out of the top k preferences" query personalization logic. These efforts focus on
problems of preference representation, such as differentiating preferences based on their
intensity [Koutrika and Ioannidis 2005b] and studying context-dependencies [Stefanidis
et al. 2007]. However, they formulate structurally (and semantically) atomic preferences,
i.e., over a single attribute. For example, they allow to capture a preference for Woody
Allen and a preference for comedies but would not allow an explicit preference statement
for comedies with Woody Allen. For such complex preferences, they provide mechanisms
to derive them based on their simpler, constituent ones. However, a preference for come-
dies with Woody Allen may not be derivable in any natural way by a preference for come-
dies and a preference for Woody Allen. One may like both comedies and Woody Allen but
one may like or dislike comedies with Woody Allen. As a result, the personalized results
generated may not always accurately reflect the user preferences.

In this work, we are studying complex preferences and their implications. We allow
complex preferences to be explicitly stated (not be solely derivatives of other preferences)
and hence we can generate more accurate results. Furthermore, the central assumption
in existing approaches is that preferences hold independently of each other and hence they
can be freely combined for result ranking. Allowing preferences of different granularity
makes this somewhat unrealistic assumption no longer necessary. Having removed this
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 7

independence assumption, our framework allows the formulation of multi-granular prefer-
ences and captures preference relationships using preference networks, so that interrelated
preferences (e.g., one for comedies and one for comedies with Woody Allen) can be treated
appropriately (Section 3).

Our work is also different from existing approaches on executing and optimizing queries
with preferences, such as skyline and top-n preference queries, in several aspects. First,
we deal with different types of preferences than skylines. Skylines are formulated in the
context of multidimensional Euclidean spaces [Borzsonyi et al. 2001]. The attributes of
a relation are partitioned into DIFF, MAX and MIN attributes. Only tuples with identical
values of all DIFF attributes are comparable; among those, MAX attribute values are max-
imized and MIN values are minimized. Our approach is also different from top-n queries
(e.g., [Bruno et al. 2002; Tao et al. 2007]), where a single scoring function maps tuples to
scores. We describe preferences irrespective of the attribute domain by specifying condi-
tions that tuples must satisfy and assigning a degree of interest in them. Then, tuples are
ranked depending on which of the conditions they satisfy.

Given the above differences in problem formulation, our work addresses several new
challenges related to preference integration with queries: identifying preference relation-
ships, constructing a network of related preferences for a query, and using this network
to generate personalized answers that respect the semantics of query personalization and
the relationships between the preferences of the network. Given any two preferences, we
are able to determine their relationship based on conjunctive query containment mappings
[A. Aho and Ullman 1979; Chekuri and Rajaraman 1997]. Preference mappings are sim-
pler because they are defined on the basis of mappings of the atomic conditions in the
preferences considered. When generating personalized results, our algorithms take into
account the way preferences are related in the preference network to rank the output tu-
ples.

By enforcing preference independence, previous works may produce less accurate re-
sults, which may be still acceptable given that query personalization using independent
preferences is more straightforward and efficient. Clearly, there is a tradeoff between ef-
ficiency and expressivity in allowing multi-granular preferences. We experimentally com-
pare our algorithms with their simpler counterparts, which assume preference indepen-
dence, both for efficiency and answer accuracy, and we show that personalized answers
that capture user preferences more accurately are feasible without losing in efficiency.

3. FRAMEWORK
We consider that for every user there is a profile storing user preferences for personalizing
queries. We consider SPJ queries over relational databases. In this section, we present our
multi-granular preference model (Section 3.1). Then, we define preference relationships
and we introduce preference networks that capture a set of preferences and their relation-
ships (Section 3.2). In order to rank the results of a query, we need to “estimate” the
user’s preference in each tuple in the results taking into account the way preferences are
interrelated (Section 3.3).

3.1 Preference Formulation
A database comprises a set of relations. A relation R (denoted Ri when more than one
relation is implied) has a set A of attributes. We will use R.A j to refer to an attribute in A
or simply A j when R is understood.

ACM Journal Name, Vol. V, No. N, August 2009.

8 ·
MOVIE(mid,title,year,duration) GENRE(mid,genre)
CAST(mid,aid) ACTOR(aid,name)

DIRECTED(mid,did) DIRECTOR(did,name,nationality)

Fig. 1. A database

A preference for a set of tuples of a relation R in the database is expressed as a degree
of interest d ∈ [0,1] in a condition q that describes this set of tuples, and is denoted:

R : (q,d)

Depending on the value of d, we capture weaker or stronger preferences, with d =
0 indicating no interest in the qualifying tuples and d = 1 indicating extreme interest.
Depending on the form of condition q, we distinguish the following types of preferences:

—Atomic preference. If q is a single, atomic, selection or join condition, then a preference
for q is called atomic.

—Composite preference. If q is a conjunction of multiple atomic conditions, then a pref-
erence for q is called composite.

—Selection preference. If q is a conjunction of atomic selections involving a set A of
attributes and atomic joins transitively connecting these attributes to R on the database
graph, then a preference for q is called a selection preference.

—Join preference. If q is a conjunction of atomic join conditions representing the transitive
join of relations R and R j on the database graph, then a preference for q is called a join
preference.

A selection preference indicates a user’s preference for tuples from R that satisfy the
transitive selections in q. A join preference indicates the degree in which preferences for
tuples in R are influenced by preferences on related, i.e., joining, tuples. Since a preference
for a set of tuples is essentially captured as a preference for a condition that describes this
set, in what follows, we consider the terms “preference for tuples” and “preference for a
condition” equivalent and we use them interchangeably. We will use the symbol p (or pi,
if a set of preferences is discussed) to refer to a preference. We will use doi(p) to refer to
the degree of interest for a preference p or simply d if p is understood.

Example. To illustrate preferences, we consider the small database shown in Figure 1.
A user, named Julie, has preferences for movies captured in her profile, part of which is
depicted in Figure 2. For instance, she prefers movies released after 1990 (p1) and she likes
comedies (p2) followed by adventures (p3). She particularly likes family adventures (p4).
Preferences p1, p2 and p3 are atomic selection preferences expressed on different attribute
values. We also observe that preference p1 is stronger than p2 and p3. Preference p4 is a
composite selection preference. Furthermore, Julie considers the director of a movie more
important than the genre (p5 and p6). p5 is a composite join preference and p6 is an atomic
join preference. Her favorite director is Alfred Hitchcock (p7). She also likes sci-fi movies
by Steven Spielberg captured by the composite selection preference p8. 2

Preference Inference. From the preferences stored in a user profile, one can compose
implicit preferences, i.e., preferences that are not explicitly stored in the profile but can be
implied by those actually stored. Implicit preferences can be also derived by combining
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 9

(p1) MOVIE : MOVIE.year > 1990, 0.9

(p2) GENRE : GENRE.genre = “comedy”, 0.85

(p3) GENRE : GENRE.genre = “adventure”, 0.7

(p4) MOVIE : MOVIE.mid = GENRE1.mid and

GENRE1.genre = “family” and

MOVIE.mid = GENRE2.mid and

GENRE2.genre = “‘adventure” 0.8

(p5) MOVIE : MOVIE.mid = DIRECTED.mid and

DIRECTED.did = DIRECTOR.did, 1.0

(p6) MOVIE : MOVIE.mid = GENRE.mid, 0.7

(p7) DIRECTOR : DIRECTOR.name = “A.Hitchcock”, 0.7

(p8) MOVIE : MOVIE.mid = GENRE.mid and

GENRE.genre = “scifi” and

MOVIE.mid = DIRECTED.mid and

DIRECTED.did = DIRECTOR.did and

DIRECTOR.name = “S.Spielberg” 0.65

Fig. 2. Example preferences.

base and/or other implicit preferences. In the general case, implicit preferences can be
derived from composeable preferences.

Two preferences, pi and p j, are composeable, iff
• pi is a join preference, Ri : (qi,di), connecting Ri to a relation R j, and
• p j is a join or selection preference on R j, i.e., of the form R j : (q j,d j),

We now consider a set of preferences: R1 : (q1,d1), R2 : (q2,d2), ..., Rm : (qm,dm)
such that, ∀1≤ i < m, preferences Ri : (qi,di), Ri+1 : (qi+1,di+1) are composeable. Then,
we can compose the implicit preference R : (q,d), as follows:
• R≡ R1,
• q is the conjunction of the conditions q1,q2, ...,qm and
• d is some function of the degrees of interest of the base preferences, i.e., d = f (d1,d2, ...,dm).

Inference Assumption: The degree of interest in an implicit preference is a non-increasing
function f of the degrees of interest, d1,d2, ...,dm, of its constituent preferences, i.e.,:

f (d1,d2, ...,dm)≤min({d1,d2, ...,dm}) (1)

Example functions for computing the degree of interest in implicit preferences include
product and minimum. One advantage of product is that it is intuitive: the more the pref-
erences required to derive an implicit preference, the weaker this preference is.

Example. From the preferences stored in Julie’s profile (Figure 2), we can derive implicit
preferences. For instance, since Julie likes director Alfred Hitchcock (p7) and her movie
preferences are affected by who is the director of a movie (p5), we can assume that (in lack
of any other evidence) Julie would like to some extent movies directed by Alfred Hitchcock
by composing p5 and p7 into the following preference:

(p5,7) MOVIE : MOVIE.mid = DIRECTED.mid and

DIRECTED.did = DIRECTOR.did and

DIRECTOR.name = “A.Hitchcock”, 0.7

ACM Journal Name, Vol. V, No. N, August 2009.

10 · DIRECTORDIRECTEDMOVIEMOVIE GENRE1 genre1 familyGENRE2 genre2 adventure
(a)DIRECTED DIRECTORMOVIE
(b)MOVIE year 2008DIRECTED1 DIRECTOR1 Frenchnationality1 2000DIRECTED2 year2MOVIE2
(c)

Fig. 3. Example preference diagrams.

Similarly, we can derive an implicit preference for movies that are adventures by com-
bining preferences p3 and p6 into this preference:

(p6,3) MOVIE : MOVIE.mid = GENRE.mid and

GENRE.genre = “adventure”, 0.49

For the sake of illustration, in both preferences, we have taken the product of the partial
degrees of interest as the degree of interest in the derived preference. Of course, we could
have used any other non-increasing function, such as minimum.

We observe that both base selection preferences p3 and p7 have the same degree of in-
terest, i.e., 0.7. However, when combined with their composeable join preferences, the
degrees of interest in the resulting implicit preferences, p6,3 and p5,7, are different. It is
join preferences that determine to what extent preferences for tuples in one relation are in-
fluenced by preferences on related, i.e., joining, tuples. In this case, preference p5 indicates
that directors are more important for movies than genres (preference p6). Consequently,
preferences for directors will count more than preferences for genres when determining
movie preferences. 2

Preference diagram. A preference R : (q,d) can be graphically represented as a rooted
directed acyclic graph g(V,E). The preference diagram g(V,E) can be thought of as an
extension of the traditional schema graph and has the following characteristics. Nodes
in V map to relations, attributes, and values in q, and can be possibly replicated if the
corresponding relation, attribute or value is used more than once in q. Edges in E connect
(a) a relation node to another relation node, representing a join condition in q or (b) an
attribute to its container relation or (c) an attribute to a value, representing a selection in
q. Join edges are tagged with the corresponding joining attributes, and selection edges are
tagged with the operator used in the selection condition. R maps to the graph’s root. For
selection preferences, the leaves are always values.

A preference diagram can take either of two forms. It can contain one single path map-
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 11

ping to a join or selection preference or it can contain a set of paths connecting its root
to a set of values capturing a composite multi-value selection preference. As we will see
in Section 5.2, we can determine if there is an overriding relationship between a pair of
preferences by comparing their corresponding preference diagrams.

Example. Figure 3 illustrates some example preference diagrams. Figure 3(a) depicts
the preference diagram for p4. Figure 3(b) shows the preference diagram for p5, which
comprises a single path in contrast to the diagram for p4, which maps to a set of paths
from the root to the value nodes. For the sake of presentation, we do not show tags on the
edges, since for our small database they are understood. Repeated relations and attributes
are mapped to different nodes in the preference diagram. As a notational convention,
different occurrences of a relation (mapping to different nodes in the diagram) are written
as a concatenation of the relation name and a sequential number. To distinguish when an
attribute is used with a different occurrence of the same relation, the attribute takes the
relation’s sequential number in their representation. 2

Preference diagrams can “unfold” complex conditions, such as self-joins, and map them
to distinctive paths on the diagram. To illustrate this, consider the following, rather non-
typical, preference for movies released in 2008 and directed by French directors who have
also directed movies released in 2000. The respective preference diagram is shown in
Figure 3(c).

