
Evaluating, Combining and Generalizing
Recommendations with Prerequisites

Aditya Parameswaran
Stanford University

adityagp@cs.stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Jeffrey D. Ullman
Stanford University

ullman@cs.stanford.edu

ABSTRACT
We consider the problem of recommending the best set of k items
when there is an inherent ordering between items, expressed as a
set of prerequisites (e.g., the movie ‘Godfather I’ is a prerequi-
site of ‘Godfather II’). Since this general problem is computation-
ally intractable, we develop 3 approximation algorithms to solve
this problem for various prerequisite structures (e.g., chain graphs,
AND graphs, AND-OR graphs). We derive worst-case bounds for
these algorithms for these structures, and experimentally evaluate
these algorithms on synthetic data. We also develop an algorithm
to combine solutions in order to generate even better solutions, and
compare the performance of this algorithm with the other three.

1. INTRODUCTION
Traditional recommendation systems deal with the problem of

recommending items or sets of items to users by using various ap-
proaches [2, 17]. However, most of these approaches do not take
into account prerequisites while recommending an item: A prereq-
uisite of an item i is another item j that must be taken or consumed
(watched, read, ...) in advance of i. For example, university courses
often have prerequisites. If course i cannot be taken unless j has
been completed, then it does not make sense to recommend to a
student course i if j has not been taken. We could recommend both
i and j, or perhaps we could recommend some other course k that
may be less desirable than i but whose prerequisites have been met.

We are interested in the problem of prerequisites in the context
of our CourseRank project at Stanford University. CourseRank is a
social tool developed in our InfoLab and used by students to eval-
uate courses and plan their academic program. CourseRank is cur-
rently used by over 9,000 Stanford students (out of 14,000); the vast
majority of undergraduates use it regularly. One of the CourseR-
ank goals is to recommend courses that are not just ‘good’ but also
help students meet academic requirements [15]. (Academic re-
quirements describe the constraints on the courses needed to com-
plete a major.) In addition, we would like to take into account pre-
requisites, which the current production system does not take into
account. Since this shortcoming is serious, we have developed a
model and algorithms for recommendations constrained by prereq-
uisites, which we describe and evaluate in this paper. Our plan is to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

incorporate one of our algorithms into the production system.
Although our focus is on prerequisites in an academic environ-

ment, prerequisites also arise in other recommendation contexts.
Movies, for instance, often are best watched in a sequence. For
example, the movie “Godfather I” should be watched before “God-
father II,” and both these movies should be watched before “God-
father III.” The problem is even more acute when it comes to tele-
vision serials and novels. TV serials, especially those of the drama
genre, tend to proceed in sequential fashion, and need to be watched
in sequence. Novels can be sequential as well. While movies tend
to have relatively few sequels, a fiction series could have several
books that should be read in order.

There are at least two ways to approach the problem of recom-
mendations with prerequisites:
• Ranking. We are given a set of items, each with an initial score

that describes how desirable that item is for a particular user.
The initial scores can be derived using traditional recommenda-
tions techniques, e.g., a movie may have a high score if people
like our given user have watched that movie. Next we com-
pute new scores, based on the old scores, the prerequisite con-
straints, and knowledge of what items the user has already taken
or watched. The idea is that an item’s “desirability” score can
increase or decrease depending on the prerequisites, e.g., an
item that has many unfulfilled prerequisites is less desirable, es-
pecially if those prerequisites have low initial scores. Note that
a high score does not guarantee that prerequisites have been
met. That is, the user still needs to check if he can take a highly
recommended item.
• Set Recommendation. In the second case, we again have a set

of items with initial scores, and knowledge of what items have
been taken. We now wish to recommend to the user a set of k
desirable items, such that the set can be taken without further
prerequisites. That is, the prerequisite of any item in the set has
either been satisfied or is in the set itself. For example, if we
wish to recommend “Lord of the Rings II” to a user as one of
the k items, then we have to recommend “Lord of the Rings
I” (a prequel, and therefore a prerequisite) as another one of
the k items (unless the user has already watched part I). As
discussed later, we can also return several sets of k items, each
representing a different “package” recommendation.

In this paper we only study set recommendations. Although we
have not yet carefully compared both options, initially set recom-
mendations seem more attractive and easier for the user to interpret.
If a user wishes to take or watch a single item, then a set recommen-
dation with k = 1 yields the best item that can currently be taken.
(As stated earlier, the top ranked item in the ranking scenario may
not be yet watchable.) If the user is planning ahead and wants to
take k courses or watch k episodes, set recommendations provide

one or more “package” recommendations that make sense as a unit.
Additionally, recommending each item that satisfies prerequi-

sites one-by-one, instead of a “package” recommendation of size
k, can prove to be sub-optimal, since at the start, we might end up
not choosing items which are prerequisites for a lot of “good” items
and as a result we may have to make poor recommendations later
on. The challenge, therefore, is to not just recommend a package
that satisfies prerequisites, but one that is the “best”.

We also study various kinds of prerequisite constraints. For ex-
ample, in some domains, it may be the case that in order to be able
to take an item a, one needs to take either b or c. In other domains,
in order to be able to take an item a, one might need to take both b
and c.

This paper extends the work in our short paper [14], which con-
tained only the three algorithms for the special case of chain graphs.
(We summarize this content in two pages.) Our contributions are
the following:
• We define the problem of recommendations with prerequisites

for general prerequisite structures in Sec. 2.
• We prove hardness of recommendations for certain classes of

prerequisite structures in Sec. 2.1.
• We provide a PTIME dynamic programming algorithm for a

special prerequisite class in Sec. 3.1.
• We give approximation algorithms that can adapt to any prereq-

uisite structure in Sec. 3.2-3.5, obtain their worst case bounds
and prove incomparability in Sec. 4, and derive complexity in
Sec. 5.
• We provide an algorithm that takes sets recommended by dif-

ferent algorithms and combine them to obtain a new set that is
even better in Sec. 3.6.
• We experimentally evaluate the algorithms for two kinds of pre-

requisite structures in Sec. 6.

2. THE PROBLEM OF PREREQUISITES
We now formally define the problem of recommendation with

prerequisites. We wish to recommend a set of k items from a set
of items V . We are also given a directed acyclic graph G(V, E),
where the vertices v ∈ V correspond to items, and directed edges
(u, v) ∈ E correspond to prerequisites, i.e., item u needs to be
taken before item v. We assume that each item in V has been al-
ready assigned a score, which corresponds to how ‘good’ the item
is. This score could be obtained by various approaches — content-
based, collaborative filtering [17, 2, 7] etc. Note that we do not in-
clude in G nor in V items that have already been taken or watched.
That is, if item i has item j as a prerequisite, but j is already taken,
then we can ignore j and its prerequisite edge.

Our task is to pick a set A, of size |A| = k, such that score(A)
is maximized:

score(A) =
∑
a∈A

score(a) (1)

In addition, we also have the following constraint to ensure that
prerequisites are satisfied:

∀u, v ∈ V : v ∈ A ∧ (u, v) ∈ E ⇒ u ∈ A (2)
Note that these equations above inherently assume that the items

being recommended are independent of each other, except for those
that are related via set E . That is, the scores of items (not connected
through E) do not change if we recommend them together or sepa-
rately.

We call the prerequisite graph above an AND Graph, because in
order to be able to take any node, all of the parents need to be taken
as well. Another graph variant is called an OR Graph, where in

Chain Graph

AND Graph OR Graph

AND-OR Graph

Figure 1: Hierarchy of prerequisite structures studied in this paper

order to be able to take any node, at least one of the parents needs
to be taken. In this case, Eq. 2 is modified to:

∀u, v ∈ V : v ∈ A ∧ (u, v) ∈ E ⇒ ∃w ∈ A : (w, v) ∈ E
OR graphs are common in the course recommendations, since there
could be many prerequisites courses with overlapping content. For
example, “Programming in C” and “Programming in Java” are both
parents of “Algorithms”, even though only one of them needs to be
taken. A third variant (and generalization of the previous two) is an
AND-OR Graph, where at each node, either all of the parents need
to be taken (i.e., the node is an AND node), or at least one of the
parents needs to be taken (i.e., the node is an OR node).

We also consider Chain Graphs, a special case for which we can
obtain exact solutions. First, we define a chain to be a sequence of
items a1 → a2 → . . .→ an, such that there exists only the follow-
ing edges involving a1, . . . , an: (a1, a2), (a2, a3), . . . , (an−1, an).
Note however that n could be 1, in which case the node has no
edges either coming into or going out of it. For example, if the
items we wish to recommend are movies, then nodes correspond-
ing to movies Godfather I, II and III would form a chain as follows:
Godfather I → Godfather II → Godfather III. On the other hand,
the movie “Shawshank Redemption” would form a singleton node
with no edges either going in or coming out. A graph consisting of
a set of chains is called a chain graph. If a1 → a2 → . . .→ an is
a chain, then a1 → a2 → . . . → ai, i ≤ n is a sub-chain, while
a1 → a2 → . . .→ an → . . .→ an+m,m ≥ 0 is a super-chain.

Note that Chain Graph is a special case of an AND graph as well
as an OR Graph, since if every item has at most one parent, then
that parent would need to be selected for both AND and OR graphs.
The hierarchy of prerequisite structures is displayed in Fig. 1. We
study recommendations for each of these structures in this paper.

Our algorithms can be generalized to handle fuzzy prerequisites
and generalized scoring functions, with different worst case guar-
antees, as discussed in Appendix C. In particular, fuzzy prerequi-
sites allow multiple scores for a given item based on whether or not
the prerequisites for that item are present. Furthermore, with gener-
alized scoring functions, item scores need not be independent. (In
this paper, we assume scores are independent.)

2.1 Complexity
We find that picking the best set satisfying prerequisites is NP-

Hard for OR, AND and AND-OR graphs. We first prove the hard-
ness result for AND graphs, and then for OR graphs. Trivially,
either one of these reductions would be applicable to AND-OR
graphs, making them NP-Hard as well.

