
Synthesizing View Definitions from Data∗

Anish Das Sarma
Yahoo Research

anishdas@yahoo-inc.com

Aditya Parameswaran
Stanford University

adityagp@cs.stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Jennifer Widom
Stanford University

widom@cs.stanford.edu

ABSTRACT
Given a database instance and a corresponding view in-
stance, we address the view definitions problem (VDP): Find
the most succinct and accurate view definition, when the
view query is restricted to a specific family of queries. We
study the tradeoffs among succintness, level of approxima-
tion, and the family of queries through algorithms and com-
plexity results. For each family of queries, we address three
variants of the VDP: (1) Does there exist an exact view def-
inition, and if so find it. (2) Find the best view definition,
i.e., one as close to the input view instance as possible, and
as succinct as possible. (3) Find an approximate view defi-
nition that satisfies an input approximation threshold, and
is as succinct as possible.

Categories and Subject Descriptors
H.2.m [Database Management]: Miscellaneous—Database
Theory

General Terms
Algorithms, Theory

Keywords
View Definitions, Query Synthesis, Algorithms, Complexity

1. INTRODUCTION
Consider the View Definitions Problem (VDP): Given a

database D, and a view V over it, find a view definition Q
(i.e., a database query) that best captures the relationship
between V and D. Intuitively, we want the view definition
Q to be as general as possible, while at the same time, on
applying Q to the database D, we want a result V ′ that is
very close to V . VDP is similar to the Query By Output
(QBO) problem studied in [15], however our objectives and
solutions are different, as discussed in Section 1.1.

∗This work was supported by the National Science Founda-
tion under grants IIS-0414762 and IIS-0904497.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

D

V

?
Application code/

Manual selection

V ′

D′

Q
VDP

apply

Figure 1: Synthesizing Q from D + V useful in ap-
plying Q to different database (or later version) D′.

Considering the triplet (D,V,Q), our goal is to use D and
V as input, and obtain Q as the output. From a theoreti-
cal standpoint, it is interesting to note that while the other
two input/output combinations from this triplet have been
studied extensively in the database literature, VDP has not
received commensurate attention. Specifically, query pro-
cessing and optimization address the problem of taking D
and Q as input, and finding V as efficiently as possible [6].
The field of answering queries using views [9], and more
broadly data integration [8], studies several versions of prob-
lems that involve V and Q as input, and seek to arrive at D.
For instance, local-as-view data integration attempts to ob-
tain a mediated database D from individual sources V and
schema mappings Q.

Aside from theoretical interest, there are practical motiva-
tions for VDP. To illustrate, consider Figure 1, which shows
our given database D and view V on the left. The view
V may have been derived manually, e.g., a person selected
tuples from D of interest to them, or perhaps V represents
the customers that responded to a survey. View V may
have also been derived by an application program, but we
no longer can or wish to use that program (e.g., the pro-
gram is hard to maintain, has been lost, or no longer runs
on current hardware).

Our goal is to find a query Q that captures what criteria
were used to produce V fromD. Capturing these criteria can
be useful for contextual schema matching [2, 3, 13]. Another
reason for wanting Q is so that it can be applied to another
database D′, as shown on the right of Figure 1. D′ could be
another database similar to D, or an updated version of D.

(In the latter case, Q is effectively being used for materialized
view maintenance [7].) By using Q on D′ we avoid relying
on humans or hard-to-maintain code. Furthermore, if our
needs change, it may be much easier to change a query than
to change code or to change human procedures.

We now give an example to illustrate the issues we need
to deal with to solve VDP:

Example 1.1. Consider a view V (A,B) with n tuples
and attribute A as the primary key. Let the database D
consist of the relation R(A,B), with the same schema as V .
Let the values of the attribute A be a1, a2, . . . , an for the n
tuples in V . We could construct a view definition Q: “select
* from R where A = a1 or A = a2 or . . . or A = an.” How-
ever, if V is also derived by selecting all and only tuples from
R that have B > 5, then we could also construct Q′: “select
* from R where B > 5.” Both Q and Q′ exactly produce
V , but Q′ is a much more succinct query. Even if Q′ only
approximately captures V (with a few additional tuples, or
a few tuples missing), we might still prefer Q′ over Q, not
just because it is succinct, but also because it has a single
predicate, and therefore may be more efficient to evaluate.