MOVIE : MOVIE.year = 2008 and

MOVIE.mid = DIRECTED1.mid and

DIRECTED1.did = DIRECTOR1.did and

DIRECTOR1.nationality = “French” and

DIRECTOR1.did = DIRECTED2.did and

DIRECTED2.mid = MOVIE2.mid and

MOVIE2.year = 2000

3.2 Preference Networks
Depending on the form of condition q, selection preferences can be defined on a relation
R at varying levels of granularity, ranging from quite generic (e.g., an atomic selection
on R) to very specific that combine multiple (atomic or implicit) selections. Intuitively,
one may view a selection preference as defining a class of entities with some particular
features. Given preferences R : (qi,di) and R : (q j,d j), qi and q j may define two different
classes of entities from R. For example, preferences p1 and p5,7 describe two independent
classes of movies: the class of movies released after 1990 and the class of movies directed
by Alfred Hitchcock. A movie can belong to both classes, hence, these preferences can
independently hold for the same movie. However, preference p4 explicitly refers to a
subclass of the entities that p6,3 refers to, i.e., adventures that are also family movies.
Consequently, whenever they both apply, the more specific one, i.e., the one defining the
subclass, overrides the more generic one. In what follows, we formally define preference
relationships: preference overriding and independence.

We first start with some observations. We can view a preference Ri : (qi,di) as a pos-
sible conjunctive query, which selects tuples from Ri that satisfy qi. On the basis of this
correspondence, we can define preference overriding through conjunctive query contain-
ment and containment mappings: Given two preferences, Ri : (qi,di) and R j : (q j,d j),

ACM Journal Name, Vol. V, No. N, August 2009.

12 ·

MOVIE GENRE genre adventure
MOVIE GENRE1 genre1 familyGENRE2 genre2 adventure

Fig. 4. Preference overriding.

we consider the corresponding conjunctive queries Qi and Q j. We say that pi is overridden
by p j if Q j is contained in Qi (Q j ⊆ Qi). Q j is contained in Qi iff there is a containment
mapping from Qi to Q j [A. Aho and Ullman 1979; Chekuri and Rajaraman 1997]. A con-
tainment mapping is defined on the basis of mapping the predicates involved in the two
queries. In what follows, we formally define preference overriding on the basis of how one
preference can be mapped to another:

Preference Relationships. Given a set P of selection preferences and two preferences
Ri : (qi,di) and R j : (q j,d j) (denoted pi and p j, respectively) from P, we distinguish the
following possible relationships between them:

—Preference Overriding. If pi can be mapped to p j, such that (a) Ri ≡ R j and (b) each
atomic condition in qi is mapped to an atomic condition in q j with the same relations and
attributes, then pi is overridden by p j (p j overrides pi), denoted pi @ p j. In this relation-
ship, p j is specific, pi is generic, and the following degree of interest correspondences
hold (denoted by ←):

doi(pi∧ p j)← doi(p j) (2)

doi(pi∧qp j)← doi(pi) (3)

i.e., the generic preference pi holds for a tuple only if the specific preference p j does not
hold for the same tuple.
Furthermore, if @p ∈ P such that pi @ p @ p j, i.e., p j is the most generic specialization
of pi in P, then pi is minimally overridden by p j, denoted pi v p j.

—Preference Independence. If Ri ≡ R j but pi 6@ p j and p j 6@ pi, then pi and p j are inde-
pendent and the following holds:

doi(pi∧ p j)← h(doi(pi),doi(p j)) (4)

i.e., both preferences can hold for the same tuple and the overall degree of interest is the
combination of their degrees of interest.

In other words, a preference pi is overridden by a preference p j if both of them are
expressed over the same relation and there is a “to-1” mapping of the atomic conditions
from one preference to the other. Figure 4 shows an example.

Preference Network. Given a set P of selection preferences over the same relation R, we
can map P to a network, where nodes map to preferences and edges represent preference
relationships. Each node in the network refers to a subclass of the entities that its parent
refers to, and whenever they both apply, the more specific preference overrides the more
generic one. More formally:
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 13(pa) MOVIE.year = 2000, (pb) MOVIE.year = 2000 and MOVIE.mid = GENRE.mid and GENRE .genre = “comedy”, 0.8(pc) MOVIE.year = 2000 and MOVIE.mid = CAST.mid and CAST .aid = ACTOR.aid and ACTOR.name = “Jack Nicholson”, 0.85(pd) MOVIE.year = 2000 and MOVIE.mid = CAST1.mid and CAST1.aid = ACTOR1.aid and ACTOR1.name =”Jack Nicholson” and MOVIE.mid = CAST2.mid and CAST2.aid = ACTOR2.aid and ACTOR 2.name = “Adam Sandler” , 0.7(pe) MOVIE.year = 2000 and MOVIE.mid=GENRE.mid and GENRE .genre = “comedy” and MOVIE.mid = CAST.mid and CAST .aid = ACTOR.aid and ACTOR .name = “Jack Nicholson”, 0.4(pf) MOVIE.mid = GENRE.mid and GENRE .genre = “adventure” , 0.95

papb pcpdpe
pf

0.75

Fig. 5. A set of preferences as a network.

A preference network GH (VH , EH) corresponding to a set of preferences P is a directed
acyclic graph. Nodes in VH map to preferences in P. Given two nodes vi and v j in VH ,
mapping to preferences pi, p j ∈ P, respectively, an edge in EH from vi to v j, e(vi,v j),
denotes that pi is minimally overridden by p j. When a preference is not overridden by any
other preference, it is called a leaf. When it does not override any preferences, it is called
a root.

Example. Figure 5 illustrates a preference network (on the left side) corresponding to
a set of preferences (on the right side). pa is a root, pd and pe are leafs, and p f is both
a root and a leaf. We observe that the degrees of interest at one level of the network are
not derived from the degrees of interest at the higher or lower levels of the network. For
instance, pb is a strong preference, whereas the more specific pe, which differentiates a
subset of tuples satisfying pb, is a weak preference.

If there is no directed path in the network that connects two preferences, then these
preferences are independent. For instance, pb, pd and p f are independent. 2

3.3 Combining Preferences
To compute the degree of interest in a particular tuple, we combine the degrees of interest
of the preferences that are known for this tuple. For instance, given that Julie likes movies
by S. Spielberg and action movies, we can compute a preference for the movie "Minority
Report" that satisfies both preferences.

Consider a set P of selection preferences for the same relation R. The degree of interest
in a tuple t ∈ R satisfying the preferences in P is performed with the help of a ranking
function h as follows:

doi(t) = doi(∧pi∈P′ pi) = h({doi(pi)|pi ∈ P′}) (5)

with P′ ⊆ P such that:
• ∀pi, p j ∈ P′, pi, p j are independent and
• ∀pi ∈ P′, @ p j ∈ P that is more specific from pi.
In other words, given a set of preferences that are satisfied by a tuple t, only the most

specific, independent preferences will determine the degree of interest in t.
There are many possible ranking functions that could be used, e.g., the maximum or the

average, depending on the application, the objects of interest, and so forth. For instance,
for choosing movies, ranking them based on the best preference they meet may suffice,
whereas when buying a car, where many of the car features matter, a function such as the
average of preferences may be more appropriate. A classification of ranking functions can

ACM Journal Name, Vol. V, No. N, August 2009.

14 ·

Preference
Construction

Query

User profiles

Personalized
Query

Answering

Database

ranked tuples

Preference-
Network

Integration

Relationship
Finder

k l

preferences
...

hierarchy

Fig. 6. System architecture.

be found in [Koutrika and Ioannidis 2005b].
Example. Consider the preferences shown in Figure 5 and a movie m that is a 2000

comedy with J. Nicholson. This movie, in principle, satisfies preferences pa, pb, pc and
pe. Taking into account their relationships, not all preferences count and the degree of
interest in this movie is computed as follows:

doi(m) = doi(pa∧ pb∧ pc∧ pe)
pa@pb= doi((pa∧ pb)∧ pc∧ pe)

Formula (2)
=

doi(pb∧ pc∧ pe)
pb@pe= doi((pb∧ pe)∧ pc)

Formula (2)
=

doi(pe∧ pc)
pc@pe= doi(pe) = 0.4

That is, since pe overrides pa, pb and pc, it alone determines the degree of interest in the
movie. 2

4. QUERY PERSONALIZATION
4.1 Query Personalization Logic
We consider that a set of preferences for a particular user are stored in the user profile and
query personalization is performed using this profile. In order to personalize the results
of a query, one has to identify the preferences from the user profile that are related to the
request and determine which of them are the most appropriate ones for the specific query
and how they will affect the final answer. Obviously, not all preferences are “valid” for all
queries. For instance, preferences for dramas are not related to a search for comedies and
preferences for actors may not be related to searches regarding movie directors. Moreover,
user preferences may have different effects on the results of a query. For instance, the
system may return all results that match a query ranked according to the user’s preferences
or only a subset of them that exactly match some preferences.

We consider that only selection (explicit or implicit) preferences related to and not in
conflict with the query are valid for modifying its results. We define preference relatedness
and conflicts on the basis of the syntactic characteristics of the query and the preferences
in the spirit of the work by Koutrika and Ioannidis [2004], extended to our multi-granular
preference model.
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 15

Related Preference. Preference R : (q,d) is related to query Q, if R is referred to in Q.

Conflicting Preference. Preference R : (q,d) is conflicting with a query Q, if (a) it is
related to the query; (b) when q is inserted into the original query qualification, replacing
any part of the latter that coincides with it, i.e., joins or selections on a common attribute,
the resulting query qualification and the original one contain at least one common implicit
selection; and (c) this selection is specified over a single-value attribute of the query results.

Example. Consider the set of preferences shown in Figure 5, which are all related to
movies, and a query about family movies released in 2008. Then, preferences pa-pe are
clearly conflicting with the query since they are about movies released in 2000. Preference
p f is valid because a movie can have more than one genre. 2

We adopt the query personalization framework introduced by Koutrika and Ioannidis
[2005b] for determining the effect of query personalization. Given a preference R : (q,d),
d shows the user interest in considering q for personalizing the results of a query involving
R. Hence, preferences that are related to and not conflicting with a query can be ordered
based on their degree of interest. We can describe the desired personalized answer with the
help of two parameters as follows:

A personalized answer for a query Q and a user profile U is the set of results of Q that
satisfy at least l of the top k user preferences related to Q and are ranked according to their
degree of interest.

Parameters k and l together offer a flexible mechanism to capture the desired level of
personalization for the results. For example, some special cases are:

• l = 0: the personalized answer contains all the results matching the query ranked based
on the k preferences.

• l= k: the personalized answer contains only the query results that satisfy all k prefer-
ences.

Parameters l and k can be specified in various ways. A user can explicitly put constraints
on the acceptable personalized answer by specifying desired values for l and k. The system
can also automatically determine the appropriate values.

Parameter k controls the desired extent of personalization, i.e., how many of the top user
preferences should participate in personalizing the query results. For instance, the user may
be willing to put no bound to k and see results that satisfy any of her related preferences
(i.e., k≡‘all’). On the other hand, if the results are too many or the user is very selective,
returning results that satisfy a small number k of preferences may be more appropriate.
For example, a user interested in dinner after work may want to see only restaurants that
satisfy her top 3 preferences.

Parameter l controls the desired forcefulness of personalization, i.e., how many of the k
live preferences should the query results be forced to simultaneously satisfy. For instance,
when buying a car a user may definitely want offers that meet all her preferences but, when
selecting a movie, she may be more flexible and may accept movie recommendations that
meet just two of her preferences.

Parameters k and l also provide a way for the system to control the size of the personal-
ized answer and the cost of query personalization and the system could automatically de-
termine appropriate values for them. The system may restrict k since considering a smaller
set of preferences leads to smaller answers and may be more efficient. For example, if the

ACM Journal Name, Vol. V, No. N, August 2009.

16 ·
user is browsing results through a cell phone, then the system may pick few preferences
from the user profile in order to provide results on the go. If the user uses a laptop and a
high-bandwidth connection, then a more flexible k or no bound for k may be selected. For
the case of k=l, determining automatically appropriate values of k has been studied in the
past [Koutrika and Ioannidis 2005a]. In that work, query personalization is formulated as
a constrained optimization problem, where constraints are expressed as an upper bound on
execution time of the final query and/or a lower or upper bound on its result size.