2.1.1 Hardness of AND Graphs
The problem of picking the best set A, |A| = k, satisfying pre-

requisites for AND Graphs is NP-Hard via a reduction from set
cover. Consider a set cover instance with sets s1, s2, . . . , sn, cover-
ing some items from the set T = {t1, t2, . . . , tm}. We aim to find
a set cover of size k, i.e., a selection of k sets such that all items in
T are covered. We reduce set cover to the decision version of the
prerequisite problem: Given a graphG, is there a set satisfying pre-
requisites of size k∗ which has score ≥ s. We reduce the given set

s1 s2

(s2, t1)

(s2, t1)2k

(s2, t1)3

(s1, t2)

(s1, t2)2 (s2, t1)2

(s1, t2)3

(s1, t2)2k

(s2, t1, s2, t3)

......... ...

(s1, t1)

(s1, t1)2k

(s1, t1)3

(s1, t1)2

(s2, t3)

(s2, t3)2k

(s2, t3)3

(s2, t3)2

(s1, t1, s1, t2)
(s1, t1, s2, t3)

LAYER 1

LAYER 2

LAYER 2k + 1

LAYER 2k + 2

Figure 2: NP-Hardness Proof for AND Graphs

cover instance to the following decision problem: Is there a set sat-
isfying prerequisites of size k∗ = 2mk+ k+

(
m
2

)
that has a score

≥
(
m
2

)
in a graph G that we construct as follows: First create a

node corresponding to each set si. These nodes form the first layer.
Now we create nodes corresponding to each item in si. Thus if tj
is in set si, we create a node (si, tj) in the second layer. We create
directed edges from si to each (si, tj) node created. Subsequently,
we form a chain of 2k−1 nodes below each (si, tj), i.e., we create
a chain (si, tj)→ (si, tj)2 → (si, tj)3 → . . .→ (si, tj)2k. Sub-
sequently, we create nodes for each ti, tj pair; i.e. for (sp, ti)2k
and (sq, tj)2k, where i 6= j, we create a new node (sp, ti, sq, tj),
such that there are directed edges from (sp, ti)2k and (sq, tj)2k to
(sm, ti, sl, tj). Only the nodes with four labels, i.e., those at the
last layer, have a score of 1, all other nodes have score 0. This con-
struction is depicted for an example in Fig. 2. In the figure, we show
just two sets s1, s2 covering items t1, t2 and t1, t3 respectively, and
the edges between them (some labels are omitted for clarity).

If there is a set cover of size k, then it is easy to construct a set of
size k∗ that satisfies prerequisites, and has score at least

(
m
2

)
: First,

pick the nodes corresponding to the sets comprising the set cover
at the first layer. Then pick m complete chains (one for each ti)
such that each chain belongs to a set si that has been chosen in the
first layer. Such chains are always present because each item ti is
present in at least one sj . Then, we pick all

(
m
2

)
nodes at the last

layer formed at the end of each pair of chains from the m chains
(since each chain corresponds to a unique ti, all pairs of chains
have a node at the last layer). Thus the size of the set is ≤ k∗ and
has score

(
m
2

)
. We now try to prove the converse.

If there is a set of size k∗ satisfying prerequisites of score≥
(
m
2

)
then the following hold:
• At least

(
m
2

)
items are picked in the last layer, because only

those items have non-zero score.
• At least m items are picked in the last-but-one layer, because

items in the last layer are formed from pairs of items in the
penultimate layer. If at least m items are not picked from the
penultimate layer, then we cannot pick

(
m
2

)
from the last layer,

since each item at the last layer takes a distinct pair of prereq-
uisites from the penultimate layer. Therefore, at least m chains
are picked (so as to not violate prerequisites), which amounts
to 2mk items.
• If there are more than m items picked in the penultimate layer,

then there are at least 2mk + 2k items picked in the chains,
and at least 2mk + 2k +

(
m
2

)
items picked, which violates the

number of items picked (since the total number of items picked
has to be exactly 2mk + k +

(
m
2

)
). Thus there are exactly m

chains picked, completely.
• All m chains need to correspond to different items, otherwise(

m
2

)
items cannot be picked in the last layer.

• There are at most k∗ −
(
m
2

)
− 2mk = k items chosen at the

first layer, corresponding to sets.
Thus, the sets that are picked correspond to a set cover, since each
item from T is found in the set that is the parent of the chain corre-
sponding to the item. Thus, there is a set cover. Hence, the reduc-
tion holds.

2.1.2 Hardness of OR Graphs
The proof of NP-hardness for OR Graphs involves a reduction

from Set Cover as well, and is much simpler. A brief outline
of the proof follows: Consider a node corresponding to each set
si ∈ {s1, s2, . . . , sn} in the set cover problem, and each item
ti ∈ {t1, t2, . . . tm}. We connect node si to a node tj via a di-
rected edge if tj ∈ si. Additionally, each ti has score 1, while all
si have score 0. If the set cover problem asks for a set of size k, then
the decision version of the prerequisite problem for the OR Graph
asks if there exists a set of size k + m with score ≥ m satisfying
prerequisites.

3. THE BASIC ALGORITHMS
Since the problem of recommendation with prerequisites is NP-

Hard for AND, OR and AND-OR Graphs, we can only provide ap-
proximate solutions. Throughout this paper, the algorithms listed
are for AND Graphs (and therefore for chain graphs as well), which
forms a reasonable prerequisites structure for movies, books and
other media. However, our algorithms, with simple modifications,
work for OR and AND-OR graphs as well. We defer the modifi-
cations to them for OR and AND-OR graphs to Section 3.7. We
also walk through each algorithm for an example graph in the Ap-
pendix A.

For the special case of chains graphs, there is an expensive but
exact PTIME algorithm that we examine first, in Sec. 3.1. Note that
all algorithms return a set of size k assuming one exists. If not, the
algorithms return the entire set of items.

3.1 Exact Chains Algorithm
For the case when G is a forest of chainsC1, . . . Cn, the problem

of finding the best set satisfying prerequisites is solvable using a
PTIME dynamic programming algorithm.

The algorithm DP Chains generates an array a of size (n+ 1)×
(k + 1). The (i, j)th entry of this array corresponds to the score
of the best package that can be obtained by picking j items from
the first i chains, while satisfying prerequisites. For entries in the
ith row, we only need to consider the values of a for the previous
row, and the scores of items in the current chain Ci. In particular,
consider entry (i, j). We can pick l items where 0 ≤ l ≤ j items
from the chain Ci and pick the remaining j − l items from the
previous i − 1 chains. The optimal score of picking j − l items
from the previous i− 1 chains is stored at a[i− 1][j− l], so it does
not need to be recomputed. Hence there is an optimal substructure
built into this formulation of the problem.

However, note that this algorithm cannot be generalized to the
case of DAGs or even trees, since subgraphs picked in either case
cannot be picked independently of each other, unlike in the chain
graph case. Thus, there is no optimal substructure in the DAG case.
To combat this problem, we provide three other algorithms in sub-
sequent sections. However, these algorithms will be approximate.

Note also that the complexity of the dynamic programming algo-
rithm,O(nk2) may be high because nmay be high. The algorithms
in subsequent sections describe algorithms which operate in O(n)

or O(nk) and hence are more efficient. Note that in particular, the
Greedy-value Pickings Algorithm that we describe performs almost
as well as DP Chains Algorithm on synthetic chain graphs.

DP Chains Algorithm
Require: k ← size
Require: G← graph of chains C1, C2, . . . , Cn
1: a⇐ array of size (n + 1, k + 1)
2: for all i in 0 . . . n do
3: for all j in 0 . . . k do
4: a[i][j]⇐ 0
5: if i == 0 then
6: continue
7: end if
8: s⇐ 0
9: for all l in 0 . . . j do

10: s⇐ s+ score of lth item in Ci
11: a[i][j]⇐ max(a[i][j], a[i− 1][j − l] + s)
12: end for
13: end for
14: end for
15: return a[n][k]

3.2 Definitions
We define boundary(A) as the set of items in A each of which

can be deleted without violating the prerequisites of any other items
in the set, i.e., if x ∈ boundary(A), then there is no y ∈ A and
x1, x2, . . . , xn such that there exists a sequence of edges (x, x1),
(x1, x2),. . . ,(xn, y) in E .

We define external(A) as the set of items in V that are not in A
and can be potentially added to A without violating prerequisites,
i.e., if x ∈ external(A), then there is no y, x1, x2, . . . , xn such
that the edges (y, x1), (x1, x2), . . . , (xn, x) exists in E , but y /∈ A.
Note that this set also contains the items in V that have no edges
coming into them.

The modifications to these definitions for OR and AND-OR graphs
can be found in Sec. 3.7, along with the modifications to the algo-
rithms described below.

3.3 Algorithm 1: Breadth-first Pickings
As listed in Algorithm 1, we initialize the set A with the best

k items by picking greedily the best item from among the items
whose prerequisites have been satisfied, but are not already in the
set A, i.e., external(A) (line 2-4).

We then greedily try to replace items from boundary(A), i.e.,
the items that are non-essential toA, with those from external(A),
those whose prerequisites have been satisfied (line 7-14). However,
we make sure that we do not delete the parent of a child (line 8).

Note that at each iteration (line 6-15), we either increase the
score of A, or we delete an item from B. Since, beyond a point,
the score cannot grow, and since B is finite, we are guaranteed
termination.

3.4 Algorithm 2: Greedy-value pickings
We use a max-priority-queue for this algorithm, and insert sets

of items into the queue. The max-priority-queue is sorted on the
value, i.e., the average score of the items in the set, and on querying
returns the set with the largest value.

We list the pseudocode in Algorithm 2. We insert a set corre-
sponding to each node in the graph G into the max-priority queue
(line 3-7). This set contains the given node v, and all nodes a such
that there is a path from a to v. These sets in the queue are sorted
on average score, i.e., the sum of score of the items in the set, di-
vided by the size of the set. On performing pop on the queue, the
item with the largest average score is removed from the queue.

