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ABSTRACT

We consider the problem of recommending the best set of
k items when there is an inherent ordering between items,
expressed as a set of prerequisites (e.g., the course ‘Real
Analysis’ is a prerequisite of ‘Complex Analysis’). Since this
problem is NP-hard, we develop 3 approximate algorithms
to solve this problem. We experimentally evaluate these
algorithms on synthetic data.
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1. INTRODUCTION

Traditional recommendation systems deal with the prob-
lem of recommending items or sets of items to users by using
various approaches [2, 9]. However, most of these approaches
fail to take into account prerequisites while recommending
an item: A prerequisite of an item ¢ is another item j that
must be taken or consumed (watched, read, ...) in advance
of i. Thus, it makes sense to consider prerequisites when
making recommendations. For example, university courses
often have prerequisites. If course i cannot be taken unless
course j has been completed, then it does not make sense to
recommend to a student course ¢ if j has not been taken. We
could maybe recommend both i and j, or perhaps we could
recommend some other course k£ that may be less desirable
then ¢ but whose prerequisites have been met.

We are interested in the problem of prerequisites in the
context of our CourseRank project at Stanford University.
CourseRank is a social tool developed in our InfoLab and
used by students to evaluate courses and plan their aca-
demic program. CourseRank is currently used by over 9,000
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Stanford students (out of 14,000); the vast majority of un-
dergraduates use it regularly. One of the CourseRank goals
is to recommend courses that are not just ‘good’ but also
help students meet academic requirements [7]. (Academic
requirements describe the constraints on the courses needed
to complete a major.) In addition, we would like to take into
account prerequisites, which the current production system
does not take into account. Since this shortcoming is serious,
we have developed a model and algorithms for recommen-
dations constrained by prerequisites, which we describe and
evaluate in this paper. Our plan is to incorporate one of our
algorithms into the production system.

Although our focus is on prerequisites in an academic en-
vironment, prerequisites also arise in other recommendation
contexts. Movies, for instance, often are best watched in
a sequence. For example, the movie “Godfather I” should
be watched before “Godfather II”, and both these movies
should be watched before “Godfather III”. Drama TV seri-
als tend to proceed in sequential fashion, and need to be
watched in sequence. Novels tend to be sequential as well.
While movies tend to have relatively few sequels, a fiction
series could have several books that should be read in order.

We approach the problem of recommendations with pre-
requisites in the following way. We are given a set of items,
each with an initial score that describes how desirable that
item is for a particular user. The initial scores can be de-
rived using traditional recommendations techniques, e.g., a
movie may have a high score if people like our given user
have watched that movie. We also know which items the
user has consumed already. We now wish to recommend to
the user a set of k desirable items, such that the set can be
taken without further prerequisites. That is, the prerequi-
site of any item in the set has either been satisfied or is in
the set itself. For example, if we wish to recommend “Lord
of the Rings II” to a user as one of the k items, then we have
to recommend “Lord of the Rings I” (a prequel, and there-
fore a prerequisite) as another one of the k items (unless the
user has already watched part I).

In Section 2 we formally define the problem of set rec-
ommendations, and we show that selecting the best set is
NP-hard. In Section 3 we present three heuristic algorithms
that find good sets.

2. THE PROBLEM OF PREREQUISITES

We now formally define the problem of recommendation
with prerequisites. We wish to recommend a set of k items
from a set of items V. We are also given a directed graph
G(V, &), where the vertices v € V corresponds to items, and
directed edges (u,v) € £ correspond to prerequisites, i.e.,



item u needs to be taken before item v. We assume that
each item in V has been already assigned a score, which
corresponds to how ‘good’ the item is. This score could be
obtained by various approaches — content-based, collabo-
rative filtering [9, 2, 3] etc. Note that we do not include in
G nor in V items that have already been taken or watched.
That is, if item ¢ has item j as a prerequisite, but j is already
taken, then we can ignore j and its prerequisite.

Our task is to pick a set A, of size |A| = k, such that
score(A) is maximized:

score(A) = Z score(a) (1)
acA
In addition, we also have the following constraint to ensure
that prerequisites are satisfied:

Vu,o €V:v€EAAN(u,v) EE=>u€EA (2)

Note that these equations above inherently assume that
the items being recommended are independent of each other,
except for those that are related via set £. That is, the
scores of items (not connected through &) do not change if
we recommend them together or separately.

We define a chain to be a sequence of items a1 — a2 —

. — an, such that there exists only the following edges
involving ai,...,an: (a1,a2),(az,a3),...,(an—1,an). Note
however, that n could be 1, in which case the node has no
edges either coming into or going out of it. For example,
if the items we wish to recommend are movies, then nodes
corresponding to movies “Godfather 17, “Godfather IT” and
“Godfather III” would form a chain as follows: Godfather I
— Godfather II — Godfather III. A graph consisting of a
set of chains is called a chain graph. If a1 — a2 — ... — an
is a chain, then a1 — as — ... — a;,1 < n is a sub-chain.