In a similar vein, the system may automatically determine the right values for l. For
instance, if the initial query is very general and returns many results, then a larger number
of preferences (i.e., l → k) may be applied on the query in order to produce an answer
of manageable size. Likewise, if the initial query is overly specific and returns very few
results, then a smaller number of simultaneous preferences (i.e., l → 0) may be chosen to
avoid an empty answer. The preference network may also serve as the basis for choosing
appropriate values of l. For instance, if the top preferences are highly correlated, i.e., they
form a chain, then the system should automatically determine that l can only be equal to 1
and return results that satisfy exactly one of the k preferences.

The system may also learn l and k for each user by mining user logs. These may contain
both explicit choices of l and k by users as well as other user actions, i.e., paying attention
to specific tuples, that offer implicit indications for the desirable values of these parame-
ters. For example, if the user always examines results that satisfy up to the top 3 of her
preferences and most of the times her final picks satisfy at least 2 of those preferences, then
we can provide more targeted results by using k=3 and l=2 in in future interactions of the
user with the system.

Finally, if personalization is an interactive process and the user can specify the values
of k and l, then there are potentially several cases where freely-selected values for k and l
may not make sense, such as: (a) the top k preferences are highly correlated, i.e., there are
fewer than k independent preferences, (b) there are not as many as k preferences related to
the current query or (c) there are no results that satisfy as many as l preferences. In these
cases, the system should guide the user in selecting meaningful values for k and l.
4.2 Overall Approach
Given a query Q, a user profile U and values for k and l, query personalization proceeds as
follows.

The top k preferences that are related to a query are extracted from the user profile.
Given that these may comprise a mix of generic and more specific preferences, we auto-
matically identify the relationships among them and organize them into a network that cap-
tures these relationships. Subsequently, we use the network to guide preference processing
for the computation and ranking of the personalized results. We propose two algorithms
for personalized query answering that apply different traversal strategies on the network,
exploit the containment mappings captured in it to process the preferences, and rank the
results accordingly.

The query personalization system we have implemented is shown in Figure 6. Prefer-
ence Construction extracts the top k preferences from the user profile that are related to
a query. Preference-Network Integration is responsible for organizing them in a network
that captures the relationships among them (if any). This module places each preference
found from the first module in the right “position” in the network. It collaborates with the
Relationship Finder that determines the relationship between a pair of preferences. Person-

ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 17

Algorithm pfc
Input: query Q, a user profile U , k
Output: a preference network GH (VH , EH)

Begin
1. VH := ∅ , EH := ∅
2. QP := {(pi, Pi) | pi ∈U related to Q }
3. While QP <>∅ and k> 0 {
3.1. remove head (p, P) from QP
3.2. If p is a selection preference {
3.2.1. add p to VH ; k := k−1
3.2.2. GH := pnet(GH , (p, P)) }
3.3. Else {
3.3.1. s := the unique path in P
3.3.2. Foreach p j ∈U composeable with p {

If (p∧ p j) is not conflicting with Q {
P′ := ∅
Foreach path si ∈ P j {

s′ := concatenate(s, si)
add s′ in P′ }

add (p∧ p j , P′) to QP } } } }
4. output GH (VH , EH)
End

Fig. 7. Building a network of top k preferences related to a query.

alized Query Answering takes into account the network of related preferences and returns
results that meet the initial query and at least l from the top k preferences.

Sections 5 and 6 describe in detail the above modules and the algorithms and techniques
employed in them.

5. PREFERENCE CONSTRUCTION
Algorithm pfc (preference-construction) returns the top k preferences from the user profile
U that are related to and not conflicting with a query Q. These preferences are organized
in a network, which is the output of the algorithm.

Preferences that are related to a given query include explicit preferences stored in the
user profile but also implicit ones that can be derived by composing stored preferences.
In order to select the top k preferences, the algorithm starts from the preferences that are
stored in the user profile and are related to the query and iteratively considers additional
preferences that are composeable with those already known to derive implicit ones that are
also related to the query. The set of preferences that are related to the query is kept ordered
in decreasing degree of interest. When k selection preferences have been inserted into the
network, the Inference Assumption guarantees that these are the top k preferences related
to the query. Hence, an exhaustive enumeration of all related preferences is avoided.

The algorithm is presented in Figure 7. QP is the set of preferences related to the query.
Initially, it contains all related preferences explicitly stored in the profile (ln:2). At each
round, the most significant preference is processed based on its type.

• A selection preference is added to the preference network that comprises the final out-
ACM Journal Name, Vol. V, No. N, August 2009.

18 ·
put of the algorithm (ln: 3.2). This process is performed by pnet, which will be
described in Section 5.1.

• A join preference is composed with other preferences (ln: 3.3). The algorithm consid-
ers all stored preferences that are composeable with it to infer new preferences that are
related to and not conflicting with the query. These are inserted into QP.

We will use the Inference Assumption to prove the correctness of the algorithm.
Theorem 1: The algorithm is correct, i.e., it finds the top k preferences related to a query.

Proof : It is sufficient to show that the algorithm produces preferences related to the
query Q in decreasing order of their degree of interest. It keeps an ordered list QP of
preferences. At each round, the head p of the queue (which has the highest degree of
interest) is picked and processed. If p is a selection preference with degree of interest d,
we will show that: (a) d is greater than (or equal to) the degree of interest of any other
selection preference in QP, and (b) d is greater than (or equal to) the degree of interest of
any other selection preference that has not been seen yet (i.e., not in QP).

Since QP is ordered, (a) is self-evident. For (b), we observe that any unseen selection
preference can be only derived from the join preferences currently in QP. Based on the
Inference Assumption, for each join preference p j in QP with degree of interest d j, any
selection preference that contains p j will have a degree of interest at most equal to d j.
Since it is d ≥ d j (due to (a)), (b) also holds. Consequently, we have shown that the
algorithm produces preferences related to the query Q in decreasing order of their degree
of interest. ¥

Example. Let us assume that we want to find the top 3 preferences related to a query
about movies given the user profile of Figure 2. (How the preference network is progres-
sively constructed is the focus of the next section.) Figure 8 shows the status of QP and
the top preferences found at the end of each round of the algorithm. Newly inserted prefer-
ences in both lists are shown instantly in different color. When three selection preferences
have been found, the algorithm stops. It is guaranteed that these are the top 3 preferences
related to a movie query. 2

In addition, for each preference p, algorithm pfc constructs its preference diagram. In
particular, it constructs the set P of all the root-to-leaf paths on the preference diagram.
Each path is encoded as a string for the purposes of finding relationships between pairs of
preferences, as we will discuss in Section 5.2. We distinguish two cases:

—If a preference is stored in a profile, then we have also stored all the root-to-leaf paths
on its preference diagram. This step is done off-line. The algorithm paths is sketched
in Figure 5 and is described below.

—If it is an implicit preference composed of other preferences: Algorithm pfc builds a
new preference by composing a join preference p with another preference p j (ln:3.3.2).
Then, the set P′ of paths for the new preference is generated by concatenating each of
the paths that map to p j (the set of paths for p j is P j) with the paths in P that maps to p.
Note that since p is a join preference, its set P of paths is singleton.

We now describe algorithm paths. The algorithm is used for off-line processing of the
preferences in a user profile. For a given preference p, it builds its preference diagram and
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 19

Top K Top K Top K Top K Top K Top K

QP QP QP QP QP QP
p5,7
p1p4
p6p8

p5,7p4
p6p8

p5,7p6p8 p6p8 p6,3
p8p6,2

p5p1p4p6p8
1.00.90.80.70.65

0.90.80.70.70.65
0.80.70.70.65

0.70.70.65 0.70.65
0.80.590.49

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6
p10.9 p1p40.80.9 p1p4

p5,70.80.9
0.7

p1p4
p5,70.80.9

0.7

Fig. 8. Example of composing top k related preferences.

generates the set P of root-to-leaf paths on the diagram, which are then stored in the user
profile. That pre-processing saves time for the on-line algorithm pfc. A path is represented
as a string (for comparison purposes as we will see in Section 5.2.)

The algorithm first constructs the preference diagram g(V,E) that corresponds to the
preference p (ln:2-3). The diagram edges are considered undirected at this stage. The
direction is determined when we construct the paths that lead from the root to the leaves.
The root is the relation for which the preference is defined and the leaves are the value
nodes (in case of selection preferences) or the most distant relation from the root (in case
of join preferences). The algorithm computes the set P of paths on the preference diagram
from the root relation to all leaf nodes performing a breadth-first traversal of the diagram
(ln:4).

5.1 Preference-Network Integration
Algorithm pfc builds the network of the top k preferences that are related to a query
proceeding in a step-wise manner: for each new top-k preference, it establishes its rela-
tionships with the preferences found in the previous rounds. In this section, we focus on
this problem, i.e., the integration of a preference p into a network GH (VH , EH) of related
preferences.

Problem statement. Given a preference p and a preference network GH (VH , EH), the
result of their integration is a new network G′

H (V ′H , E′H), such that:

• V ′H = VH ∪{p},
• ∀pi, p j ∈ V ′H with pi v p j,∃e(pi, p j) ∈ E′H .

In other words, the result of integrating a preference into a preference network is a net-
work, i.e., containing only minimally overriding relationships, that captures all such rela-
tionships that exist between the new preference and the preferences already in the network.

ACM Journal Name, Vol. V, No. N, August 2009.

20 ·
Algorithm paths
Input: a preference p
Output: its set of root-to-leaf paths P

Begin
1. V := ∅ , E := ∅
2. Foreach join condition qi in p between relations R and R′ {
2.1. If there is no node in V mapping to R { add R to V }
2.2. If there is no node in V mapping to R′ { add R′ to V }
2.3. add edge e(R,R′) in E }
3. Foreach selection condition qi in p on relation R {
3.1. If there is no node in V mapping to R { add R to V }
3.2. for the attribute A in qi: add A to V
3.3. for the value v in qi: add v to V
3.4. add edge e(R,A) in E
3.5. add edge e(A,v) in E }
4. P := BFS(V , E)
5. output P
End

Fig. 9. Finding the root-to-leaf paths on a preference diagram.

Algorithm pnet. Integrating a preference into a network comprises two problems: (a)
how to identify a v relationship that involves this preference and some other preference
in the network and (b) how to traverse the network in order to find all such relationships
between the preference under consideration and the preferences in the network.

In order to find the v-relationships between a new preference p and the preferences in a
network GH (VH , EH), algorithm pnet employs a set of patterns, each one identifying one
or more v-relationship using @-relationships.

• root pattern: (pr is a root in GH with p @ pr) =⇒ p v pr

• leaf pattern: (pi is a node in GH with pi @ p and pi is a leaf or all its children are
independent with p) =⇒ pi v p

• intermediate node pattern: (pi, p j are nodes in GH with pi @ p @ p j and pi v p j) =⇒
pi v p v p j

The first pattern shows the case of p taking over the role of root from an earlier root.
The second pattern shows the case of p becoming a leaf in the network. The last pattern
captures the case of p being added between two other nodes. Based on this pattern, given
two preferences pi and p j in the network with pi being minimally overridden by p j, if the
new preference p overrides pi and is overridden by p j, then the edge between pi and p j
is replaced by two edges that essentially place p between the two preferences. Clearly, as
algorithm pnet may be called for a sequence of preferences, relationships in the network
are added or replaced in light of each new preference considered. If a new preference
does not have any relationships with the other preferences, then it is independent from all
preferences currently in the network and becomes a new root-leaf in the network.

In order to establish all relationships between preference p and the preferences of the
network, all preferences and edges in the network need potentially to be examined. A
network may contain multiple roots, i.e., preferences that do not override others (Section
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 21

Algorithm pnet
Input: a preference network GH (VH , EH), preference p
Output: a preference network GH (VH , EH)

Begin
1. is_root := true
2. RQ := ∅
3. While ∃ root preference pr ∈ VH not examined {
3.1. Relationship := find_rel(p, pr)
3.2. If Relationship = ‘p is overridden by pr’ {
3.2.1. create edge e(p, pr) in EH
3.2.2. unmark pr }
3.3. If Relationship = ‘pr is overridden by p’ {
3.3.1. is_root := false
3.3.2. If @ visited edge e(pr,∗) in EH {

create edge e(pr, p) in EH }
Else {

Foreach not visited edge e(pr, pi) in EH
add (pr, pi) in RQ

add (pr,−) in RQ
inserted := false } } }

3.4. While RQ <>∅ {
3.4.1. get head element (ps, pi) from RQ
3.4.2. If pi = − and inserted = false {

create edge e(ps, p) in EH
inserted := true }

Else {
Relationship := find_rel(p, pi)
If Relationship = ‘p is overridden by pi’ {

remove edge e(ps, pi) from EH
create edge e(ps, p) in EH
create edge e(p, pi) in EH
inserted := true }

If Relationship = ‘pi is overridden by p’ {
If @ visited edge e(pi,∗) in EH {

create edge e(pi, p) in EH
inserted := true }

Else {
Foreach not visited edge e(pi, p j) in EH

add (pi, p j) in RQ
add (pi,−) in RQ } } } }

4. If is_root = true
4.1 { mark node p as a root }
5. output GH (VH , EH)
End

Fig. 10. Integrating a preference into a network.