Now, as long as we have not picked enough items in A, we keep
picking items by popping sets from the queue (line 8-9). If the

Algorithm 1 Breadth-first Pickings
Require: k ← size
Require: G← AND graph
1: A⇐ ∅
2: while size(A) < k do
3: A⇐ A ∪ {item with largest score in external(A)}
4: end while
5: B ⇐ external(A)
6: while there exist items in B do
7: pick b ∈ B with largest score
8: a ⇐ item with smallest score in boundary(A) that is not parent

of b
9: if a exists ∧ score(b) > score(a) then

10: A⇐ A− {a} ∪ {b}
11: B ⇐ external(A)
12: else
13: remove b from B
14: end if
15: end while
16: return A

Algorithm 2 Greedy-value Pickings
Require: k ← size
Require: G← AND graph
Require: Q← max-priority-queue
1: A⇐ ∅
2: Q⇐ ∅
3: for all items i ∈ G do
4: C ⇐ {i}
5: C ⇐ C ∪ prerequisites of i
6: insert C into Q with size(C) = no. of items in C; value(C) =∑

a∈C score(a)/size(C)
7: end for
8: while size(A) < k ∧Q 6= ∅ do
9: M ⇐ pop(Q) /* M has highest value in Q*/

10: if size(M) ≤ k − size(A) then
11: A⇐ A ∪M
12: for all sets C ∈ Q where C ∩M 6= ∅ do
13: sum⇐

∑
a∈(C−A) score(a)

14: size(C)⇐ no. of items in C −A
15: if size(C) 6= 0 then
16: value(C)⇐ sum/size(C)
17: else
18: value(C) = 0
19: end if
20: end for
21: end if
22: end while
23: return A

popped set is small enough to be added to A (line 10), we add it to
A (line 11), and update the values of other sets that have a non-zero
intersection with the set currently added to A, in two steps: Firstly,
the number of items is reduced by the number of new items added
to A that are also present in the set (line 14). Additionally, since
those items no longer count towards the average score of the set,
the value of the set is appropriately changed (line 15-19).

The algorithm has to terminate because the number of sets in the
priority queue is bounded by the total number of items.

3.5 Algorithm 3: Top-down pickings
In Algorithm 3 we start with the best set of items of size k (line

1) by picking items with largest score without regard to prerequi-
sites, and try to incrementally add prerequisites. We keep track of
items that we have already added prerequisites for in B (line 6).
We never let such items be deleted.

We pick the items in order of decreasing scores fromA−B, i.e.,
the items that have not been examined already (line 4). We then

check if the prerequisites of the item are already present in A (line
7), if so, we examine the next item.

If there are still some s prerequisites required (line 8), we replace
items from A if possible (line 11-14,18). These items are picked
from boundary(A), but should not be present in the items already
considered B (line 12-13).

Algorithm 3 Top-down Pickings
Require: k ← size
Require: G← AND graph
1: A⇐ best set of size k
2: B ⇐ ∅
3: while there exists items ∈ A−B do
4: a⇐ item with largest score in A−B
5: C ⇐ prerequisites of a
6: B ⇐ B ∪ {a}
7: if (C −A == ∅) continue
8: s⇐ size(C −A) /* no. of missing prereqs. */
9: A′ ⇐ A

10: R⇐ ∅ /* deletions from A */
11: while size(R) < s ∧ (boundary(A′)−B) 6= ∅ do
12: a⇐ item with smallest score in boundary(A′)−B
13: if a exists, {R⇐ R ∪ a; A′ ⇐ A′ − a}
14: end while
15: if size(R) < s then
16: replace a in A with item with largest score from external(A)
17: else
18: A⇐ (A−R) ∪ C
19: end if
20: end while
21: return A

If sufficient items cannot be found we replace the item under
consideration with an item from external(A) (line 16), i.e., those
items that can be added without violating prerequisites because
their prerequisites are already present. Note that such an item can
always be found by simply picking the first unpicked item in a topo-
logical sort of the graph.

We are guaranteed termination, because there are a finite number
of items, and every item that is considered is added to B, and an
item that is considered cannot be re-considered.

Note that there may be cases where Algorithm 3 does much
worse than the other two algorithms, simply because we blindly
add prerequisites of items with high ‘score’, without regard to the
‘score’ of those prerequisites. There are a few reasons why we con-
sider Algorithm 3 important: firstly, typically chains are coherent,
meaning that there is not much variation between scores of items
in a chain. Therefore, if we pick a chain containing an item with a
high score, then it is likely that other items in that chain have high
score as well. Secondly, Algorithm 2 is expensive, because sub-
chains of each chain have to be inserted into an priority queue, and
values need to be updated after every addition, while Algorithm 1
and Algorithm 3 are less expensive. However Algorithm 1 has no
concept of a look-ahead towards items having a high score, while
Algorithm 3 has a look-ahead aspect built into it. Thirdly, we dis-
cuss later on, an approach to combine several candidate solutions,
and diverse algorithms are likely to give rise to better results on
combining.

3.6 Algorithm 4: Combining Solutions
We have also designed an algorithm, Merge, that takes as input

two sample solution sets A1 and A2 of size k (both satisfying pre-
requisites) for an AND graph. Merge generates a new set of size k,
which does not violate prerequisites, and also has a score greater
than or equal to A1 and A2. This set is formed only using ele-
ments from A1 ∪A2. The algorithm starts with the set with higher

score and iteratively replaces subgraphs with least average score
with subgraphs with high average score from the other set, while
retaining prerequisites and making sure we have k items. The de-
scription of this algorithm and pseudocode can be found in Ap-
pendix B.

3.7 Modifications for Other Structures
We now describe the modifications to definitions discussed in

Sec. 3.2 for AND-OR graphs (and therefore for OR graphs as well),
and then provide specifics on the modification of each algorithm for
AND-OR graphs.

For AND-OR graphs, boundary(A) is the set of items inA such
that each of the items is not a prerequisite or a potential prerequisite
of any other item in A, i.e., if x ∈ boundary(A), then there does
not exist an item y ∈ A and items x1, x2, . . . , xn such that there is
a sequence of edges (x, x1), (x1, x2), . . . , (xn, y) in E .

Similarly, external(A) is the set of items that can be added such
that prerequisites are not violated. For an AND-OR graph, if the
node x added is an AND node, then all items y such that there
is a edge from y to x in E must also be present in A, as well as
prerequisites for all such y. If the node x is an OR node, then at
least one y (whose prerequisites are already in A) such that there
exists an edge from y to x should be present in A.

3.7.1 Algorithm 1
We replace line 8 in the algorithm to reflect the fact that a should

not be necessary for b, i.e., b’s prerequisites inA−{a} are present.

3.7.2 Algorithm 2
For AND-OR graphs, as before, we insert sets corresponding to

each item into the max-priority queue in a top-down fashion. For
an AND node a, in line 5, we include the set of prerequisites that is
the union of the prerequisite sets corresponding to all of a’s imme-
diate parents. For an OR node a, in line 5, the set of prerequisites
corresponding to a’s immediate parents with the largest value (as
in the algorithm) is included. For OR graphs, this procedure cor-
responds to selecting the best path to any root (i.e., the path with
greatest value.) Although we do not prove it here, this procedure
guarantees that a set of size k respecting prerequisites, if present, is
always returned.

3.7.3 Algorithm 3
Line 5 uses the “best” set of prerequisites, i.e., those used in

Sec. 3.7.2 to augment the set corresponding to each item.

4. WORST CASE BOUNDS
In this section, we derive bounds on the worst case difference

between the score of the optimal set and the score of the set that we
return for each prerequisite structure. The worst case bounds are
listed in Table 1. We prove the worst case bounds for chain graphs
and some other prerequisite structures here and defer the remaining
proofs to the appendix.

We define the following properties of the graph G: The coher-
ence of G, i.e., the maximum difference between the minimum and
maximum score of two items in any connected component in the
graph is γ. (For the case of chain graphs, γ is the maximum dif-
ference between two items in any chain.) Additionally, the depth
of a graph G, i.e., the maximum length of any directed path, is d.
(For chain graphs, the depth is the maximum number of items in
any chain.) As before, a set of size k is desired.

4.1 Algorithm 1: Breadth-first Pickings
We consider chain graphs first. Assume d < k. The worst case

is attained as in Fig. 3, when there are k singleton items that have

Structure DP Alg 1 Alg 2 Alg 3
chain graphs 0 k

min(k,d)−1
min(k,d)

min(k,d)
4

k
min(k,d)−1
min(k,d)

AND - k − 1 k + 2− 2
√

k + 1 k − 1

OR - k − 1 k − (min(d,
√
k+1)+1)2+k

min(d,
√
k+1)

k
min(k,d)−1
min(k,d)

AND-OR - k − 1 ≥ k + 2− 2
√

k + 1 k − 1

Table 1: Worst Case Bounds for each prerequisite structure for
each algorithm (all entries are multiplied by γ)

a score of α, while there are several (≥ k, say) other items which
have score of α− δ, for very small δ, but those items are each the
start of a chain of (d−1) items that have a score of α−δ+γ each.
In this case, Alg. 1 picks k items that have a score of α to form part

...

≥ k singleton items

α− δ α− δ α− δ α− δ

α− δ + γ α− δ + γ α− δ + γ α− δ + γ

α− δ + γ

α− δ + γ α− δ + γ α− δ + γ α− δ + γ

α− δ + γ α− δ + γ α− δ + γ

≥ k chains with d items in each chain

α α α

Figure 3: Worst case for Alg. 1
of A, and never discards them in favor of items with score α − δ,
which forms part of external(A). However, the optimal algorithm
would pick k/d such (complete) chains, because after the first item
in the chain, all the other items have a value of α− δ+γ. Thus the
difference between the optimal score and the score of our algorithm
would be: (ignoring δ)

k

d
(dα+ (d− 1)γ)− kα =

kγ(d− 1)

d
(3)

The worst case for d ≥ k has a single long chain of size k as above
and many (≥ k) singleton items. The worst case difference is then
(k − 1)γ.

As a justification for the fact that this is actually the worst case,
consider the following: Note that Alg. 1, on termination, returns a
set A such that no item in external(A) is better than any item in
boundary(A). Also note that in each of the chains, the first item
that is present in the optimal set but not inAwill lie in external(A).
Now let there be a sub-chain in the optimal set no part of which is
in A. The first item of this sub-chain (score α− δ, say) forms part
of external(A) for all iterations of Alg. 2. Thus, in the worst case,
each item in A is equal to, or slightly better than α − δ. Thus A
has k items of score α. We now try to maximize the score of the re-
maining items in the optimal set. The maximum score is when the
first item of each of the sub-chains in the optimal set is not inA and
has score (α− δ). (If it had a higher score, then it would be chosen
by A.) Each of these items are followed by d − 1 ‘good’ items of
score α + γ − δ, which is the maximum such score. This situa-
tion is precisely the one described above. Though we do not prove
it here, the case when every sub-chain in the optimal set overlaps
with some sub-chain in A does not change the worst case bound.
(This case has lower difference because of high overlap between
A and the optimal set, and the coherence constraint.) Note that if
d ≥ k, k takes the place of d above.