The problem of picking the best set A, |A| = k, satisfy-
ing prerequisites as described above is NP-Hard for directed
acyclic graphs via a reduction from set cover [6]. However
there is an exact but expensive dynamic programming algo-
rithm for chain graphs but not for DAGs [6]. In this paper,
we instead provide approximate but efficient algorithms that
operate on chain graphs as well as DAGs.

3. THE 3 ALGORITHMS

Since the problem of recommendation with prerequisites
is NP-Hard, we can only provide approximate solutions. We
illustrate the three algorithms using an example, and then
discuss them in more detail in subsequent sections. For ease
of exposition, we will use a chain graph as our example —
however, note that the pseudocode and description of the
algorithms is for the more general case of DAGs.

3.1 Illustrative Example
Consider the following graph:
e a(0.5) — j(0.8) — £(0.9)
e 5(0.6) — ¢(0.7)
e ¢(0.3) — h(0.8) — i(0.2)
e d(0.7)
e ¢(0.2)

Each letter above indicates a node in the prerequisite graph,
and the arrows show the prerequisites. For example, a is a
prerequisite of j, which is a prerequisite of k. We include
a score of picking each item, displayed in brackets next to
the node corresponding to the item. As an example, h has
a score of 0.8.

Our aim is to pick a set of size k, such that prerequisites
are retained, and score of the set as defined in Eq. 1 is
maximized. If say k = 4, then the optimal solution which
does not violate prerequisites is {a, j, k, d}, with a score of
2.9. We leave the proof that this set is optimal as an exercise
for the reader.

3.2 Definitions

We define boundary(A) of a set A as the set of items in
A that can be deleted, without violating the prerequisites
of any other items in the set, i.e., if x € boundary(A), then
there is no y € A and z1,x2,...,x, such that there ex-
ists a sequence of edges (z, 1), (z1,%2),..., (Tn,y) in . In
the above example, if A = {a,g,c, h}, then boundary(A) =
{a, g,h}, any of which can be discarded without affecting
the prerequisites of other items in A.

We define external(A) of a set A as the set of items that
are not in A and can be potentially added to A without
violating prerequisites, i.e., if x € external(A), then there
is no y,1,x2,...,o, such that the edges (y,z1), (z1,z2),

., (zn,z) exists in &, but y ¢ A. Note that this set also
contains the items in V that have no edges coming into them.
In the above example, if A = {b, j, ¢, h}, then external(A) =
{a,i,g,d,e}, any of which can be added without violating
any prerequisites. For example, adding k& would create a new
inconsistency since a is not present in A. However, all the
items that have no prerequisites are present in external(A),
along with ¢, whose prerequisites ¢ and h, are present.

3.3 Algorithm 1: Breadth-first Pickings

3.3.1 Example

We describe the execution of this algorithm on the graph
in Sec. 3.1. We try to pick a set of size k = 4.

Step 0: We start by picking nodes whose prerequisites
have been satisfied (or do not exist). Thus, the candidates
are a, b, c,d, e. The best such node is d. We then add b, then
g (whose prerequisite, b, is now present), and then a, until
|A| = k. This A is {a, b, g,d}.

Step 1: Consider all nodes whose parents are in A or those
who have no prerequisites. Here, we have B = {j,¢,e}. In
a greedy fashion, we try to see if we can replace the worst
node in A (that can be removed) with the best node in B
all the time maintaining prerequisites. In this case, we first
examine j, the item with the highest score in B. The worst
node in A is a. However, j is a child of a. We therefore
pick one of {b,d, g}, instead. Since b is a prerequisite of g,
we cannot pick b. Instead, we pick one of d or g, g (say).
Since score(j) > score(g), we replace g with j. The new
B = {c,e,9,k}, and the new A = {a,,b,d}.

Step 2: The best node in B is k (since its parent, j € A).
We then replace (the worst node in A that can be removed)
b with k, giving us A = {a, j,k,d}, and B = {b, ¢, e}.

Step 3: The best node in B, b, is no longer better than
any node in A, and we then terminate the algorithm, with
optimal A = {a, j, k,d}

Note that in Step 1, if we had removed d instead of g, we
would have ended up with the same A, in more iterations.

3.3.2 Description of the Algorithm

As listed in Algorithm 1, we initialize the set A with the
best k items by picking greedily the best item from among
the items whose prerequisites have been satisfied, but are
not already in the set A, i.e., external(A) (line 2-4).