3.2). Hence, preferences that are minimally overridden (v) by p, or vice versa, may be
found at different places in the network, under the same or different roots. Taking this into

ACM Journal Name, Vol. V, No. N, August 2009.

22 ·

Inserting pdpapb pc
RQ<pa, pc><pa, -><pa, pb>

papb pc
RQ<pa, pc><pa, ->

papb pcpdRQ<pa, ->
papb pcpdRQInserting pe papb pcpdpeRQ<pc, pd><pc, -><pa, ->

papb pcpdpeRQ<pa, pc><pa, ->
papb pcpdRQ<pa, pc><pa, -><pa, pb>

papb pcpdpeRQ<pc, pd><pc, ->

Inserting pcpapb
RQ<pa, pb><pa, -> RQ

papb
RQ

papb pc<pa, ->
Inserting pb

RQ
papb

Inserting pf
RQ

papb pcpdpe
pf

RQ
papb pcpdpe

papb pcpdpeRQ<pc, ->
Inserting pe

Fig. 11. Examples of preference-network integration.

account, algorithm pnet starts from each root and performs a breadth-first traversal of
the corresponding subgraph. To avoid an exhaustive traversal of the network, two pruning
rules are used:

• Subgraphs with different roots may overlap. If an edge is already visited then the
underlying subgraph is already explored and it can be safely pruned.

• The subgraph starting from any node in the network is not explored if the preference
mapping to this node is independent from or overrides p.

Based on the patterns presented, which capture all cases of p’s position w.r.t. other
preferences in the network and the traversal strategy, algorithm pnet correctly places a
preference in a network by establishing allv-relationships with the existing preferences in
the network and the result of the integration is a network.

The algorithm is presented in Figure 10. It integrates a preference p into a preference
network GH (VH , EH). A queue RQ keeps edges to be examined. These are edges that
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 23

have not been visited before. New edges are always added in RQ’s tail. find_rel is
responsible for finding the relationship of a pair of preferences and it will be described in
Section 5.2.

The algorithm examines the relationship of p with each root pr in the network (ln: 3.1).
It first tries the root pattern (ln: 3.2). If p is overridden by pr, then the property of being root
is transferred from pr to p. If p overrides pr, then the algorithm tries the leaf pattern (ln:
3.3.2): if there are no outgoing edges from pr, then p becomes a leaf under pr. Otherwise,
all edges from pr to its children are added in the queue along with a dummy edge (pr, −)
and the algorithm will investigate p’s position w.r.t. the other preferences in pr’s underlying
subgraph.

The algorithm goes down a subgraph as long as there is an edge e(ps, pi) in RQ (ln: 3.4).
If this is a dummy edge, e(ps, −), then the algorithm tries to apply the leaf pattern: if p has
been found independent from ps’s children (indicated by inserted = false), then p becomes
ps’s new child. Hence, a dummy edge is used in combination with the flag inserted to show
when p should become a new child of an intermediate node in the network. If e(ps, pi) is
an actual edge in the network, then:

• If p is overridden by pi (intermediate node pattern), then the algorithm ‘breaks’ the
edge between pi and its predecessor, and creates two edges, one connecting the pre-
decessor to p and one from p to pi. Having found the position of p in the subgraph,
inserted becomes true and no outgoing edges from pi are added in RQ, i.e., the sub-
graph under pi is pruned.

• If pi is overridden by p, then this node’s outgoing edges are added in RQ along with
a dummy edge (pi,−). If there are no outgoing edges, then p becomes pi’s child and
again inserted becomes true.

Finally, if p does not override any other preference (is_root = true), it becomes a root.

Example. Figure 11 presents the construction of the preference network depicted in
Figure 5. Preferences pa to p f are presented to the algorithm in that order. Each block
in the figure shows the steps required for inserting one preference in the network. Each
step is described by the contents of RQ and the status of the network, with nodes examined
already indicated with gray background. For instance, the first step for inserting pc visits
the root pa, which is overridden by pc. Hence, its outgoing edges plus a dummy edge
are placed in RQ. In the second step, the edge going to pb is obtained from RQ and as a
result pb is visited. This one is independent from pc, hence the algorithm will not search
below this preference. Finally, pulling out the dummy edge < pa,− > marks the end of
pa’children examination and since pc has been found independent from all of them, it is
connected to pa.

Preference pe provides an example of how the algorithm moves until it establishes all
relationships that pe participates. The first relationship (i.e., with preference pb) is found
in the second step, but the algorithm goes on exploring the subgraphs starting from pb’s
siblings, and ends in discovering the second relationship (i.e., with preference pc). Finally,
observe how p f becomes a root. 2

5.2 Relationship Finder
A preference is overridden by another preference if they are both defined over the same
relation and there is a mapping of the atomic conditions from one preference to the other

ACM Journal Name, Vol. V, No. N, August 2009.

24 ·
(Section 3.2). Preferences are represented as graphs. Our approach for identifying the
relationship between two selection preferences, p and p′, defined over the same relation
R, is the following. We consider the sets P and P′ of all root-to-leaf paths on their pref-
erence diagrams, respectively. |P| and |P′| are the sizes of these sets. For efficient path
counting and comparison, we adopt a string representation of a path (string encoding of
graphs in general has been proposed in [Zaki 2005].) To generate a path representation,
we concatenate the names of nodes in the path. For instance, the string representation of
pa in Figure 5, which comprises a single path, is “Myear2000”. Two paths si ∈ P and s′i ∈ P′
match iff their string representations are the same. Then, the relationship of p and p′ can
be determined by counting the number M of pairs (si,s′i) of matching paths. The following
cases are distinguished:

• If M = |P| it is p @ p′.
• If M = |P′| then p′ @ p.
• If none of the above holds, p′ and p are independent.

This process is captured in algorithm find_rel, shown in Figure 12. In case of se-
lections containing inequalities, the process is slightly different: it matches paths without
considering the selection values, and performs an additional check for the atomic selec-
tion conditions to determine their relationship. For presentation purposes, in subsequent
algorithms, we assume selections with equalities.

The correctness of the algorithm stems directly from the definitions of preference dia-
gram (Section 3.1) and preference overriding (Section 3.2). p is overridden by p′ if each
atomic condition in p is mapped to an atomic condition in p′ with the same relations and
attributes. Since selection preferences map to rooted graphs, where the root is a relation
and the leaves are always values, the problem of finding the relationship of two selection
preferences is translated to a mapping of the paths that connect the root to the leaves in the
two preference diagrams.

5.3 Preference Construction Analysis
Preference construction involves the following tasks: extraction of the top k preferences

from the user profile that are related to and not conflicting with a given query, identification
of the relationships that exist among these preferences, and construction of the network that
captures the preferences and their relationships.

Algorithm find_rel compares two preferences by comparing their respective sets of
paths. We store sets of paths in memory as hash tables. The algorithm starts with the
“smaller” preference, i.e., the one that has the fewest paths (ln:2, Figure 12) and it looks in
the hash table of the larger set of paths for matching paths. Due to the use of hash tables,
the matching cost per path is O(1). We consider that Po is the maximum number of paths
of any preference in the user profile. Hence, the cost for one invocation of find_rel
is O(Po). Naturally, we do not expect Po to take very large values. In the cases we have
examined, we found Po ranging from 1 to 4.

Algorithm pnet compares a preference to a set of preferences, for which their rela-
tionships are already known. It is called k times from pfc, once for each of the top k
preferences produced. When pnet examines the jth preference (j = 1 to k), it performs a
maximum of j−1 comparisons. Each comparison is performed with the help of algorithm
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 25

Algorithm find_rel
Input: preference p, preference p′

Output: relationship

Begin
1. read the sets P and P′ of root-to-leaf paths for p, p′, resp.
2. If |P| ≤ |P′| {relationship := match(P,P′) }

Else {relationship := match(P′, P) }
3. output <p relationship p′>
End

procedure match
Input: set P1, set P2
Output: relationship

Begin
1. M := 0; found := true
2. While found = true and ∃ unexamined path si ∈ P1 {
2.1 If si matches some s′i ∈ P2 {M := M+1 }
2.2 Else {found := false } }
3. If M = |P1|
3.1 If M = |P2| {relationship := ‘is the same to’ }
3.2 Else {relationship := ‘is overridden by’ }
4. Else {relationship := ‘is independent from’ }
4. output relationship
End

Fig. 12. Identifying preference relationships.

find_rel. Hence, it is O(j ∗Po).

Algorithm pfc extracts the top k preferences from a user profile. The algorithm first
extracts all related preferences to Q that are found in the profile U (ln:2). If relations are
not repeated in Q, then it should be O(|Q|+ |U |), where |Q| is the size of query Q in terms
of relations and |U | is the size of the profile in terms of preferences. Assuming the profile
is hashed on the relation for which each preference is defined, then for every query relation
the algorithm finds the list of related preferences in O(1) time and then inserts into QP all
preferences of that relation. Duplicate insertion can be avoided by maintaining a hash table
of all relations examined so far. Hence, there are |Q| probes in the two hash tables and at
most |U | preferences inserted into QP (if all preferences are related to the query). If we
use |UQ| to signify the subset of |U | with the related and not conflicting preferences then
the complexity is exactly O(|Q|+ |UQ|).

The main loop in pfc (ln:3) will be executed as many times as there are preferences
added to QP, which are bound by |U | again, or more precisely, by the size of the transitively
composeable subset of it |U∗

Q|. For k of these iterations, the cost of each one will be that
of ln: 3.2.1, which is O(1) and the cost of a call to pnet, which we have analyzed above.
For the remaining iterations, which should be O(|U∗

Q|) in number, making the reasonable
assumption that k< |U∗

Q|, the cost of each one is the sum of:
—the cost for testing for conflicts, which can be considered equal to O(Po). Recall that

Po is the maximum number of paths of any preference in the user profile. Since all
ACM Journal Name, Vol. V, No. N, August 2009.

26 ·
Algorithm exclude_combine
Input: query Q, a constraint l

a preference network GH (VH , EH)
Output: personalized results Results

Begin
1. Results := ∅
2. Foreach pi in VH {
2.1. Results(pi) := execute_query(Q∧ pi) }
3. If l = 0 {
3.1. Results(Q) := execute_query(Q)
3.2. l := 1
3.3. lcopy := 0 }
4. Foreach not visited e(pi, p) in EH {
4.1. Results(pi) := Results(pi)−Results(p)
4.2. mark e visited }
5. While at least l non-empty preference result sets exist {
5.1. remove the head with the highest tid among all result sets
5.2. If tid satisfies at least l preferences {
5.2.1. doi(tid) := h({di | di = doi(tid ∈ Results(pi)),

∀Results(pi) having tid})
5.2.2. add (tid, doi(tid)) in Results } }
6. If lcopy= 0 { Results := Results ∪ Results(Q) }
7. output Results
End

Fig. 13. Generating personalized results - exclude_combine.

implicit preferences are generated by composing a join preference (that is always a single
path) to another join or selection preference, Po is the maximum number of paths in any
preference, original or generated.

—the cost for generating the path combinations, which for each iteration is O(Po), since a
join preference from which we compose other preferences has only one path.

Hence, the total cost of pfc is O(|Q|+ |UQ|+k ∗cost(pnet) + |U∗
Q| ∗Po), which be-

comes O(|Q|+ |UQ|+k 2 ∗Po + |U∗
Q| ∗Po) and finally O(|Q|+(k 2 + |U∗

Q|)∗Po).

6. PERSONALIZED QUERY ANSWERING
Given a query Q and a set of k related preferences organized in a network, the last step of
personalization is responsible for returning all query results that (a) satisfy at least some
of the preferences, i.e., l∈ [0..k] preferences, (b) respect the preference relationships, and
(c) are ranked with the help of a ranking function h (Section 3.3). When l= 0 then all the
results of the initial query are returned whereas when l> 0, the personalized answer may
be smaller.