We prove the worst case bounds for other prerequisite structures
in Appendix A.6.1.

4.2 Algorithm 2: Greedy-value Pickings
We consider chain graphs first. Assume that k > d for now. Let

there be d remaining items to be picked. Let the optimal algorithm
and Alg. 2 return the same score until this point. The only unpicked

items are shown in Fig. 4. Let there be only d/2 singleton items
with a score of α + γ/2 + δ. However, there is a chain of d items
where the first d/2 items in the chain have a score α, while the
last d/2 have a score of α + γ. (The average score of this chain is
α+γ/2.) In this situation, the item that is picked first by Alg. 2 is a
singleton node with score α+ γ/2 + δ. We keep picking d/2 such
singleton items. Later, since there are only d/2 items left, Alg. 2
picks the first d/2 items of the chain, each of which have value
α. The optimal algorithm picks the chain of d items instead of the
singleton nodes. The difference between the optimal score and the

...

α + γ
2

+ δ α + γ
2

+ δ α

α

α+ γ

α

d/2 singleton items

α + γ
2

+ δ

d
2 items with score α

α+ γ

α+ γ

d
2 items with score α + γ

Figure 4: Worst case for Alg. 2

score of the Alg. 2 is (ignoring δ)

(dα+
d

2
γ)− (dα+

d

2
.
γ

2
) =

d

4
γ (4)

If k ≤ d, then a similar construction can be used, with k taking
the place of d. Here, the worst case bound is kγ/4.

For an informal proof of why this graph is the worst case when
k > d (the proof for k ≤ d is similar), consider the following: Note
that if we do not discard any sets in the execution of the algorithm
via the condition in line 10, then we are guaranteed an optimal
solution. To see this, consider A returned by the algorithm, and an
optimal A∗ with higher score. Let the average score of the last set
picked by the algorithm be v. Now, since A∗ has a higher score,
(A∗ − A) must have a sub-chain c that can be added to A without
violating prerequisites and has higher average score than v. (If all
sub-chains have same average score v, then there is no way A∗ can
have higher score.) However, if c has higher average score than v,
it should have been picked instead of the last set that was picked in
the algorithm.

The only situation when the optimal set would contain a differ-
ent set of items is when there is a chain (or sub-chain), C, whose
average score is smaller than the average score v of the last chain
added, but cannot be added due to insufficient capacity. (The case
where there are multiple chains that are not picked is no worse.)
As a result of this insufficient capacity, a sub-standard chain with
fewer items is added. The worst possible sub-standard chain is a
sub-chain of C of the remaining capacity itself. The worst pos-
sible difference between the items that were added and those that
were not added is γ. Let us assume that there are d − r items in
C that have value α that were added, followed by r items that have
score α + γ that were not added. The average of C is rγ/d + α,
each of the r items that are preferentially chosen have a score of
at least α + rγ/d. The difference in the scores is rγ − r2γ/d =
γ(r)(1− r/d). The optimal value of r, for which the difference is
greatest, is d/2. Thus the worst case bound is γd/4.

4.2.1 Worst case bounds for other structures
For AND graphs, the worst case situation is displayed in Fig. 5.

In the figure, there are k−x singleton items with score α+ γ
x+1

+
δ. Additionally, there is another connected component which has
x root items with score α, and k − x items with score α + γ,

each of which has all x root items as prerequisites. Note that this
situation is similar to the one in Fig. 4, in the sense that in both the
situations there are several good items at the end of a subgraph of
bad items, but Alg. 2 never gets to the good items because it makes
poor greedy choices early on.

In this case, the algorithm picks (k − x) items of score α +
γ
x+1

+ δ first, since those items have the highest average score.
Then, the algorithm picks the x items that have a score of α. The
optimal algorithm, on the other hand, picks all items from the first
connected component.

x items of score α (k − x) items of score α + γ
x+1

+ δ

k − x items of score α + γ

Figure 5: Worst case for Alg. 2 for and graphs
We ignore δ in the following calculation. The score of the set

returned by Alg. 2 is kα + (k−x)γ
x+1

, while the score of the optimal
set is kα + (k − x)γ. Thus the difference is: γ(k − x) x

x+1
. The

largest value of this difference (forming the worst case) is γ(k +
2− 2

√
k + 1), with x =

√
k + 1− 1.

We prove the worst case bounds for OR and AND-OR graphs in
Appendix A.6.2.

4.3 Algorithm 3: Top-down Pickings
For chain graphs, the worst case is attained when there are ≥ k

singleton items with score of α + γ − δ, but there are ≥ k items
which have scores of α+γ. However, let these k items be at the end
of ‘bad’ chains, i.e., (d− 1) items with scores of α. This situation
is given in Fig. 6.

...

≥ k singleton items

α α α α

α α α α

α

α + γ α + γ α + γ α + γ

α α α

≥ k chains with d items in each chain

α− δ + γ α− δ + γ α− δ + γ

Figure 6: Worst case for Alg. 3
Algorithm 3 picks k items with score α + γ, and then tries to

include the prerequisites for those items. As a result, the algorithm
terminates with k/d complete chains (each of size d) that end with
items with score α + γ. The optimal solution in this graph is to
pick k items with score α+ γ − δ.

The worst case difference (ignoring δ) between the optimal so-
lution and the solution returned by the algorithm is:

k(α+ γ)− k

d
(α+ γ + (d− 1)α) =

kγ(d− 1)

d
(5)

Note that this value is the same as the value for Alg. 1. When
k ≥ d, the worst case is still Fig. 6 but with a single chain of size
k. The worst case difference is then (k − 1)γ.

We prove that Fig. 6 is the worst case for chain graphs and derive
bounds for other structures in Appendix A.6.3.

4.4 Summary and Incomparability
In summary, for chains, the worst case bound of Alg. 2 is better

than the worst case bound of Alg. 1 and 3, both of which have worst
case bounds of the same magnitude. As can be seen in Table 1, this
relationship holds true for other prerequisite structures as well. The
only case where Alg. 3 and Alg. 1 have different worst case bounds
is for OR graphs, wherein Alg. 3 can add at most d bad elements
(i.e., prerequisites) by making a poor greedy choice, while Alg. 1
adds k − 1 bad elements.

We now prove that the three approximation algorithms are in-
comparable, i.e., there exist cases where each algorithm does better
than the other two. The proof is for chain graphs and therefore also
holds for OR, AND-OR and AND graphs.

For the case when the graph is Fig. 4 (and k = d), Alg. 3
would pick the optimal set, while Alg. 1 and Alg. 2 would pick
sub-optimal sets. There is also a case where Alg. 1 performs better
than both Alg. 2 and Alg. 3. Consider the following graph:
• a(0.5)→ b(0.9)

• c(0.6)→ d(0.6)→ e(0.85)

Let k = 3. In this case, Alg. 1 would pick c, d and then e — a
score of 2.05. However, Alg. 2 and Alg. 3 would pick {a, b} and
then pick {c}, a score of 2.0.

Alg. 2 would do better than Alg. 1 and Alg 3 on the following
example (with k = 3):
• a(0.51)→ b(0.9)

• c(0.5)→ d(0.8)→ e(0.85)

Here, Alg. 1 and Alg. 3 would pick {a, b, c} = 1.91, while Alg. 2
picks {c, d, e} = 2.15.

Thus, the three algorithms are incomparable. Therefore, given
the resources, we might wish to implement all three algorithms in
order to improve our recommendations.

5. COMPLEXITY
We now examine the worst case complexity for the exact al-

gorithm, three heuristic algorithms and the merge algorithm for
chains. Let the number of chains be n.

The exact dynamic programming algorithm maintains a matrix
of size O(nk), and computes each entry in time O(k). Thus the
overall complexity is O(nk2).

For the rest of the algorithms, we can prune the search for the
best set at the start itself. We use a fibonacci heap, which takes
Θ(n) to construct and O(logn) to delete any element.

For Alg. 1, we make a pass of the first item in each of the n
chains, and extract at most k chains with the best first items. This
operation can be done in O(n+ k logn) using the fibonacci heap.
Subsequently, we take at most O(k2) items (from the k chains),
and then run Alg. 1 on those items. If we use two fibonacci heaps to
store the items in external and boundary, we insert each item at
most once in each of the heaps, and extract each item at most once
(k2 extractions of O(log k2)). Thus, this phase is O(k2 log k).
Thus, Alg. 1 is O(n+ k logn+ k2 log k) ≈ O(n) if n >> k.

For Alg. 2, we first extract k best sub-chains of each size from
1 . . . k. This operation can be done in O(nk + k2 logn) since
there are O(nk) sub-chains, and since we extract k items from k
heaps of size O(n) (one heap corresponding to each length of sub-
chain from 1 to k). Subsequently, all sub-chains of the k2 chains
corresponding to the k2 sub-chains picked earlier (i.e., at most k3

sub-chains) are used in Alg. 2. We use k fibonacci heaps (one cor-
responding to chains of each size from 1 . . . k), and extract at most
k items in total. Each such item will then trigger the change of
the average score of at most k items. Thus, we insert items in
heaps in O(k3), extract items in O(k log k), and modify score in

O(k2 log k), giving a complexityO(nk+k2 logn+k3) ≈ O(nk),
if n >> k.

For Alg. 3, we make a pass through all the O(nk) items to ex-
tract the best k items, and also the best k items at the that do
not have any prerequisites (to replace the items whose prerequi-
sites cannot be added), in O(nk + k logn). (Note that this step is
faster for Alg. 3 which simply needs to pick the k best elements
than Alg. 2 which needs to pick the k2 best subchains (by average
score).) Subsequently, these 2k chains of size at most k are used in
Alg. 3. We use two max-heaps, one to store items whose prerequi-
sites have not been added yet, and one of the items in boundary,
and one min-heap, to store items whose prerequisites have not been
added (and therefore can be deleted). Each of these heaps con-
tain at most k2 items, and at most k2 items are deleted. Thus
the complexity is O(k2 log k). The total complexity is therefore,
O(nk + k logn+ k2 log k) ≈ O(nk), if n >> k.