We then greedily try to replace items from boundary(A),
i.e., the items that are non-essential to A, with those from



external(A), those whose prerequisites have been satisfied
(line 7-14). However, we make sure that we do not delete
the parent of a child (line 8).

Algorithm 1 BreadthFirstPickings: BF Pickings

Require: k <« size
Require: G « graph
1: A<=

2: while size(A) < k do

3: A<« AU {item with largest score in external(A)}

4: end while

5: B <« external(A)

6: while there exist items in B do

7:  pick b € B in order of decreasing score

8:  a <« item with smallest score in boundary(A) that is not
parent of b

9:  if a exists A score(b) > score(a) then

10: A< A—{a}U{b}

11: B < external(A)

12:  else

13: remove b from B

14:  end if

15: end while
16: return A

3.4 Algorithm 2: Greedy-value pickings

We use a maz-priority-queuve for this algorithm, and in-
sert sets of items into the queue. The max-priority-queue is
sorted on the average score of the items in the sets, and on
querying returns the set with the largest average score.

3.4.1 Example

We describe the execution of this algorithm on the graph
in Sec. 3.1. For every chain in the above graph, we insert
all sub-chains as sets into the max-priority-queue. For ex-
ample, for chain a — j — k, we insert into the queue the
following sets: {a},{a,j},{a,j, k}, which have average score
0.5, (0.5 + 0.8)/2 = 0.65, (0.5 + 0.8 + 0.9) /3 = 0.73.

We keep popping sets with the maximum average score
from the queue, see if the number of items in the set is
greater than the remaining capacity that we can accommo-
date. If so, we discard it, if not, we add the set to A. In
this case, we pop B = {a, j, k} first, whose average score is
0.73, and whose size is 3. Let k' denote the current size of
A, k' = 0. Since k' + size(B) <4, we let A<= AU B.

We then update the average score and size of all sets in
the queue that have a nonzero intersection with chain a —
j — k, assuming that the set {a, j, k} has been picked. For
example, the average score of a — j is now set to 0 (since
{a,j} is already in A). If a — j — k — y, then the average
score of {a, j, k,y} would be set to score(y)/1, and size = 1
(since a, j, k have been picked).

Now k— k' = 1, so only sets of size 1 can be picked. Once
again, in this case, B = {d} with average score = 0.7, is
added to A. Thus A = {a, j, k,d}, the optimal set.

3.4.2  Description of the Algorithm

We list the pseudocode for in Algorithm 2. We insert
a set corresponding to each node in the graph G into the
queue (line 3-7). This set contains the given node v, and all
nodes a such that there is a path from a to v. These sets in
the queue are sorted on average score, i.e., the sum of score
of the items in the set, divided by the size of the set.

Now, as long as we have not picked enough items in A, we
keep picking items by popping sets from the queue (line 8-9).
If the popped set is small enough to be accommodated in
A (line 10), we add it to A (line 11), and update the values

of other sets that have a non-zero intersection with the set
currently added to A, in two steps: Firstly, the number of
items is reduced by the number of new items added to A
that are also present in the set (line 14). Additionally, since
those items no longer count towards the average score of
the set, the value of the set is appropriately changed (line
15-19).

Algorithm 2 GreedyValue: GV Pickings

Require: k < size

Require: G «+ graph

Require: @ «— max-priority-queue

1: A<=

2. Q<0

3: for all items i € G do

4:  c<={i}

5: ¢ < c U prerequisites of i

6:  insert c into Q with size(c) = no. of items in ¢; value(c) =
> aee Score(a)/size(c)

7: end for

8: while size(A) < kAQ # 0 do

9:  m < pop(Q) /* m has highest value in Q*/
10:  if size(m) < k — size(A) then

11: A<=AUm

12: for all sets ¢ € Q where cN'm # () do
13: sum <= 3, (. a) Score(a)

14: size(c) < no. of items in ¢ — A

15: if size(c) # 0 then

16: value(c) < sum/size(c)

17: else

18: value(c) =0

19: end if

20: end for

21:  endif

22: end while

23: return A

3.5 Algorithm 3: Top-down pickings
3.5.1 Example

Here we sort all nodes in decreasing order of score, and
initially let A be the top-k, in this case (say): {j, k, g, h}. We
now try to add the prerequisites of these items, starting from
the item with the highest score. The set of items already
considered is B, which is currently empty.

The best item in A is k, with a score of 0.9. Item k needs
the set C' = {a,j}. Since a is missing in A, we add a, and
delete the node with the worst score from the boundary of
A, but that which has not already been considered (i.e., is
not in B), in this case, g. Thus we now have A = {a, j, k, h}.
We keep track of the nodes already considered so far in B,
which is now {k}.