Relying directly on SQL to capture these semantics can lead to complex and time-
consuming queries. The disadvantages of such approaches to query personalization have
been studied in the literature [Koutrika and Ioannidis 2005b], and hence are not discussed
any further. Here, we describe two new approaches. These approaches work directly on
the preference network. They take into account the containment mappings captured in the
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 27papb pcpdpe
pf

Results(pb) Results(pc)
Results(pe) Results(pd)
Results(pa) Results(pf)

Fig. 14. Mapping a preference network to a network of result sets.

network in order to generate and rank results with respect to the preference relationships.
The first algorithm (exclude_combine) is based on the observation that an edge from
pi to p j in the preference network implies a difference operation Results(pi)−Results(p j)
on the respective result sets in order to find the results that satisfy pi but not p j (i.e., w.r.t.
the overriding relationship of pi and p j). Hence, instead of executing complex queries, it
executes a set of simpler queries that map to the preferences in the network and capture
these ‘local’ difference operations and combines the partial results to find those that satisfy
at least l preferences.

Algorithm exclude_combine. The algorithm executes a number of simple queries.
Each query Qi is a combination of the initial query Q and a preference pi(i = 1...k) in the
current network and returns the set Results(pi) of Q’s results that match pi. In this way, we
go from a network of preferences to a virtual “network of partial result sets”, where nodes
and edges have the following meaning:

• each node Results(pi) represents the results that satisfy preference pi (without taking
into consideration any preference relationships)

• for each edge from pi to p j in the preference network, there is an edge with the opposite
direction in the network of result sets, i.e., from node Results(p j) to node Results(pi),
which implies a difference operation Results(pi)−Results(p j) on the respective result
sets in order to find the results that satisfy pi but not p j (i.e., w.r.t. the overriding
relationship of pi and p j).

Then, for each edge from pi to p j, the algorithm removes from Results(pi) any results
found also in Results(p j). These difference operations are sufficient to ensure that the tu-
ples remaining in each result set will be those that satisfy the respective preference (i.e., the
preference that initially generated this set) but not any preference more specific than that.
The reason is that, by definition, Results(p j) contains all results corresponding to prefer-
ences more specific than p j. Hence by removing Results(p j)’s tuples from Results(pi), we
satisfy all preference relationships between pi and any preferences more specific than p j.
In the end, all tuples that occur in at least l sets are those that satisfy at least l preferences,
and comprise the final answer, which is ranked based on the preferences satisfied using a
specified ranking function h.

Algorithm exclude_combine, presented in Figure 13 implements this idea and for
a query Q and a network GH (VH , EH) of related preferences, it generates all the tuples
that satisfy at least l preferences w.r.t. the preference relationships in GH . The algorithm
proceeds as follows.

ACM Journal Name, Vol. V, No. N, August 2009.

28 · Round 1 Round 2

Round 3 Round 4
Results(pc) −Results(pe) Results(pb) −Results(pe) Results(pc) −Results(pe) −Results(pd)

Results(pa) Results(pf) Results(pa) Results(pf)

Results(pe) Results(pd) Results(pe) Results(pd)

Results(pe) Results(pd) Results(pe) Results(pd)
Results(pb) −Results(pe) Results(pc) −Results(pe) −Results(pd) Results(pb) −Results(pe) Results(pc) −Results(pe) −Results(pd)
Results(pa) −Results(pb) Results(pf) Results(pa) −Results(pb) −

− Results(pc) Results(pf)

Results(pb) −Results(pe)

Fig. 15. Excluding results that satisfy more specific preferences.

• (Exclude) It generates the partial result sets, each one satisfying a single preference (ln:
2). Each set is ordered on the tuple id tid. Then, it traverses the network and excludes
from each set all tuples that satisfy other, more specific, preferences (ln: 4).

• (Combine) As long as there are l non-empty sets, the algorithm removes the greatest tid.
If it satisfies at least l preferences, then its degree of interest doi(tid) is computed from
the preferences corresponding to these sets and (tid,doi(t)) is added in the Results,
which is kept ordered on the degree of interest (ln: 5).

When l = 0, all the results of the initial query are returned and are ranked based on the
preferences in the network. In that case, the algorithm executes query Q (ln: 3.1). The
tuples returned, Results(Q), have default degree equal to zero (since at this point, we do
not know if they satisfy any preferences.) The algorithm also sets l equal to 1 (ln: 3.2).
This makes sure that the combine step (ln: 5) will be executed only if there is at least one
preference satisfied, i.e., if there is at least one non-empty preference result set Results(pi).
Then, any results of Q that that have not been ranked during the combine step are added to
the results with degree of interest equal to 0 (ln: 6).

Example. We consider the preference network of Figure 5. The algorithm first generates
the partial result sets, each one satisfying a single preference and maps the preference
network to a network of results sets, as shown in Figure 14. On this network, we can for
instance observe that taking into consideration the edge from Results(pd) to Results(pc),
Results(pc)−Results(pd) is the ‘actual’ set of results for which pc should hold because
the more specific pd does not hold for them. Then, the algorithm proceeds as shown in
Figure 15 excluding from each set the non-qualifying tuples, i.e., those that satisfy a more
specific preference. 2

Algorithm exclude_combine executes all possible queries that map to the nodes of
the preference network. The second algorithm (replicate_diffuse) that we present
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 29

Algorithm replicate_diffuse
Input: query Q, a constraint l

a preference network GH (VH , EH)
Output: personalized results Results

Begin
1. Results := ∅
2. If l = 0 { Results(Q) := execute_query(Q) }
3. Foreach root prt ∈VH in order of selectivity {
3.1. Results(prt) := execute_query(Q∧ prt)
3.2. Foreach tid ∈Results(prt) with tid /∈ Results {
3.2.1. P := {prt}
3.2.2. execute_query(Qrt(tid))
3.2.3. add to P all roots satisfied by tid
3.2.4. While ∃p ∈ P with e(p, pi) ∈ EH {

overridden := false
Foreach e(p, pi) ∈ EH with pi /∈ P {

If execute_query(Qi(tid)) 6=∅ {
overridden := true
add pi in P } }

If overridden = true {
remove p from P } }

3.2.5. If there are at least l preferences in P {
doi(tid) := h(P)
add (tid,doi(tid)) in Results }

3.2.6. remove tid from Results(Q) } }
4. If l = 0 { Results := Results ∪ Results(Q) }
5. output Results
End

Fig. 16. Generating personalized results - replicate_diffuse.

below tries to minimize the number of such queries based on the following observation:
given a preference network, any tuple that satisfies any preference at any level in the net-
work satisfies (at least) one of the root preferences. Hence, we can execute only the queries
corresponding to the roots of the network and then perform ‘look-ups’ to find the specific
preferences satisfied by each retrieved tuple. In addition, the algorithm works with a hope-
fully smaller set of tuples than exclude_combine.

Algorithm replicate_diffuse. This algorithm is based on the idea of visualizing
a preference network as a system of pipes with preference nodes acting as safety valves.
When a tuple enters the system at some node (as a result of satisfying the corresponding
preference), it rolls down the pipes (edges) starting from this node as long as there is a
safety valve that can be “opened”. A safety valve will remain closed to a tuple, if the
latter satisfies the preference corresponding to the valve, but the valve leads to no other
preferences that can be satisfied. Moreover, a tuple satisfying a preference at any level
of a network satisfies its ancestors too. This means that any tuple satisfying at least one
preference in the network will “enter” the system from the network’s roots and roll down
following edges from general to more specific preferences, until it is collected by valves
mapping to the most specific preferences satisfied by it.

ACM Journal Name, Vol. V, No. N, August 2009.

30 ·

papb pcpdpe
pf papb pcpdpe

pf papb pcpdpe
pfcreate replicate diffuse

Fig. 17. Example of replicate-diffuse steps.

Algorithm replicate_diffuse implements this idea in three steps, repeated for each
root of a given network. It creates a set of queries, each one combining the user query Q
with a root preference, in order of increasing selectivity.

• (Create) For each root, the algorithm first executes the respective query and creates the
set of results that satisfy the root preference (ln: 3.1).

• (Replicate) For each tuple in this set, it finds which root preferences following the
current one in order of selectivity are also satisfied (ln: 3.2.2).

• (Diffuse) Then, it “lets” tuples satisfying the root preferences to roll down the network.
In the end, all tuples are found only in nodes corresponding to the most specific, inde-
pendent preferences they satisfy (ln: 3.2.4).

Example. Figure 17 illustrates these steps for the root pa. The algorithm retrieves Q’s
tuples that satisfy pa, i.e., three tuples depicted as different shapes. Next, it examines
whether any of these satisfy p f . Assume that the triangle and square tuples do. To illustrate
that, they are shown replicated on this node. Then, all tuples move freely down the network
until they get stopped by some valve. For instance, we find that the square tuple satisfies
the independent preferences pd and p f . 2

The algorithm uses a query Q, a constraint l, and a network GH (VH , EH) of related
preferences to generate personalized results for Q. For each root prt in the network, it
executes a query Q∧ prt . Each tuple (with id tid) returned by the query Q∧ prt is processed
only once.

For each tuple processed, the algorithm performs the following steps. It keeps a set P of
preferences satisfied by tid. Initially, this set contains prt . In order to find which other pref-
erences are satisfied by tid, the algorithm executes a parameterized query Qrt(tid), which
checks whether tid satisfies any other root preference following prt in order of selectivity
(ln: 3.2.2). This query returns zero or more occurrences of tid, depending on the number
of root preferences that are satisfied by tid. All root preferences satisfied by tid are placed
in P (ln: 3.2.3).

Then, for each preference p in P, the algorithm checks whether there are more specific
preferences that override p. For each edge e(p, pi), the algorithm executes a parameterized
query Qi(tid) that checks whether tid satisfies pi. If that happens, then pi is inserted in P.
A preference p stays in P if tid does not satisfy any more specific preference pi. Note that
when considering an edge e(p, pi), if pi is already in P, this means that Qi(tid) has been
executed in a previous step (that happens when pi overrides more than one preference.)
In that case, the algorithm does not execute Qi(tid) again. At the end of this process, P
contains the most specific, independent preferences satisfied by tid. If there are at least l
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 31

such preferences, then the degree of interest in tid is computed from P using a function h
and tid is inserted in the final results (ln:3.2.5).

When l = 0, all the results of the initial query are returned and are ranked based on
the preferences in the network. In that case, the algorithm executes query Q (ln: 2). The
tuples returned, Results(Q), have default degree equal to zero as explained for algorithm
exclude_combine. Any tuple id tid that is found to satisfy some preference in the
network gets removed from Results(Q) (ln: 3.2.6). At the end, any remaining results in
Results(Q) are added to the results with degree of interest equal to 0 (ln: 4).

6.1 Personalized Query Answering Analysis
We can decompose algorithm exclude_combine into a number of operations, some

of which involve processing of arbitrary queries (ln:2 and 3), whose cost we cannot esti-
mate analytically.

(a) To generate the partial results sets (ln:2), the algorithm executes a query Q∧ pi, for
each preference pi, i = 1...k. In the case of non-personalizing the output tuples (ln:3), it
also executes the original query Q on its own (for ease of reference, we may denote it as
Q∧ p0, where p0 = ‘true’). The total cost of these operations is:

k

∑
i=0

cost(Q∧ pi)

(b) After the results are gathered in main-memory hash tables, the algorithm executes r
difference operations (ln:4), where r is the number of preference relationships, i.e., the
edges in the network. Assuming that each result set contains at most n tuples, then each
such difference can be executed in O(n) time, for a total of O(r*n) time.

(c) Finally, the algorithm reads the in-memory results to output those satisfying at least
l preferences. Each iteration of the loop (ln:5) requires O(k) time: (ln:5.1) examines each
one of the k result sets to remove the highest-tid common head, while (ln:5.2) uses at most
k doi’s to compute the overall doi of the tid examined. In the worst case, the loop of (ln:5)
will consume all tuples in the results, of which there are at most k*n, and will do that
by removing the smallest possible number of them each time, which is equal to l, this way
maximizing the number of iterations required. Hence, the worst-case total time required by
this operation is O(k2/l∗n). Taking all the above into account, the total cost of algorithm
exclude_combine, is

k

∑
i=0

cost(Q∧ pi)+O(r ∗n+ k2/l ∗n).

Similarly to the above analysis, for algorithm replicate_diffuse, we consider the
following:

Let v and r be the number of nodes and edges in the network, respectively.
(a) For each root prt (ln:3.1), the algorithm executes a query Q∧ prt . In the case of non-
personalizing the output tuples (ln:2), the algorithm executes the original query Q on its
own as well (again, for ease of reference in this case, let us assume that a preference

ACM Journal Name, Vol. V, No. N, August 2009.