Thus, we see that Alg 2 has the highest runtime complexity, fol-
lowed by Alg 3 and then Alg 1. In fact, Alg 1 does not even need
to look at the entire data. The relationships between the algorithms
with respect to complexity (i.e., Alg 2 > Alg 3 > Alg 1) still hold
true even when we consider AND, AND-OR and OR graphs. (See
Appendix A.5.) This is primarily because Alg. 2 ends up modi-
fying the scores of all other sets that have some overlap with the
set under consideration (which, in the worst case, could be all the
sets,) while none of the other two algorithms have such an expen-
sive step. Alg. 1 is the least expensive because it performs a search
for a local maxima near the start of the DAGs.

Alg. 4 has the same complexity as the second phase of Alg. 2,
i.e., O(k2 log k), not dependent on n (the number of chains), and
thus is more efficient than any of Alg. 1, 2, or 3.

6. EXPERIMENTAL ANALYSIS
We analyze the algorithms for chain graphs in Sec. 6.1, and for

other structures in Sec. 6.2. We assess the average performance of
the three algorithms of Sec. 3 and the Merge algorithm of Sec. 3.6.

We use synthetic data because it allows us to study the behavior
of the algorithms on varying parameters. Additionally, publically
available datasets do not posess prerequisite information.

6.1 Experiments for Chains
We study the performance of the algorithms by running them

on several random graph instances, and collecting the score of the
set returned by the algorithms. As we will see in the following,
Alg. 2 performs the best out of the three approximation algorithms,
and very close to the optimal DP Chains algorithm (from Sec. 3.1).
However, we have seen in Sec. 5 that Alg. 2 has the highest com-
plexity of the three algorithms, which makes it less desirable. We
therefore implemented the Merge algorithm (which has lower com-
plexity than any of the three algorithms), and used the Merge algo-
rithm to merge the sets returned by Alg. 1 and Alg. 3 (we refer to
this scheme as merge2). For comparison, we also implemented al-
gorithm top2 which picks the set with the higher score out Alg. 1
and Alg. 3 for each input instance. As a baseline, we also imple-
mented the DP Chains algorithm of Sec. 3.1.

6.1.1 Experiment Design
We generated random instances of the graph G in the following

fashion: We set the number of chains in the graph to be n. Each
chain, with probability p, is a long chain, i.e., has length greater
than or equal to 2. Thus a chain is a singleton item with probability
1 − p. Now, given that a chain is a long chain, we let the size
of the chain be a discrete random variable, uniformly distributed
among integers between 2 and d, the maximum depth. We let the
score of each item be a continuous random variable, exponentially

distributed, with mean 0.5. As before, k represents the size of the
desired set.

For each experiment described in the following sections, we took
several random instances of graphs generated as described above
and determined the average ratio of the score of the set returned
by each of the 3 algorithms — Breadth-first Pickings (bf), Greedy-
value Pickings (greedy) and Top-down Pickings (td), score of top2
and score of merge2 to the score returned by the optimal DP al-
gorithm.

Due to space limitation, we only provide here a sample of our
results. We have experimented with other parameter settings and
distributions, and the conclusions are not that different from what
we show here.In particular, we have experimented with scores that
follow a Zipfian distribution. Since the Zipfian distribution usually
has a few outliers with large score, the Top-down Pickings tends
to work better than the Breadth-first Pickings algorithm. For some
additional experiments refer Appendix D.

6.1.2 Variation with Number of items picked
When we vary the size of the desired set k, we find:
• Alg. 2 is always better than the other two approximation algo-

rithms, and very close to optimal.

• Alg. 3 is better than Alg. 1 when k is large compared to n,
the number of chains, while the reverse is true when k is small
compared to n.

• All 3 approximation algorithms of Sec. 3 return sets whose
score is at least 90% of the optimal set on average.

• top2 does better than both Alg. 1 and Alg. 3.

• merge2 does better than top2, and is almost as good as Greedy-
value Pickings.

Fig. 7(a) illustrates some of our results. For this experiment we
set n = 50, p = 0.2 and d = 5 and generated 500 random graph
instances as described above. In Fig. 7(a) the horizontal axis shows
k varying from 5 (small compared to n) to 45 (large compared to
n). The vertical axis shows the score of the set returned by each
algorithm, as a fraction of the best possible score for that graph
instance (averaged over all graph instances). For example, if we set
k = 15, we find that on average, both Alg. 1 and Alg. 3 return a
set that has a score of approximately 95% of the optimal set. On
the other hand, on average, Alg. 2 returns a set that has a score of
nearly 100% of the optimal score. top2, which picks the best set
from Alg. 1 and Alg. 3, does significantly better at around 97%.
merge2 performs even better than top2, returning a set with score
of 99% of the optimal score.

We find that when k is small, Alg. 1 does better than Alg. 3,
probably because Alg. 1 does a better job of exploring items that
are close to the start of chains (and since k is small, we can only
include items that are very close to the start of chains). We find
that around k = 20, Alg. 3 starts doing better than Alg. 1. As k
becomes ≈ n, Alg. 3 is much better than Alg. 1, probably because
Alg. 1 tends to do a local search close to the start of chains, while
Alg. 3 actively tries to include the top items.

While top2 has some definite gains over Alg. 1 and Alg. 3, merge2
does even better than top2. This is because it does not simply pick
the best set returned by the 2 algorithms of Sec. 3, but combines
diverse elements picked by each of the algorithms to get an even
better set. In all cases, merge2 does not depart from more than 1%
of the optimal set. merge2 has low complexity (as seen in Sec. 5),
and thus can be used as an effective replacement for Alg. 2.

In all cases, Alg. 2 beats all three algorithms, but as mentioned
earlier, is more computationally expensive.

0.96

0.97

0.98

0.99

1

1.01

bf

greedy

0.9

0.91

0.92

0.93

0.94

0.95

0 10 20 30 40 50

td

top2

merge2

0.94

0.96

0.98

1

1.02

bf

greedy

0.86

0.88

0.9

0.92

0.94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

td

top2

merge2

0.94

0.96

0.98

1

1.02

bf

greedy

0.86

0.88

0.9

0.92

0.94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

td

top2

merge2

Figure 7: Variation of fraction of score of the set for the algorithms (a) with k (b) with p (c) with p when k ≈ n

6.1.3 Variation with Number of Long Chains
As we vary p, the probability that a chain is ‘long’, we have the

following results:
• Alg. 2 still performs the best of all the algorithms

• The relative ordering between the scores of the algorithms tend
to remain the same as p increases.

• merge2 combines sets with poor score to get very close to the
optimal set, while top2 does little better than the best of Alg. 1
and Alg. 3.

In this case, we set n = 50, d = 5. For each value of p rang-
ing from 0.05 to 0.60, we generated 500 random graph instances
as described above. We then ran the three algorithms on those in-
stances and measured the average ratio of score versus the optimal
set, and plotted the values for k = 10 in Fig. 7(b), and for k = 45
(i.e., k ≈ n) in Fig. 7(c).

We find that all algorithms except greedy tend to do badly if p is
increased beyond a certain point, probably because the best items
tend to be buried in big chains instead of being singletons. The
merge algorithm once again proves invaluable in merging sets with
very low scores to give a set that is within 2% of optimal.

6.2 Experiments for Other Structures
For the experiments in this section, in addition to the three al-

gorithms, we also implemented top2, which returns set with the
better score from the sets returned by Alg. 1 and Alg. 3, and top3,
which returns the set with the best score from the sets returned by
the three algorithms. We compare our algorithms against the score
of the best set if no prerequisites are taken into account, called No-
Prereq.

6.2.1 Experiment Design
In order to test the performance of our algorithms for other struc-

tures, we would need to generate random instances of directed
AND-OR acyclic graphs. In this paper, we test the algorithms on a
collection of balanced trees, which are easier to generate randomly.
Testing the algorithms on truly random AND-OR DAGs is left for
future work. Note that since each node has a single parent, these
balanced trees are AND as well as OR graphs.

Our graph G therefore consists of a set of n trees, disconnected
from each other. With probability p, as in Sec. 6.1.1, a tree has
more than one item. We allowed the number of items in each tree
to be up to m. We first let the depth d of the tree be a random
number between 1 to dmax(< m). Subsequently, the branching
factor is a random number from 1 to bm1/dc. The score of each
item is exponentially distributed with mean 0.5.

As before, we took several random instances of DAGs as de-
scribed above and determined the average ratio of the score of the
set returned by each of the three algorithms (greedy, td and bf),
top2 and top3 to the score of the algorithm NoPrereq. We plot
these ratios on varying various parameters.

6.2.2 Results
We have the following results:

• Alg. 2 performs better than Alg. 1 and 3, and almost the same
as top3

• When k is small, Alg. 3 performs better than Alg. 1, with the
reverse holding true when k is large.

• When the number of chains and the number of items to be picked
are both similar, Alg. 3 performs almost as well as Alg. 2.

• top2 does better than Alg. 2 when the number of items and num-
ber of chains are small.

• On varying the number of chains, all algorithms perform simi-
larly.

• All algorithms are within 20% of each other.

Fig 8(a), Fig 8(b) and Fig. 8(c) show the variation with increas-
ing p from 0.05 to 0.65. The vertical axis shows the score returned
by each algorithm as a fraction of the best possible score, aver-
aged over 500 graph instances. For Fig. 8(a) and Fig. 8(b), we set
n = 40, while for Fig. 8(c), we set n = 100. For Fig. 8(a) and
Fig. 8(c), we set k = 20 while k = 40 for Fig. 8(b) The maximum
number of items in a chain, m is set to be 10 for all the algorithms.
In all three plots, we find that Alg. 2 performs the best among
the three algorithms, nearly indistinguishable from top3. However,
Alg. 3 follows Alg. 2 very closely, with less than 5% difference.
For example, on setting p = 0.4 in Fig 8(a), on average Alg. 1 re-
turns a set with score 80% of the score of the no-prereq set, while
Alg. 2 and Alg. 3 return sets with score 90% and 92% respectively.