Next, we try to see if j’s prerequisites are present in A.
They (i.e., {a}) already are. The set B now becomes {k,j}.

The next item from A — B is h. Now, we try to add
h’s prerequisites. Deleting another node from the boundary
of A (which contains only k) cannot be done since k has
already been considered (i.e., is present in B) — we keep this
constraint because we do not want worse items to override
better ones. We instead try to replace h with a node that
does not need any new prerequisites. Here h is replaced by
one of {b, ¢, d, e}, in this case, d, which has the highest score.
Set A now becomes {a, j, k,d}. Set B now becomes {j, k, h}.

We now pick the next best item from A — B to check if its
prerequisites are present. This item is d, whose prerequisites
are present, so we do not add or delete any items from A.
The set B now becomes {d,j, k, h}. Next, a is picked, and
once again, there is no change to A.



Thus we once again get the optimal solution, A = {a, j, k, d}
3.5.2  Description of the Algorithm

In Algorithm 3 we start off with the best set of items of
size k(line 1), and try to incrementally add prerequisites. We
keep track of items that we have already added prerequisites
for in B (line 6), and never let such items be deleted.

We pick the items in order of decreasing scores from A— B,
i.e., the items that have not been examined already (line 4).
We then check if the prerequisites of the item are already
present in A (line 7), if so, we examine the next item.

If there are still some s prerequisites required (line 8), we
replace items from A if possible (line 11-14,18). These items
are picked from boundary(A), but should not be present in
the items already considered B (line 12-13).

If sufficient items cannot be found we replace the item
under consideration with an item from external(A) (line
16), i.e., those items that can be potentially added because
their prerequisites are present.

Algorithm 3 TopDownPickings: Top-Down Pickings

Require: k < size

Require: G < graph

1: A < best set of size k

2: B<0

3: while there exists items € A — B do

4:  a < item with largest score in A — B

5 C <« prerequisites of a

6: B<«< BU{a}

7 if (C — A== 0) continue

8: s <« size(C — A) /* no. of missing preregs. */

9: A<« A

10: R <0 /* deletions from A */

11:  while size(R) < s A (boundary(A’) — B) # 0 do
12: a < item with smallest score in boundary(A’) — B
13: if @ exists, R< RUa; A’ < A’ —a

14:  end while

15:  if size(R) < s then

16: replace @ in A with item with largest score from
external(A)

17:  else

18: A< (A-R)UC

19:  end if

20: end while
21: return A

4. RELATED WORK

We are not aware of any prior work in the area of set
recommendations that take prerequisites into account.
However, there is a large body of work on traditional rec-
ommendation systems, aimed at coming up with a single
‘score’ for each item, combining approaches that look at us-
ing ratings given by other ‘similar’ users [9], other ‘simi-
lar’ items that the user liked [8], and other approaches [3].
All of these techniques could be used in generation of the
score function that we use as a black box, therefore our
work builds on top of other recommender systems work.
The body of work on Top-N recommendation systems [4]
solve a different problem. Their aim is: given a user X item
matrix of scores, and given the set of items that a given user
has consumed, recommend an ordered set of up to N items
that the user has not consumed. In this case there is no
inherent ordering of items that needs to be respected when
recommending N items, which is the case in our problem.
Ziegler et. al. [10] consider the case of recommending lists
of items taking into account diversity among items in the
list. Prerequisites are not considered; additionally, our al-
gorithms can be generalized to handle the case of complex

scoring functions where the score of a set is not just the sum
of scores of the items contained in the set (See [6]).

Some of the recommendation questions we pose can be
written in RQL (Recommendation Query Language) [1], or
expressed as constraints [5], however, our aim in this paper is
to consider efficient algorithms that solve those recommen-
dation questions, and not posing those questions themselves.
5. CONCLUSIONS

In this paper, we studied how prerequisites affect the prob-
lem of recommendations. We focused on the problem of rec-
ommending a set of items with high score, while satisfying
prerequisites. We proved that this problem is NP-Hard, and
suggested 3 approximate algorithms to solve this problem.

For the three algorithms that we described above we an-
alyzed termination, worst case complexity, and worst case
performance bounds in the extended technical report [6].

In [6], for a synthetic chain graph dataset, we compared
the three algorithms with the best set that could be returned
without regard to prerequisites. We found that the greedy
value pickings algorithm consistently performs better than
the other two algorithms, and performs even better if we
increase the number of items picked relative to the number
of chains. However, this algorithm may be more expensive
computationally than the other two.

We also found that there are cases where the breadth first
pickings algorithm does better than the top down pickings
algorithm, specifically when the number of items is small rel-
ative to the number of chains. When the number of items is
large relative to the number of chains, the top down pickings
algorithm tends to do better.
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