32 ·
p = ‘true’ is a root as well). The total cost of all these query executions is:

∑
prt is root

cost(Q∧ prt)

(b) For each tuple returned from the queries above, the algorithm first executes a parame-
terized query Qrt(tid) (ln: 3.2.2) and then parameterized queries Qi(tid) (within ln: 3.2.4)
to check which other (less selective) root preferences or other preferences down the net-
work, respectively, the tuple satisfies. Note that Qrt(tid) is equivalent to running a Qi(tid)
for each of the roots that follow the one being considered in the main loop of the algorithm.
Each tid undergoes this process only once and is used as a parameter for each query only
once as well. Hence, assuming there are m tuples in all root query results together and that
the cost of each parameterized query remains the same independent of the tid used as a
parameter, in the worst case (when all tuples satisfy all preference queries), the total cost
of these operations is:

m∗
k

∑
i=1

cost(Qi(.))

(c) Besides query executions, the main-memory operations of the algorithm are inside
the loop of (ln: 3.2). For each one of its m iterations, they are performed either once
for every one of the r edges of the network (ln: 3.2.4 - top) or once for every one of
the v preference-nodes of the network (ln: 3.2.4 - inner foreach-loop). In addition, each
iteration uses again at most k degrees of interest to compute the overall degree of interest of
the tid examined (ln:3.2.5). Hence, the worst-case total time required by these operations
is O(m∗ (r + v+ k)).

As with algorithm exclude_combine, taking all the above into account, the total
cost of algorithm replicate_diffuse is

∑
prt is root

cost(Q∧ prt)+m∗
k

∑
i=1

cost(Qi(.))+O(m∗ (r + v+ k)).

7. EXPERIMENTS
The novelty of our framework stems from allowing both generic and specific preferences
to be explicitly stated in a profile with user-specific, “freely” selected, degrees of interest
assigned to them. Earlier approaches (e.g., [Koutrika and Ioannidis 2004; Stefanidis et al.
2007]) capture only simple preferences, i.e., preferences on single attributes, and rely on
special mechanisms to derive more complex preferences from simpler ones. Two questions
naturally arise:

• “Simplicity or expressiveness?” One question is whether the proposed model can have
a higher impact than an approach to preference modeling that enables capturing simple
preferences (i.e., in the form of general rules that hold for a user) and derive more com-
plex user preferences using appropriate preference composition and inference mecha-
nisms. One can argue that “simple is beautiful”. We will test this argument through a
user study (Section 7.1).

• “Expressiveness or performance?” When a profile contains a mix of generic and more
specific preferences, preferences cannot be freely combined. We need sophisticated

ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 33

algorithms in order to find which preferences can be combined and how to generate and
rank the results of a query taking into account relationships among a set of preferences.
Is expressiveness achieved at the expense of performance and to what extent? If there is
a tradeoff, does it justify the use of this framework instead of a simpler one that assumes
independent preferences? We will investigate these questions through an extensive
experimental evaluation of our algorithms (Section 7.2).

7.1 User Study
Existing approaches (e.g., [?]), formulate structurally (and semantically) simple prefer-
ences, i.e., over a single attribute, and they provide mechanisms to derive complex pref-
erences based on their simpler, constituent ones. We believe that mechanisms for com-
position of complex preferences cannot always capture the real complex user preferences.
We need to enable complex preferences to be explicitly stated (not be solely derivatives of
other preferences). The objective of the user study is to highlight this problem of accuracy
in existing approaches and compare them to our approach.

We conducted an empirical evaluation of our approach with 11 human subjects with or
towards a diploma in computer science. We built a database containing information about
over 480,000 movie titles that we obtained from IMDB (http://www.imdb.com/interfaces).
Our schema contains 22 relations storing information about movies, actors, directors, rat-
ings, writers, and so forth.

We built a web interface that allowed users to manually create their preference profiles
and perform searches. In order to gain insight as to the appropriateness of the proposed
preference model and its benefits for query personalization compared to flat preference rep-
resentations, each user manually provided two profiles in the system, one containing only
independent preferences (flat_profile) following the model presented in [Koutrika
and Ioannidis 2004] and a more elaborate one following the model presented in this paper
(net_profile). Figure 19 shows part of one of the profiles that we have in the system.

An initial test for the appropriateness of our model took place during the creation of these
profiles. We explained to the users that they had two options: either describing complex
preferences (such as a preference for comedies with Woody Allen) or simple (independent)
preferences (such as a preference for comedies and a preference for Woody Allen). In the
latter case, we will infer their more complex preferences based on what we know about
the people’s generic preferences. We will see how well we can do and whether the model
we have presented in this paper, which allows expressing explicitly complex preferences,
is more beneficial.

8 out of 11 people started with the first option, 2 started with simple preferences and
decided that they had more complex preferences to express and only 1 formulated simple
preferences. Once done with their profile (in either form), all users were asked to create
a second “view” of their preferences either more elaborate or more generic depending on
what was their first profile. Hence, 10 people had to create a flat_profile and 1 had
to elaborate his preferences in a net_profile. The largest group of users complained
for “re-formulating” their preferences as simpler ones expressing their concerns regarding
the system’s ability to provide accurate personalization when it relies on simple, partially
correct, profiles. These observations seem to indicate that people tend to trust more a
system that captures their preferences more accurately.

There is of course a psychological dimension in how people perceive preferences and
personalization. For example, in our case, the user that had initially simple preferences

ACM Journal Name, Vol. V, No. N, August 2009.

34 ·
explained that he would be probably content with a simple personalization approach sep-
arating the chaff from the seed. In addition, the type of networks expected in practice
depends on the way user information is (explicitly or implicitly) collected. Different peo-
ple have different types of preferences, depending on their background, their expectations
etc. In our experiments, “full-fledged” networks that could be derived from the complex
profiles had an average depth of 3, and the average number of preferences stored per profile
was 21.

We have built a search interface over the database that allows a user to search for movies,
actors or directors based on different criteria, such as the genre and the year of a movie. We
discussed with the users about typical searches they would perform over a movie database
and we made a pool of possible searches, from which we picked the 4 most popular queries
among users. These included a search for short movies (Q1), a search for movies based on
the movie genre (Q2), and a search for favorite directors after 2000 (Q3). All subjects were
asked to perform these 4 preselected searches plus 2 of their own choice.

In order to evaluate the effectiveness of our approach, we had to take into account several
issues. We could not use traditional metrics, such as precision and recall. One reason is that
we do not have complete information regarding which of the (possibly too many) results
of a search are liked by a user. Even if we showed all results returned for a particular,
non-personalized, search, users are not willing to browse more than one page of results. In
addition, we wanted to get insights into how personalized search results compare to non-
personalized results. However, there is no single uniform way to compare them all together.
For example, in the case of the unranked results, all results are relevant to the query (by
definition of the database query model) and there is no way to distinguish between them.
On the other hand, when comparing ranked lists we are actually interested in how the
results are ranked.

Taking all these issues into account, we proceed in two steps. First, we asked users to
give scores to query answers as a whole, where an answer would contain at most 10 re-
sults, in order to have an overall picture of how personalized and non-personalized answers
compare overall. Then, we focused on the most interesting part of the study which is how
effective the rankings are based on different user representations.

For the first part of the evaluation, each user submitted these queries three times in
arbitrary order. Queries were executed once without personalization (no_pers), once
using the user’s net_profile and once using the user’s flat_profile. The system
randomly rotated these options so that the user would not be aware of the query processing
performed and hence make an unbiased evaluation of query answers. As default parameters
for personalization, we chose k to be half of the preferences in a user’s profile and l=1.
We ranked results based on the average degree of interest of the preferences satisfied and
returned (up to) top-10 results. In the case of no_pers, the first 10 results for the query
were returned. Users evaluated query answer using two scores measuring [Koutrika and
Ioannidis 2004]: (a) the difficulty to find something interesting, if anything was found at all
(degree of difficulty) and (b) how satisfactory was the answer (answer score)
(both scores in the range [0, 10].)

Figures 18(a) and 18(b) present the average answer score and degree of difficulty, re-
spectively, per query for each of the three different runs, i.e., no_pers, net_profile
and flat_profile. The use of the complex profiles substantially reduces the difficulty
to find interesting tuples within an answer and attracts distinctively higher answer scores.
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 35

(a) Answer score

(b) Degree of difficulty

(c) Result ranking

Fig. 18. Impact of composite preferences and benefits of query personalization.

ACM Journal Name, Vol. V, No. N, August 2009.

36 ·
Using the flat profiles improves answers (to a lesser degree than net_profile). How-
ever, we observe that often the improvement is marginal compared to no_pers and the
degree of difficulty in many cases remains high.

During the study, users were also asked to re-rank the tuples returned for each query and
put them in an order that they thought closer to their preferences. For the second part of
the study, we compare the ordering of results using the complex profile or the flat profile to
the user’s ordering of the same results for each query. There are several standard methods
for comparing two lists that are permutations, such as Kendall’s tau distance (τ) [Fagin
et al. 2003; Kendall and Gibbons 1990]. We used the normalized Kendall tau distance (τ) ,
which lies in the interval [0,1] with 1 indicating maximum disagreement. τfu compares the
list of results based on the flat_profile and the same list when re-ordered by the user.
τhu compares the list of results returned using net_profile and the same list re-ordered
by the user. Figure 18(c) plots the average distances for each query. We observe that when
the flat_profile was used, users often disagreed with the system-based ordering of
results because it did not quite respect their real, more elaborate, preferences.

A closer look at the user-ordered results revealed that often 1 to 3 tuples appeared out
of order in the system answers due to the less accurate profiles applied. On the other
hand, finer-grained result rankings could be achieved with the complex profiles that cap-
tured more accurately user expectations. The accuracy achieved also depends on the query.
For example, for the query Q5, none of the profiles had adequate (or different) informa-
tion for differentiating the output of this query. The figure brings up another issue: one
would expect that since the complex profiles captured more accurately the user prefer-
ences, τHU would be 0 in all cases. Users still moved tuples in the results for different
reasons (e.g., they knew some additional information, such as reviews for certain movies,
or while inspecting the results they were able to evaluate them based on properties they
had not captured in their profiles.)

Below, we describe some interesting cases of personalized searches that we observed
during the study in order to illustrate the impact of our approach. Figure 19 shows part of
the profile for one of the participants. This profile was one of the most detailed ones. We
observe that there are some general preferences for movie genres, actors and so forth, but
there also finer-grained preferences. In one of the searches, the user asked for comedies
after 2008 that satisfy at least one of her top 5 preferences. Her top 5 preferences are the
following:

MOVIE.mid = CAST.mid and

CAST.aid = ACTOR.aid and ACTOR.name = “G.Clooney”

CAST.aid = ACTOR1.aid and ACTOR1.name = “B.Pitt” 1

MOVIE.mid = CAST.mid and

CAST.aid = ACTOR.aid and ACTOR.name = “G.Clooney

CAST.aid = ACTOR1.aid and ACTOR1.name = “E.McGregor”