In fact, in Fig. 8(b), Alg. 3 performs better than Alg. 2 (even
though it is not clearly distinguishable in the plot) when p is small.
However, note that when the number of chains are large, Alg. 2
does the best, as is evident from Fig. 8(c). (In this case, Alg. 1 does
better than Alg. 3.)

We then tried to examine the variation in performance with in-
creasing number of chains. We set n = 100, m = 10 and p =
1, and repeated the experiment over 500 random graph instances.
Fig 9(a) shows the variation with increasing number of items be-
ing picked. As is expected, when the items being picked becomes
large, Alg. 1 starts performing better than Alg. 3, with two plots
intersecting when k = 60.

Fig 9(b) shows the variation for the extreme case when both the
number of chains and the number of items to be picked are small,
i.e., k = 3, n = 3,m = 3, repeated over 500 trials. In this case,
top3 and top2 (indistinguishable in the graph) do better than the
rest by almost 1%.

Fig 9(c) shows the variation of the algorithms on increasing the
number of chains for k = 20, p = 1,m = 10 over 500 trials. As
expected, all three algorithms improve when the number of chains
increase because they have more shots at picking the best items.

While we have not implemented the merge algorithm for AND-
OR graphs, we believe that it will give us a further boost compared
to top2, thereby narrowing the gap to Alg. 2.

7. RELATED WORK
We are not aware of any prior work in the area of set recommen-

dations that take prerequisites into account.

0.9

0.95

1

1.05

bf

greedy

0.75

0.8

0.85

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

td

top3

top2

0.9

0.95

1

bf

greedy

0.75

0.8

0.85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

td

top3

top2

0.85

0.9

0.95

1

bf

greedy

0.7

0.75

0.8

0.85

0 0.1 0.2 0.3 0.4 0.5 0.6

td

top3

top2

Figure 8: Experiments for AND Graphs: Variation of fraction of score of resulting set for the algorithms with p for (a) small n and
small k (b) small n and larger k (c) large n and small k

0.85

0.9

0.95

1

bf

greedy

0.65

0.7

0.75

0.8

0 20 40 60 80 100

td

top3

top2

0.85

0.87

0.89

0.91

0.93

0.95

bf

greedy

0.75

0.77

0.79

0.81

0.83

0.85

0.35 0.45 0.55 0.65 0.75 0.85 0.95

td

top3

top2

0.8

0.85

0.9

bf

greedy

0.65

0.7

0.75

20 25 30 35 40

td

top3

top2

Figure 9: Experiments for AND Graphs: Variation of fraction of score of resulting set for the algorithms (a) with k (b) with p when
k and n are both very small (c) with n

However, there is a large body of work on traditional recom-
mendation systems, aimed at coming up with a single ‘score’ for
each item, combining approaches that look at using ratings given
by other ‘similar’ users [17], other ‘similar’ items that the user
liked [16], and other approaches [7]. All of these techniques could
be used in generation of the score function that we use as a black
box, therefore our work builds on top of other recommender sys-
tems work.

The body of work on Top-N recommendation systems [9] solve
a different problem. Their aim is: given a user X item matrix of
scores, and given the set of items that a given user has consumed,
recommend an ordered set of up to N items that the user has not
consumed. In this case there is no inherent ordering of items that
needs to be respected when recommending N items, which is the
case in our problem.

Ziegler et. al. [19] consider recommending lists of items taking
into account diversity among items in the list. Prerequisites are
not considered; additionally, our algorithms can be generalized to
handle the case of complex scoring functions where the score of a
set is not just the sum of scores of the items contained in the set.

There has been some recent work on incorporation additional
constraints into the recommender systems problem, for example,
group recommendations [4, 12] dealing with the problem of recom-
mending items to a group of people with diverse interests, out-of-
the-box recommendations and recommending items that are non-
obvious and diverse [1, 18], and the work on recommendation of
paper assignment to reviewers [8].

Some of the recommendation questions we pose can be written
in RQL (Recommendation Query Language) [3], or expressed as
constraints [10], however, our aim in this paper is to consider ef-
ficient algorithms that solve those recommendation questions, and
not posing those questions themselves.

Our problem is an instance of preference-based optimization [6,
5], which considers preferences between subsets of items. How-
ever, we leverage the fact that the subsets that we recommend have
to satisfy specific constraints, i.e., prerequisites to provide efficient
algorithms. Additionally, considering all subsets of items in our
case is computationally hard.

8. CONCLUSIONS
As recommender systems are applied to more and more domains

[13, 11], it is important to incorporate into our recommendations

the constraints introduced by the domain, or more generally, con-
textual information. If we do not incorporate such constraints we
can end up making recommendations that do not make sense to the
user, e.g., suggesting courses they are unable to take.

In our case, we considered prerequisite constraints and how they
affect the problem of recommendations. We focused on the prob-
lem of recommending a set of items with high score, while satis-
fying prerequisites, for various prerequisite structures. We proved
that this problem is NP-Hard for most prerequisite structures and
suggested approximate algorithms to solve this problem. For the
case of chain graphs, we presented an exact algorithm.

In our experiments, we find that Greedy-value Pickings performs
exceedingly well. For most practical situations, say for example,
we have 100,000 chains to choose 10 items from, and chains with
depth around 10, we would prefer using Greedy-value Pickings,
which takes 105×10 time steps, i.e., 1

10
the time as DP, and makes

nearly the same (good) recommendations. If we wish to save even
more on time, say for example we need to make live recommen-
dations on the web, we might prefer performing both Top-down
Pickings and Breadth-first Pickings and doing a Merge. (If we are
implementing Top-down Pickings, then there is no good reason to
not use Breadth-first Pickings and Merge, since both of these have
significantly lower time complexity.) If we simply need to make
fast recommendations, we would opt for Breadth-first Pickings.

9. REFERENCES
[1] Z. Abbassi, S. Amer-Yahia, L. V. Lakshmanan, S. Vassilvitskii, and

C. Yu. Getting recommender systems to think outside the box. In
RecSys ’09.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE TKDE, 17, 2005.

[3] G. Adomavicius, A. Tuzhilin, and R. Zheng. Rql: A Query Language
for Recommender Systems. Technical Report, NYU.

[4] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu. Group
recommendation: Semantics and efficiency. VLDB ’09.

[5] R. I. Brafman and C. Domshlak. Graphically structured
value-function compilation. Artif. Intell., 172(2-3):325–349, 2008.

[6] R. I. Brafman, C. Domshlak, S. E. Shimony, and Y. Silver.
Preferences over sets. In In AAAI, 2006.

[7] R. Burke. Hybrid recommender systems: Survey and experiments.
User Modeling and User-Adapted Interaction, 12(4), 2002.

[8] D. Conry, Y. Koren, and N. Ramakrishnan. Recommender systems
for the conference paper assignment problem. In RecSys ’09.

[9] M. Deshpande and G. Karypis. Item-based top-n recommendation
algorithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004.

[10] A. Felfernig and R. Burke. Constraint-based recommender systems:
technologies and research issues. In EC ’08.

[11] L. Grossman. How computers know what we want before we do.
Time Magazine, July 7, 2010.

[12] A. Jameson and B. Smyth. Recommendation to groups. In The
Adaptive Web: Methods and Strategies of Web Personalization, 2007.

[13] D. Monroe. Just for you. Commun. of the ACM, 52(8), 2009.
[14] A. Parameswaran and H. Garcia-Molina. Recommendations with

prerequisites (short paper). In RecSys ’09.
[15] A. Parameswaran, P. Venetis, and H. Garcia-Molina.

Recommendation systems with complex constraints: A courserank
perspective. http://ilpubs.stanford.edu:8090/909/.

[16] M. Pazzani and D. Billsus. Content-based recommendation systems.
In The Adaptive Web, 2007.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based
collaborative filtering recommendation algorithms. In WWW ’01.

[18] M. Zhang and N. Hurley. Avoiding monotony: improving the
diversity of recommendation lists. In RecSys ’08.

[19] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic diversification. In
WWW ’05.

APPENDIX
A. ALGORITHMS: DETAILS

We consider each algorithm in turn and describe the execution of
the algorithm on the example below.

A.1 Illustrative Example
For ease of exposition, we use a chain graph as our example.

Consider the following graph:
• a(0.5)→ j(0.8)→ k(0.9)

• b(0.6)→ g(0.7)

• c(0.3)→ h(0.8)→ i(0.2)

• d(0.7)

• e(0.2)

Each letter above indicates a node in the prerequisite graph, and the
arrows show the prerequisites. For example, a is a prerequisite of
j, which is a prerequisite of k. We include a score of picking each
item, displayed in brackets next to the node corresponding to the
item. As an example, h has a score of 0.8.

Our aim is to pick a set of size k, such that prerequisites are
retained, and score of the set as defined in Eq. 1 is maximized.
If say k = 4, then the optimal solution which does not violate
prerequisites is {a, j, k, d}, with a score of 2.9. We leave the proof
that this set is optimal as an exercise for the reader.

We try to pick a set that satisfies prerequisites of size k = 4 using
each algorithm.

A.2 Algorithm 1
Step 0: We start by picking nodes whose prerequisites have been

satisfied (or do not exist). Thus, the candidates are a, b, c, d, e. The
best such node is d. We then add b, then g (whose prerequisite, b,
is now present), and then a, until |A| = k. This A is {a, b, g, d}.

Step 1: Consider all nodes whose parents are in A or those who
have no prerequisites. Here, we have B = {j, c, e}. In a greedy
fashion, we try to see if we can replace the worst node in A (that
can be removed) with the best node in B all the time maintaining
prerequisites. In this case, we first examine j, the item with the
highest score in B. The worst node in A is a. However, j is a
child of a. We therefore pick one of {b, d, g}, instead. Since b is
a prerequisite of g, we cannot pick b. Instead, we pick one of d or

g, g (say). Since score(j) > score(g), we replace g with j. The
new B = {c, e, g, k}, and the new A = {a, j, b, d}.

Step 2: The best node in B is k (since its parent, j ∈ A). We
then replace (the worst node in A that can be removed) b with k,
giving us A = {a, j, k, d}, and B = {b, c, e}.

Step 3: The best node in B, b, is no longer better than any
node in A, and we then terminate the algorithm, with optimal A =
{a, j, k, d}

Note that in Step 1, if we had removed d instead of g, we would
have ended up with the same A, in more iterations.