CAST.aid = ACTOR2.aid and ACTOR2.name = “K.Spacey” 1

MOVIE.year > 2000 and MOVIE.mid = GENRE.mid

GENRE.genre = “animation” 0.95

MOVIE.mid = CAST.mid and

CAST.aid = ACTOR.aid and ACTOR.name = “H.Ford” 0.95

MOVIE.year > 2000 and MOVIE.mid = GENRE.mid and

MOVIE.mid = GENRE.mid and GENRE.genre = “animation” 0.95

ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 37MOVIE.year > 1990, GENRE.genre = “comedy”,GENRE.genre = “adventure” , GENRE.genre = “drama”, GENRE.genre = “thriller” , GENRE.genre = “mystery”, GENRE.genre = “animation”, DIRECTOR.name = “W. Allen”, DIRECTOR.name = “S. Spielberg”, PRODUCER.name = “J. Bruckheimer”, PRODUCER.name = “S. Spielberg” , ACTOR.name = “K. Spacey”, ACTOR.name = “G. Clooney”, ACTOR.name = “M. Freeman”, ACTOR.name = “H. Ford”, ACTOR.name = “A. Sandler” , ACTOR.name = “B. Stiller”, MOVIE.mid=GENRE.mid, MOVIE.mid = DIRECTED.mid and DIRECTED .did = DIRECTOR.did, MOVIE.mid = CAST.mid, MOVIE.mid = CAST.mid and CAST .aid=ACTOR.aid, MOVIE.mid = GENRE.mid and GENRE .genre = “TV series” and MOVIE.mid = CAST.mid and CAST .aid = ACTOR.aid and ACTOR.name = “B. Stiller”, MOVIE.year > 2000 and MOVIE.mid = GENRE.mid and GENRE .genre = “animation”, MOVIE.mid = GENRE1.mid and GENRE1.genre = “animation” and MOVIE.mid = GENRE.mid and GENRE .genre = “thriller”, MOVIE.year > 1995 and MOVIE.mid = DIRECTED.mid and DIRECTED .did = DIRECTOR.did and DIRECTOR .name = “W. Allen”, CAST.aid=ACTOR.aid and ACTOR .name = “O. Wilson” and CAST .aid=ACTOR1.aid and ACTOR1.name = “B. Stiller” , CAST.aid=ACTOR.aid and ACTOR .name = “G. Clooney” and CAST .aid=ACTOR1.aid and ACTOR 1.name = “B. Pitt”, CAST.aid=ACTOR.aid and ACTOR .name = “G. Clooney” and CAST .aid=ACTOR1.aid and ACTOR 1.name = “E. McGregor”and CAST.aid=ACTOR2.aid and ACTOR 2.name = “K. Spacey”, MOVIE.mid=GENRE.mid and GENRE.genre = “comedy” and MOVIE.mid = DIRECTED.mid and DIRECTED .did = DIRECTOR.did and DIRECTOR .name = “G. Clooney”, MOVIE.mid=GENRE.mid and GENRE.genre = “drama” and MOVIE.mid = DIRECTED.mid and DIRECTED .did = DIRECTOR.did and DIRECTOR.name = “G. Clooney”,

0.80.70.850.20.90.90.60.60.80.60.750.80.750.80.90.80.70.80.9110.10.950.10.80.4110.60.85
Fig. 19. Part of a real user profile with movie preferences.

It is interesting to observe that the user had preferences for specific actors but she had
given very high preferences for groups of actors participating in the same movie as a wish-
list. While combining her individual preferences would not lead to these strong prefer-
ences, being able to code such fine-grained taste made possible to discover a new movie
with title “The Men Who Stare at Goats” (a comedy to be released in 2010) that satis-
fies her wish that if her some of her favorite actors ever acted together this would make a
not-to-miss movie.

Another search performed by the user was for short movies (duration < 1h45min) that
would satisfy at least 2 preferences. The network built for this query is quite large and
Figure 20 shows part of it. Short movies satisfying this user’s preferences were some
animation movies. Based on the network shown in the figure, we were able to rank high
animation movies, such as “Ice Age” but give very low scores to animations, such as
“Corpse Bride”. We were not able to compute such accurate rankings using the simpler
profile for this user because the complex preferences for animations are not derivable from
the general preferences for animations and thrillers. If we combine these preferences then

ACM Journal Name, Vol. V, No. N, August 2009.

38 · MOVIE.mid=GENRE.mid and GENRE.genre = “animation”, 0.48MOVIE.year > 2000 and MOVIE.mid = GENRE.mid and GENRE .genre = “animation”, 0.95
MOVIE.year > 1990, 0.8 MOVIE.mid = GENRE1.mid and GENRE 1.genre = “animation” and MOVIE.mid = GENRE.mid and GENRE .genre = “thriller” , 0.1

Fig. 20. Part of a network of preferences related to a particular search.

“Corpse Bride” would rank high.

7.2 Performance Study
A user may explicitly give only a handful of preferences and implicit sources of prefer-
ence elicitation, such as log mining and relevance feedback, may indicate many (addi-
tional) preferences. In both cases, incomplete information may prevent deriving a small
set of generic preferences and a large number of preferences may be recorded that possibly
contain many relationships. Handling multi-granular preferences and preference relation-
ships add up to increased complexity and, thus, higher execution times. Therefore, in
this section, we evaluate the performance of query personalization using our preference
model (specific details are given per experiment.) We considered query loads of 50 ran-
dom queries representing hypothetic user queries, each one containing one relation and one
selection on this relation, that we want to personalize and we divided the query personaliza-
tion process in two main phases: a preference construction phase, which builds a network
of related preferences for a query and a preference query answering phase, which generates
personalized results using this network. We study each phase separately and identify the
critical factors that affect their performance before discussing the overall performance of
personalization. Two parameters are important:

• the number k of selection preferences manipulated
• the number r of v-relationships existing among them

We test our algorithms and we compare them with simpler algorithms that operate on
the assumption of independent preferences. We generate synthetic profiles and networks
depending on the requirements of each experiment, as we explain in the following subsec-
tions, and we build the indexes required for the processing. Times are shown in ms.

7.2.1 Preference Construction. This phase involves two tasks: extraction of the related
preferences from a profile and construction of their network. These tasks are interleaved
during preference construction (Section 5). We measure:

• the total time required to extract k selection preferences from a user profile - timeextract
• the total time required to find the relationships among k preferences and build their

network, i.e., the total time required by the Preference-Network Integration and Rela-
tionship Finder modules - timerel

The time timerel for processing independent preferences, as well as the extra time
in timeextract for preparing the structures required in preference comparisons, such as
representing preferences as sets of path strings, are negligible. This observation allows us
to consider that when having only independent preferences, the required execution time for
this phase is equal to the time timeextract, and hence, the overhead from the processing
of composite preferences is reflected in timerel.
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 39

(a) Extraction for different databases

(b) Extraction & network integration vs. k

(c) Extraction & network integration vs. r

Fig. 21. Times for extracting and integrating k preferences with r preference relationships.
ACM Journal Name, Vol. V, No. N, August 2009.

40 ·
timeextract depends on the number k of preferences handled, as Figure 21(a) con-

firms. The task of extracting related preferences does not simply read preferences stored
in a profile but it also builds new preferences from the stored ones. Depending on the
database schema and the number of selection preferences defined per relation, it may be
able to retrieve k stored selection preferences with a few database accesses or it may need
to search in relations further away from the initial query relations and compose preferences
out of many stored ones. In order to gain insights into the impact of this phenomenon over
timeextract, we generated the schema of a hypothetic database comprised of 100 rela-
tions, each one having 3 attributes, one of which possibly joining this relation to another.
Then, we generated two synthetic profile databases of 100 profiles each. Profiles in both
databases contained 100 selection preferences each but were generated in a different way:
a profile in profdb1 was generated with the constraint that each attribute of the database
could be used in at most one preference, while a profile in profdb2 was generated with
the constraint that each attribute of the database should be used in at most three selection
preferences. Consequently, profiles in profdb1 were sparser than profiles in profdb2.
We considered a query load of 50 queries over this synthetic database and we measured
the times for extracting the top k preferences for each of these queries. Figure 21(a) shows
timeextract as a function of k over all (100) profiles of each database for the 50 queries.
The difference in execution times can be interpreted as the algorithm’s effort to collect k
preferences depending on how preferences are distributed over the database. When pref-
erences are sparsely placed (e.g., in profdb1), it takes substantially more effort as k
increases because it needs to search more in a profile.

Figures 21(b) and 21(c) show the execution times for finding k preferences (timeextract)
and constructing a network of k preferences having r relationships (timerel). For the for-
mer, we considered the profiles in profdb1 and the query load of 50 queries used in the
previous experiment. Measuring the latter, especially with respect to r, is tricky. We wanted
to explicitly control the number of relationships r found between k preferences in order to
measure their impact. For this reason, we ignored the actual relationships among the k pref-
erences found from the extraction step and we built a synthetic network generator, which
takes as inputs the number k of preferences and the number r of preference relationships,
and generates a network with these characteristics, i.e., containing r v-relationships be-
tween k preferences, generated in a random way but w.r.t. certain constraints, e.g., defining
at most one relationship per pair of preferences. The set of preferences and relationships
of a synthetic network are fed into the Relationship Finder, which can guide Preference-
Network Integration to build the same network from scratch. The latter is presented with
the set of preferences of the synthetic network in random order and asks the Relationship
Finder questions regarding @-relationships between pairs of preferences in order to build
the network.

Figure 21(b) shows the execution times as a function of k assuming r=5. Each point in
the figure is the average of execution times for 100 networks with the same characteristics.
We observe that timeextract dominates and that is due to the number of database accesses
required for the extraction of the top-k preferences (which increases with k), whereas the
construction of the network is an in-memory process. In addition, we observe that although
the latter phase depends strongly on k, the overhead of comparing more preferences as k
increases is not as large as one might expect. The reason is that although we increase
k, there are always r=5 preference relationships to be detected. That means that each
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 41

(a) Query answering vs. k

(b) Query answering vs. r

Fig. 22. Times for query answering using k preferences organized in a network with r relationships.

time a pair of preferences is compared, they are most likely independent and hence the
comparison finishes instantly.

Figure 21(c) shows the execution times as a function of r assuming k=50. timeextract
is constant with r. We observe that as the preference network gets more complicated (i.e.,
with r increasing), timerel deteriorates and exceeds timeextract. As more preference
relationships exist, more complicated comparisons between preferences take place.

Consequently, each task’s contribution to the total execution time for preference con-
struction is different: one task may dominate the other depending on the parameter set-
tings. Ultimately, the overhead from constructing a network for a query may comes not
from the number of preferences but from the number of relationships among them.

7.2.2 Preference Query Answering. For this phase, we want to evaluate the perfor-
mance of the two algorithms proposed and the overhead occurred due to the preference
networks. Hence, we measure:
• the execution time required by the exclude_combine algorithm - timeexclude

ACM Journal Name, Vol. V, No. N, August 2009.

42 ·
• the execution time required by the replicate_diffuse algorithm - timediffuse
• the execution time required by a naïve algorithm that works with independent pref-

erences - timesimple
We built naïve as a simpler version of algortihm exclude_combine by omitting the

exclude step of the latter. naïve executes the set of queries that integrate one preference in
the initial query, and combines their results, w.r.t. the constraint that at least l preferences
are satisfied, treating the preferences as independent. For this series of experiments, we
used the movie database. We generated a set of 50 random queries representing hypothetic
user queries, each one containing one relation and one selection on this relation. Note
that experiments with other sets of queries with different features, e.g., with one join and
one selection, show similar trends and are not discussed. We generated different sets of
preference networks over the movie database, each set containing 50 networks with k of
preferences and r edges. Each network was meant to be combined with one query from
the above set, and was generated as follows: we first composed k independent selection
preferences for our movie database related to the query, with the constraint that they con-
tained only one selection (but any joins required.) Then, we ran an iterative procedure
that randomly picked r pairs of preferences and combined them to complex preferences. In
essence, at each round, in a pair (pi, p j), p j was replaced by pi∧ p j to form a more specific
preference than pi.

Figure 22(a) shows execution times as a function of k with r=5. Each point in the
figure is the average of execution times for the 50 queries combined with their respective
networks for the same k and r values. exclude_combine requires more time than the
naïve approach. Since they are both built on the same philosophy, the overhead observed
is due to the additional actions required to sort out results w.r.t. preference relationships.
Algorithm replicate_diffuse shows the best performance. It executes as few queries
as possible and process a smaller number of tuples than exclude_combine close to the
final number of results returned. These queries depend on the number of root preferences
in the network. As k increases, more root preferences emerge but they are fewer than k.

Figure 22(b) shows times as a function of r with k=50. While timeexclude deteriorates
when more preference relationships need to be resolved, timediffuse is actually benefited
because the total number of queries executed is lower. That is fewer queries of the type
Q∧ prt may be executed (as r increases, fewer root preferences may exist) or fewer pa-
rameterized queries Qi (tuples may be distributed at different nodes in the preference net-
work). Hence, replicate_diffuse for generating results based on preference networks
exhibits a better behavior in contrast to a naïve approach that works with independent pref-
erences because it exploits preference relationships.

Overall, our results so far indicate that allowing complex preferences in query person-
alization may make preference construction more expensive but benefit query answering.
How these phenomena shape the total execution time?

7.2.3 Overall Performance. To complete the picture regarding the efficiency trade-
offs, we compare the contribution of all parts in the total processing time of a query. We
consider a query load of 50 queries over the movie database (each one containing one
relation and one selection on this relation) and a set of 50 profiles and we plot the time
timeextract required to extract k selection preferences from a profile related to a query,
the time timerel required to find the relationships among these preferences and build the
network and the time timeanswer to generate the personalized results. For the latter, we
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 43

(a) Overall performance vs. k

(b) Overall performance vs. r

Fig. 23. Overall times for personalizing queries using k preferences organized in a network with r relationships.

consider the time timediffuse, since replicate_diffuse has been shown to be the most
efficient.