A.3 Algorithm 2
For every chain in the above graph, we insert all sub-chains as

sets into the max-priority-queue. For example, for chain a→ j →
k, we insert into the queue the following sets: {a}, {a, j}, {a, j, k},
which have average score 0.5, (0.5+0.8)/2 = 0.65, (0.5+0.8+
0.9)/3 = 0.73.

We keep popping sets with the maximum average score from
the queue, see if the number of items in the set is greater than the
remaining capacity that we can accommodate. If so, we discard it,
if not, we add the set to A. In this case, we pop B = {a, j, k} first,
whose average score is 0.73, and whose size is 3. Let k′ denote
the current size of A, k′ = 0. Since k′ + size(B) ≤ 4, we let
A⇐ A ∪B.

We then update the average score and size of all sets in the
queue that have a nonzero intersection with the set corresponding
to a→ j → k, assuming that the set {a, j, k} has been picked. For
example, the average score of a → j is now set to 0 (since {a, j}
is already in A). If a → j → k → y, then the average score of
{a, j, k, y} would be set to score(y)/1, and size = 1 (since a, j, k
have been picked).

Now k − k′ = 1, so only sets of size 1 can be picked. Once
again, in this case, B = {d} with average score = 0.7, is added to
A. Thus A = {a, j, k, d}, the optimal set.

A.4 Algorithm 3
Here we sort all nodes in decreasing order of score, and initially

let A be the top-k, in this case (say): {j, k, g, h}. We now try to
add the prerequisites of these items, starting from the item with the
highest score. The set of items already considered is B, which is
currently empty.

The best item in A is k, with a score of 0.9. Item k needs the
set C = {a, j}. Since a is missing in A, we add a, and delete the
node with the worst score from the boundary of A, but that which
has not already been considered (i.e., is not in B), in this case, g.
Thus we now have A = {a, j, k, h}. We keep track of the nodes
already considered so far in B, which is now {k}.

Next, we try to see if j’s prerequisites are present in A. They
(i.e., {a}) already are. The set B now becomes {k, j}.

The next item from A − B is h. Now, we try to add h’s pre-
requisites. Deleting another node from the boundary of A (which
contains only k) cannot be done since k has already been consid-
ered (i.e., is present in B) — we keep this constraint because we
do not want worse items to override better ones. We instead try
to replace h with a node that does not need any new prerequisites.
Here h is replaced by one of {b, c, d, e}, in this case, d, which has
the highest score. Set A now becomes {a, j, k, d}. Set B now
becomes {j, k, h}.

We now pick the next best item fromA−B to check if its prereq-
uisites are present. This item is d, whose prerequisites are present,
so we do not add or delete any items from A. The set B now be-
comes {d, j, k, h}. Next, a is picked, and once again, there is no
change to A.

Thus we once again get the optimal solution, A = {a, j, k, d}

A.5 Complexity, revisited
We now examine the worst case complexity for the three heuris-

tic algorithms for general prerequisite structures. Since it is tricky
to come up with exact complexity values as was done for chain
graphs in Sec. 5, we express complexity in this section in terms
of the number of transformations to priority queues. This calcula-
tion is general enough to accommodate OR, AND-OR and AND
graphs.

All algorithms use at least one priority queue structure: the set
external(A) for Alg. 1 and 3, and the set containing subgraphs for
Alg. 2. Note that there is another priority queue structure in Alg. 1
and 3, i.e., the boundary(A) set, but that set is bounded by a max-
imum size of k, and hence is dominated (for order of magnitude
considerations) by the priority queue for the external set.

We express our complexity values in terms of three functions
insert(n): cost of examining/inserting n individual items into a
priority queue and mov(n): cost of a value modification in a prior-
ity queue containing n items. Let the total number of items be n in
G.

In Alg. 1, each item is inserted and deleted once. Deletion counts
as a value modification to 0. Note that at any point, we can re-
strict external to contain just k items (the others can be ignored,
since they will not be picked anyway). Thus modification happens
only from a queue of size k. Thus the worst case complexity is
O(insert(n) + n ·mov(k)).

Alg. 2 requires all items with their prerequisites (“best” in the
case of OR and AND-OR graphs) to be inserted into the priority
queue at the start itself. We cannot prune any part of this set, since
it can be potentially part of an optimal solution (after some other
sets are picked). Subsequently, we modify (by extracting) up to n
sets. And every time we extract a set, we could modify up to n
other sets. Thus we have n2 modifications. Thus, the worst case
complexity is O(insert(n) + n2 ·mov(n)).

Alg. 3 can maintain two external sets, one corresponding to
the top k items, and another corresponding to the items from the
start of the graph (whose prerequisites are present). Each item may
be inserted once to each set, and deleted from each set. Both the
external sets can be restricted to be of k items at all times. Thus
the worst case complexity isO(insert(n)+n·mov(k)). However,
note that checking if an item’s prerequisites is present is not an unit
operation, and this could be especially costly in the case of OR
graphs when any one of many paths could be picked. In order to
check prerequisites, we could perform a BFS starting from the item
in question, following edges in reverse. This BFS will stop in at
most k steps. Thus, we check prerequisites in k steps for at most k
items. Since this check is not dependent on n, we ignore it.

Thus, asymptotically, Alg. 1 and Alg. 3 have similar worst case
complexity. Both of these have a better worst case complexity than
Alg. 2. In practice, Alg. 1 is never likely to examine all n items,
and hence runs faster than Alg. 3.

A.6 Worst Case Bounds
We now prove worst case bounds for AND, OR and AND-OR

graphs for the three approximation algorithms.

A.6.1 Algorithm 1
For AND, OR and AND-OR graphs, the worst case occurs when

we miss out on exploring more of the graph since we only look at
external(A). Since at every iteration the algorithm picks the best
item from external(A), it must be the case that the first item/s
of the “good” connected component that forms part of the opti-

mal solution (that is not picked) must have same or smaller value.
However, since the connected component could have an arbitrary
number of items (due to an arbitrary branching factor), we lose out
on at most γ for each of those (k−1) remaining items in the “good”
connected component. Thus the worst case is (k − 1)γ for AND,
OR and AND-OR graphs.

A.6.2 Algorithm 2
For OR graphs, the worst case situation is similar to the one for

AND graphs, except that the x items with score α form a chain
which then forms the prerequisites for each of the k − x items of
score α+γ. If d ≥

√
k + 1, the same bound holds. If d <

√
k + 1,

then the worst case difference is γ(k+ (d−1)2−k
d

), smaller than that
for AND graphs. Note that the value above is equal to that for AND
graphs when d =

√
k + 1.

For AND-OR graphs, the worst case is at least as bad as that for
AND and OR graphs. We list this in Table 1.

A.6.3 Algorithm 3
Recall that Fig. 6 was the worst case situation for chain graphs.

To see why, consider the following: Note that at least k/d of the
items with the best score and their prerequisites are always present
in the solution. For the worst case, only k/d items with the best
score will be present in the solution (so that the set returned by our
algorithm has smallest possible score). Also, let the score of each
of these top k/d items be α+ γ. The worst case arises when there
are several other items that have almost same score α+ γ − δ, but
are not chosen. Instead, we constrain that each of these top k/d
items are at the end of long chains with items of score α, which is
the smallest such score. This situation is the one described.

We now describe worst case bounds for other prerequisite struc-
tures. The worst case arises when the algorithm picks good items
that are at the end of “bad” trees. For the case of AND and AND-
OR graphs, this could mean that (k − 1) bad parents (prerequi-
sites) need to be selected (since a child could have ≥ (k − 1) par-
ents). Thus for AND and AND-OR graphs, we have a worst case
of (k − 1)γ. However, for OR graphs, each good item thus picked
could have at most d − 1 prerequisites, and thus k/d good items
will need to be picked, and we lose out on (d−1)k/d “good” items
(a total loss of (d− 1)kγ/d).

B. COMBINING ALGORITHM
We now describe the algorithm to combine two sets that satisfy

prerequisites in order to give a set that satisfies prerequisites and
has score greater than or equal to the score of each of the sets.

The pseudocode listed in Algorithm 4 and the description below
is for AND graphs. We first describe the execution of the algorithm
on the example in Appendix A.1.

B.1 Example
We shall use as our example, set {b, g, a, d} as A1 (with a score

of 2.5) and set {a, j, k, e} as A2 (with a score of 2.4).
Let Ac = A1 ∩ A2. This set consists of the common portions

of the chains found in A1 and A2. For the above example, Ac =
{a}. Ac will form part of the final solution. We also define A′1 =
A1 − Ac, i.e., the portions of chains that are unique to A1. A′2 is
defined similarly. For the above example, A′1 = {b, g, d}, while
A′2 = {j, k, e}. We wish to answer the question of which portions
of A′1 and A′2 to include in the final set that we return, which will
be of total size k.

Let score of A′1 be greater than that of A′2. We now try to trans-
form A′1 by replacing items from it with items from A′2. The final
solution we return will include the union of the transformedA′1 and

Ac.
We design two priority queues, a max-priority queue Q2 con-

sisting of sub-chains of A′2 (sorted on average score), and a min-
priority queue Q1 consisting of sub-chains from A′1 (sorted on av-
erage score). However, for the min-priority queue, our sub-chains
are from the end of the chain, i.e., we use the sub-chains of reverse
of the given chains. In the above example, the chains we add to Q2

(with the average score) are: {j, k} : 0.85, {j} : 0.8, {e} : 0.2,
and the chains we add to Q1 are: {b, g} : 0.65, {g} : 0.7, {d} :
0.7.

We try to delete the worst sub-chains of the reverse of chainsA′1,
replacing each of them with a number of sub-chains from A′2 that
have a larger total score, but the same size in total as the sub-chain
fromA′1. Thus we incrementally increase the score ofA′1, resulting
in a better overall score when we take the union of this modified set
with Ac.