Figure 23(a) shows the execution times as a function of k for r=5 and Figure 23(b)
shows the execution times as a function of r for k=50. Each point in the graphs is the
average of execution times over the sets of queries and profiles for this experiment. When k
increases the execution time of the preference query answering phase (timeanswer) shapes
the overall performance. This time is measured on the right y-axis in Figure 23(a). On the
other hand, when r increases (Figure 23(b)), we witness the effect of two opposite forces:
decreasing time for generating results tends to “compensate” for the increase in the time
required for building the network. Thus, the whole personalization process behaves in a
more balanced way.

Finally, Figures 24(a) and 24(b) compare the efficiency of personalization using net-
works (timenet) with personalization using only simple, independent preferences (timesim).
Overall, performance is not sacrificed for expressiveness because we can use algorithms

ACM Journal Name, Vol. V, No. N, August 2009.

44 ·

(a) Impact of expressiveness on performance vs. k

(b) Impact of expressiveness on performance vs. r

Fig. 24. Impact of expressiveness.

that can benefit from the existence of preference relationships to adapt more smoothly to
changes to k or r.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied query personalization based on multi-granular preferences.
Existing approaches in preference modeling for query personalization support only pref-
erences that can independently hold of each other and hence they can be freely combined
for result ranking. Hence, a critical departure from these works is that we have lifted this
independence assumption. Our framework allows the formulation of multi-granular pref-
erences. We have introduced the concept of a preference network to capture preferences
and their relationships, where each node refers to a subclass of the entities that its parent
refers to, and whenever they both apply, more specific preferences override more generic
ones. We have described algorithms for identifying preference relationships, constructing
a network of related preferences for a query, and using this network to generate personal-
ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 45

ized answers. We have evaluated our framework and the algorithms by comparing them
with simpler models and algorithms, which assume preference independence, both for ef-
ficiency and answer accuracy and we show that personalized answers that more accurately
capture user preferences are feasible without losing in efficiency.

Our approach is applicable to any graph model representing information at the level of
entities and relationships. User preferences may be articulated over a higher level graph
model representing the data over the database schema. This is a useful abstraction for using
a profile over multiple databases with similar information but possibly different schemas,
and for hiding database restructuring and normalization. Preferences expressed at a higher
level can be transparently mapped to the underlying schema for executing queries. Schema
mappings have been studied in the literature, examining them in the context of query per-
sonalization seems an interesting direction. Furthermore, a number of interesting issues
arise regarding the efficient management of complex preferences. For instance, how to
exploit preference commonalities and access patterns in the same or different profiles for
developing efficient storage and access methods and structures for complex preferences or
for materializing parts of preference networks that are shared among multiple profiles or
that are frequently applied for query personalization.

For the long run, a more “holistic” query optimizer that could take both a user query
and a structured preference set into account for optimization is an intriguing direction to
pursue. There are several possibilities to explore towards this end. For example, one could
implement a special operator that ranks an input relation with respect to a preference re-
lation in the spirit of [Koutrika et al. 2008]. Alternatively, one could imagine dynamic
optimization techniques building on the concept of Eddies [Avnur and Hellerstein 2000]:
the preferences act as filter operators and the Eddy routes tuples to them choosing adap-
tively the way each tuple is routed. A tuple is sent to the output when it has been handled
by at least l operators.

Designing intuitive GUI’s that facilitate defining and editing preferences is an open is-
sue. In the same direction, designing interfaces allow the user to customize the extent of
query personalization and get explanations regarding the effect of query personalization is
also challenging. Finally, having the freedom to capture multi-granular preferences, we
can also tune user profiling methods, such as user log mining, to store richer preferences
in profiles instead of being forced to construct simpler profiles.

REFERENCES
A. AHO, Y. S. AND ULLMAN, J. D. 1979. Equivalence of relational expressions. SIAM J. of Computing 8, 2,

218–246.
AGRAWAL, R., RANTZAU, R., AND TERZI, E. 2006. Context-sensitive ranking. In SIGMOD. 383–394.
AGRAWAL, R. AND WIMMERS, E. 2000. A framework for expressing and combining preferences. In SIGMOD.
AVNUR, R. AND HELLERSTEIN, J. M. 2000. Eddies: Continuously adaptive query processing. In SIGMOD.
BALABANOVIC, M. AND SHOHAM, Y. 1997. Fab: Content-based, collaborative recommendation. CACM 40, 3,

66–72.
BALKE, W.-T., GUNTZER, U., AND LOFI, C. 2007. User interaction support for incremental refinement of

preference-based queries. In IEEE RCIS. 511–523.
BORZSONYI, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In ICDE. 421–430.
BRUNO, N., CHAUDHURI, S., AND GRAVANO, L. 2002. Top- k selection queries over relational databases:

Mapping strategies and performance evaluation. ACM TODS 27, 2, 153–187.
CHANG, K. AND HWANG, S. 2002. Minimal probing: Supporting expensive predicates for top-k queries. In

SIGMOD.

ACM Journal Name, Vol. V, No. N, August 2009.

46 ·
CHEKURI, C. AND RAJARAMAN, A. 1997. Conjunctive quer containment revisited. In ICDT.
CHOMICKI, J. 2003. Preference formulas in relational queries. ACM TODS 28, 4, 427–466.
CHOMICKI, J. 2004. Semantic optimization of preference queries. In Int’l Sym. on Applications of Constraint

Databases. 133–148.
COHEN, W. W., SCHAPIRE, R. E., AND SINGER, Y. 1998. Efficiently mining frequent trees in a forest. Ad-

vances in Neural Information Processing Systems 10.
CUPPENS, D. AND DEMOLOMBE, R. 1989. How to recognize interesting topics to provide cooperative answers.

Information Systems 14, 2, 163–173.
DAS, A., DATAR, M., GARG, A., AND RAJARAM, S. 2007. Google news personalization: scalable online

collaborative filtering. In WWW. 271–280.
FAGIN, R., KUMAR, R., AND SIVAKUMAR, D. 2003. Comparing top k lists. In SIAM. 28 – 36.
FISHBURN, P. 1999. Preference structures and their numerical representations. Theor. Comput. Sci. 217, 359–

383.
GAASTERLAND, T., GODFREY, P., AND MINKER, J. 1992. An overview of cooperative query answering.

Journal of Intelligent Information systems 1, 2, 123–157.
HANSSON, S. O. 2001. Preference logic.preference logic. Handbook of Philosophical Logic (D. Gabbay, Ed.) 8.
HOLLAND, S., ESTER, M., AND KIESSLING, W. 2003. Preference mining: A novel approach on mining user

preferences for personalized applications. In PKDD. 204–216.
HOLLAND, S. AND KIESSLING, W. 2004. Situated preferences and preference repositories for personalized

database applications. In ER. 511–523.
HRISTIDIS, V., KOUDAS, N., AND PAPAKONSTANTINOU, Y. 2001. PREFER: A system for the efficient execu-

tion of multiparametric ranked queries. In SIGMOD.
ILYAS, I., SHAH, R., AREF, W., VITTER, J., AND ELMAGARMID, A. 2004. Rank-aware query optimization.

In SIGMOD.
JIANG, B., PEI, J., LIN, X., CHEUNG, D. W., AND HAN, J. 2008. Mining preferences from superior and

inferior examples. In KDD. 390–398.
JOACHIMS, T. 2002. Optimizing search engines using clickthrough data. In KDD.
JOACHIMS, T., FREITAG, D., AND MITCHELL, T. 1997. Webwatcher: a tour guide for the world wide web. In

IJCAI.
KENDALL, M. AND GIBBONS, J. D. 1990. Rank Correlation Methods. Edward Arnold, London.
KIESSLING, W. 2002. Foundations of preferences in database systems. In VLDB. 311–322.
KIESSLING, W. AND KOSTLER, W. 2002. Preference SQL-design, implementation, experiences. In VLDB.
KOSSMANN, D., RAMSAK, F., AND ROST, S. 2002. Shooting stars in the sky: An online algorithm for skyline

queries. In Int’l VLDB Conf. 275 – 286.
KOUTRIKA, G. 2006. Personalization of structured queries with personal and collaborative preferences. In ECAI

Workshop about Advances on Preference Handling.
KOUTRIKA, G., BERCOVITZ, B., AND GARCIA-MOLINA, H. 2008. FlexRecs: Expressing and combining

flexible recommendations. In SIGMOD.
KOUTRIKA, G. AND IOANNIDIS, Y. 2004. Personalization of queries in database systems. In ICDE. 597–608.
KOUTRIKA, G. AND IOANNIDIS, Y. 2005a. Constrained optimalities in query personalization. In SIGMOD.

73–84.
KOUTRIKA, G. AND IOANNIDIS, Y. 2005b. Personalized queries under a generalized preference model. In

ICDE.
LACROIX, M. AND LAVENCY, P. 1987. Preferences: Putting more knowledge into queries. In VLDB. 217–225.
LEE, J., WON YOU, G., WON HWANG, S., SELK, J., AND BALKE, W.-T. 2008. Optimal preference elicitation

for skyline queries over categorical domains. In DEXA. 610–624.
LINDEN, G., SMITH, B., AND YORK, J. 2003. Amazon.com recommendations: Item-to-item collaborative

filtering. IEEE Internet Computing.
LIU, F., YU, C., AND MENG, W. 2004. Personalized web search for improving retrieval effectiveness. IEEE

TKDE 16, 1.
MIAH, M., DAS, G., HRISTIDIS, V., AND MANNILA, H. 2008. Standing out in a crowd: Selecting attributes

for maximum visibility. In ICDE. 356–365.

ACM Journal Name, Vol. V, No. N, August 2009.

Personalizing Queries based on Networks of Composite Preferences · 47

PAPADIAS, D., TAO, Y., FU, G., AND SEEGER, B. 2003. An optimal and progressive algorithm for skyline
queries. In ACM Int’l Conf. on Management of Data. 467–478.

PEI, J., JIANG, B., LIN, X., AND YUAN, Y. 2007. Probabilistic skylines on uncertain data. In VLDB. 15–26.
PEI, J., JIN, W., ESTER, M., AND TAO, Y. 2005. Catching the best views of skyline: A semantic approach based

on decisive subspaces. In VLDB. 253–264.
PITKOW, J. E., SCHÜTZE, H., CASS, T. A., COOLEY, R., TURNBULL, D., EDMONDS, A., ADAR, E., AND

BREUEL, T. M. 2002. Personalized search. Comm. of the ACM 45, 9, 50–55.
SARKAS, N., DAS, G., KOUDAS, N., AND TUNG, A. K. H. 2008. Categorical skylines for streaming data. In

SIGMOD. 239–250.
SATZGER, B., ENDRES, M., AND KIESSLING, W. 2006. A preference-based recommendation system. In

ECWeb.
STEFANIDIS, K. AND PITOURA, E. 2008. Fast contextual preference scoring of database tuples. In EDBT.

344–355.
STEFANIDIS, K., PITOURA, E., AND VASSILIADIS, P. 2007. Adding context to preferences. In ICDE.
TAO, Y., HRISTIDIS, V., PAPADIAS, D., AND PAPAKONSTANTINOU, Y. 2007. Branch-and-bound processing

of ranked queries. Inf. Syst. 32, 3, 424–445.
VAN BUNNINGEN, A., FENG, L., AND APERS, P. M. G. 2006. A context-aware preference model for database

querying in an ambient intelligent environment. In DEXA. 33–43.
VLACHOU, A., DOULKERIDIS, C., KOTIDIS, Y., AND VAZIRGIANNIS, M. 2007. SKYPEER: Efficient sub-

space skyline computation over distributed data. In ICDE. 416–425.
WELLMAN, M. AND DOYLE, J. 1991. Preferential semantics for goals. In National Conf. on AI. 698–703.
WONG, R. C.-W., PEI, J., FU, A. W.-C., AND WANG, K. 2007. Mining favorable facets. In KDD. 804–813.
XIN, D. AND HAN, J. 2008. P-cube: Answering preference queries in multi-dimensional space. In ICDE. 1092

– 1100.
YIU, M. L., DAI, X., MAMOULIS, N., AND VAITIS, M. 2007. Top-k spatial preference queries. In ICDE. 1076

– 1085.
ZAKI, M. J. 2005. Efficiently mining frequent trees in a forest. Inf. Syst. 17, 8, 1021 – 1035.

ACM Journal Name, Vol. V, No. N, August 2009.