The worst sub-chain in Q1 is {b, g}, with a score of 0.65, which
is popped first. We now try to extract the best items from Q2 to
replace this sub-chain. Firstly, we extract {j, k}, which has average
score 0.85, the largest in Q2. Since {j, k} has a larger average
score, and the same size, we replace {b, g}with {j, k} inA′1. Next,
we need to update the super-chains and sub-chains of the items
replaced in Q1 and Q2. Here, the sub-chain in Q1 is {j}, whose
score is updated to 0, since its super-chain has already been selected
and removed. Again, the sub-chain in Q2 is {g}, whose score is
updated to 0 as well. There are no super-chains, hence we do not
update any more items.

Next, we pop from Q1, {d}. We try to replace this with the only
sub-chain left in Q2, {e}. In this case, {d} has a higher score, so
we retain it in A′1. Thus, the final value of A′1 is {j, k, d}, giving
rise to the optimal set A of {a, j, k, d}.

B.2 Description of the Combining Algorithm
The pseudocode listing is provided in Algorithm 4. We initialize

the min-priority and max-priority queues as described above (line
4-13). We then keep removing the worst sub-graph m from the
min-priority queue (the sub-graph with the smallest average score)
(line 15), and try to replace it with a number of sub-graphs from
the max-priority queue (line 19-28). The sub-graphs that are used
in this process are saved in used, while the sub-graphs that are too
large are saved in unused (line 22, 24).

If the sum of the scores of the sub-graphs from the max-priority
queue exceeds the score of the sub-graph from the min-priority
queue, then we replace the sub-graph in A′1 with the sub-graphs
from the max-priority queue (line 30). We also add the items that
are unused back to the max-priority queue(line 31)1, and update
the value of the other sets as in algorithm 2 (line 32).

If better sub-graphs are not found, we restore the max-priority
queue to its original form and try replacing a new item from the
min-priority queue.

Note that if the algorithm returns a set that is different from A1

and A2, then the set returned has a larger score than either of A1 or
A2.

C. EXTENSIONS
In this section, we describe some extensions to our prerequisite

structures that can be handled with small modifications to our al-
gorithms. We only describe modifications for the case of chain
graphs, but we believe that the modifications for other prerequisite
structures will be similar.

1The scores of these items may need to be adjusted based on
whether or not some portion of them is present in used(line 33).

Algorithm 4 Merge

Require: Q1 ← empty min-priority-queue
Require: Q2 ← empty max-priority-queue
Require: A1 ← first set (with greater score)
Require: A2 ← second set
1: Ac ⇐ A1 ∩A2

2: A′1 ⇐ A1 −Ac
3: A′2 ⇐ A2 −Ac
4: for all items x ∈ A′1 do
5: Y ⇐ items in A′1 for whom x is a prerequisite
6: c⇐ Y ∪ {x}
7: insert c into Q1 with value :

∑
a∈c score(a)/size(c)

8: end for
9: for all items x ∈ A′2 do

10: Y ⇐ items in A′2 who are prerequisites of x
11: c⇐ Y ∪ {x}
12: insert c into Q1 with value :

∑
a∈c score(a)/size(c)

13: end for
14: while Q1 6= ∅ do
15: m⇐ pop(Q1) /*subgraph in A′1 with min avg. score*/
16: unused⇐ ∅; used⇐ ∅
17: r ⇐ size(m)
18: Q′2 ⇐ Q2

19: while Q′2 6= ∅ ∧ r > 0 do
20: n⇐ pop(Q′2) /*subgraph in A′2 with max avg. score*/
21: if size(n) > r then
22: unused⇐ unused ∪ {n}
23: else
24: used⇐ used ∪ {n}
25: update sets in Q′2 as in line 12-19 of Alg. 2 for n.
26: r ⇐ r − size(n)
27: end if
28: end while
29: if size(used) = size(m) ∧ score(used) > score(m) then
30: A′1 ⇐ A′1 − {m} ∪ used
31: Q2 ⇐ Q′2 ∪ unused
32: update sets in Q1 as in line 12-19 of Alg. 2 for m.
33: update sets in Q2 as in line 12-19 of Alg. 2 for each subgraph in

used.
34: end if
35: end while
36: return Ac ∪A′1

Fuzzy Prerequisites
In our current model, if a is a prerequisite of b, and we recommend
a and b both, then the contribution of b to the score of the package
is score(b). However, if a is not present in the package, then b’s
contribution is 0, i.e., we do not value b recommended without a.
However, there may be cases where we would like to give b a score,
between 0 and score(b), even if a is not recommended. Thus, in
this case, the prerequisite is not “strict”, it is “fuzzy”. Thus each
item has multiple scores, reflecting whether the item’s prerequisites
are present or absent.

We let am be the item under consideration, and let a1 → a2 →
. . .→ am−1 be the prerequisite chain of am. Since am has m− 1
prerequisites, there would be 2m−1 scores for am, corresponding to
all combinations of its prerequisites being present or absent. How-
ever, sinceO(2d) (where d is the length of the longest chain) scores
per chain would be hard to collect and maintain, we restrict our-
selves to items ai having two scores, αi and αi − βi (correspond-
ing to with or without “some” prerequisites respectively — we will
elaborate on this shortly). If βi = 0, then the item does not need
any prerequisites, while if βi = αi then it has “strict” prerequisites.
The value βi is the amount we penalize the item for not having
some prerequisites.

We consider three realistic scenarios: (1) We penalize an item
for not having its immediate parent in the same recommended set,

i.e., am has a score of αm if am−1 is present in the recommended
set, and αm − βm if not. This scenario occurs in (say) a Drama
TV series, when consuming the prerequisite item (episode) lets you
know the background in the TV series, and about what happens
immediately before the current item (episode). (2) We penalize an
item for not having all its ancestors in the same recommended set,
i.e., if {a1, a2, ..., am−1} is present in the recommended set then
am’s score is αm else it is αm−βm. This situation occurs in (say)
a book series (say, the Lord of the Rings or Asimov’s Foundation
series) where one needs to follow/consume all the previous items to
appreciate the current item. (3) We penalize an item for not having
some of its ancestors present in the recommended set, i.e., if any
of a1, a2, ..., am−1 are present in the recommended set, then am’s
score is αm, else it is αm − βm. This situation occurs in (say) a
TV Comedy Series (say, Friends or Seinfeld) where one needs to
consume/watch at least one episode prior to appreciate the current
item.

We now describe the modification to the Greedy-value Pickings
algorithm (which performs the best out of the three algorithms for
the case of chains).

In situation (1), we insert items ai by themselves (with average
score αi − βi) and also all sub-chains aj → aj+1 → . . . →
ai, 1 ≤ j < i ≤ d into the max-priority queue (a sub-chain aj →
. . .→ ai−1 → ai has an average score of (αi+αi−1 + . . .+αj−
βj)/(i−j+1)). If the length of the longest chain is d, then there are
O(d2) sub-chains inserted into the max-priority queue per chain.
In addition, when a sub-chain (or a singleton item) is selected by
the Greedy-value Algorithm, all other sets that contain elements
from the selected set will need to have their scores updated (at most
O(d2) such sets are present in the queue).

In situation (2), we insert items ai by themselves (with average
score αi−βi) and also all sub-chains containing the item ai and all
of its prerequisites a1, . . . , ai−1 (with average score (α1 + α2 +
. . .+ αi)/i) into the max-priority queue. In addition, when a sub-
chain (or a singleton item) is selected, all other sets that are part of
the same chain will need to have their scores updated. There are at
most 2d such sets.

In situation (3), we insert items ai by themselves (with average
score αi − βi) and also all sub-chains containing the item ai and
one of its prerequisites aj (with average score (αi + αj − βj)/2)
into the max-priority queue, a total of O(d2) elements per chain.
In addition, when a sub-chain (or a singleton item) is selected, all
other sets that are part of the same chain will have their scores up-
dated.

General Scoring functions
The algorithms given in Sections 3 and 4 can also be adapted to the
case when the items already chosen affect the score of the item to
be added. To see why this feature is useful, consider the follow-
ing situation: Assume that we have to pick 5 movies for a movie
marathon, and we wish to pick a diverse set (A) of movies. Fur-
thermore, if we have picked 3 movies already (in A) all three of
which are action movies, then the score for a ‘good’ unpicked ac-
tion movie a is probably less than that of a ‘good’ comedy movie b,
i.e., score(a,A) < score(b, A) (here score takes two arguments,
an item and a set). We could also define score to operate on a set,
in which case score({a} ∪A) < score({b} ∪A).

We can adapt the algorithms by letting the score of the items
be determined by the remaining items present in the set A at any
point, and since all the algorithms are ‘greedy’, we can do so triv-
ially. However, note that the score for each item would need to be
recomputed once the set A is changed. This operation could be
extremely expensive, for example for Algorithm 2, where the val-

Figure 10: Variation of Fraction of score of the best set for the 3 al-
gorithms with k for the case when the length of the chains is sampled
from an exponential distribution

Figure 11: Variation of Fraction of score of the best set for the 3 algo-
rithms with k for the zipf distribution

ues of all sub-chains will need to be updated based on the current
choice of A.

For Alg. 1, we would recompute score for each item a (i.e.,
score({a} ∪ A)) after line 3, for the addition of each item. The
pair a, b, where b replaces a in A is chosen such that score(A ∪
{b} − {a}) is maximum. For Alg. 2, recomputing of scores of
all chains in Q will have to be done post line 11. In this case, the
average score of a sub-chainC is (score(A∪C)−score(A))/|C|.
For Alg. 3, the item a from A whose prerequisites are added first
is that for which score(A − {a}) is smallest. The item in line 12
is the one such that score(A′ − {a}) is the maximum. The item
a chosen in line 16 is the i for which score(A − {a} ∪ {i}) is
maximum. Scores will have to be recomputed after line 18 as well.

D. EXPERIMENTS
We now describe some additional experiments for Chain graphs.

For the subsequent experiments, we plot the results of the 3 algo-
rithms of Sec. 3 on varying various parameters.

We obtain similar results when repeating the experiment in Sec. 6.1.2
with an exponential distribution on the size of the ‘long’ chain, in-
stead of the uniform distribution. We round down the exponential
random variable into an integer (which is exponentially distributed
with mean d/2, if it is part of a long chain). Refer Fig. 10 for
details.

In Fig. 11, we repeat the experiment on varying k when the score
is sampled from a Zipfian distribution (with the parameter of the

curve set to 3). Since the Zipfian distribution usually has a few
outliers with large score, Alg. 3 tends to work better than Alg. 1.