In fact, there are three factors that interact closely while
finding a solution to VDP:

1. Family of Queries: Sometimes it is necessary to re-
strict Q to be from a specific family of queries, e.g.,
single predicates or conjunctive queries. The database
D may only support certain types of queries, or the
family of queries may guarantee efficient evaluation.
Additionally, the family of queries can impact the per-
formance of finding a solution to VDP.

2. Level of Approximation: We may return an approxi-
mate solution Q for VDP, i.e., Q applied to D pro-
duces a V ′ that is close to but not exactly V , for three
reasons: (1) There may not be a query Q in the fam-
ily of queries considered that exactly produces V . (2)
Allowing an approximate solution may lead to a more
efficient procedure for finding Q. (3) The approximate
query may be more succinct, as we discuss next.

3. Succinctness: We would like our queries to be “suc-
cinct.” In the example above, we would consider Q′ to
be considerably more succinct than Q, since it applies
many fewer conditions to obtain its result. A more
succinct query is typically more readable, understand-
able, and maintainable. Moreover, as we’ve seen in the
example above, a more succinct query is usually more
general, in that it can be applied meaningfully to other
databases similar to D. Typically, the fewer conditions
query Q applies to obtain its result, the less specific it
is to the given database D.

Note there is a metric related to succinctness that we
will call experimental generality, or generality for short.
Generality is evaluated on test data sets, separate from
D and V , and captures how well Q predicts views in
the test data set. Unlike generality, succinctness is an
intrinsic property of a query. We believe that a suc-
cinct query will typically be more general than a less
succinct query, as the extra conditions in a less succinct
query tend to overfit the data. In addition, succinct-
ness is also desirable because it yields more readable
(and more maintainable) queries. We discuss experi-
mental generality, and its relationship to succinctness,

in more detail in Section 1.1.

We formalize our notions of succinctness and approxima-
tion in subsequent sections, and explore the connections be-
tween them for several query families. As we will see, in
each query family there is a tradeoff between succinctness
and level of approximation. At the extremes, if Q =false,
i.e., Q does not select any tuples, then it is very approximate
(it misses all the tuples in V), but is extremely succinct. On
the other hand, if Q has a condition that selects each tu-
ple appearing in V and no others, then Q is exact, but not
succinct.

In this paper, we study three VDP subproblems: the Ex-
act View Definition (EVD), the Best View Definition (BVD)
and the Approximate View Definition (AVD) problems. We
study the complexity of these three subproblems for each of
our query families. For the cases where a given subprob-
lem is intractable, we identify the complexity and provide
algorithms giving approximate solutions. In other cases, we
provide polynomial time optimal solutions.

The paper is organized as follows. Section 2 formally de-
fines the problems we consider. In Sections 3–6, we address
the problems for each family of queries. Related work is pre-
sented next (Section 1.1) and we conclude with future work
in Section 7.

1.1 Related Work
Our work can be differentiated from related work in two

ways: the scope of the problem addressed, and the evalua-
tion metrics.

Related to scope, we address a narrower problem than oth-
ers but with more depth. For example, decision trees [12]
are used to classify items. Our VDP can be viewed as a
classification problem with only two classes: tuples in V
and those not in V . Thus, VDP is narrower since only
two classes are considered. However, we go deeper into
this subproblem by considering multiple query families and
multiple optimization criteria. Similarly, Query By Out-
put (QBO) [15] is a more general problem than ours. In
QBO, we are given V and R1, R2, . . . , Rn, and asked to re-
turn Q such that Q(R1, R2, . . . , Rn) = V . Thus, VDP is
the special case where n = 1 and there are no joins nor
projections. However, as mentioned above, we thoroughly
study the VDP subproblem by considering different classes
of selection queries and multiple optimization criteria.

The second differentiator for our work is the metrics we
use: succinctness and level of approximation. Most clas-
sification work, on the other hand, relies on experimental
generality, mentioned earlier. When generality is a goal, we
are given, in addition to D and V (the training sets), two
test data sets, DT and VT . Query Q is determined without
seeing the test sets, only using the training sets. However, Q
is evaluated by the level of approximation of Q(DT) to VT .
Generality is an experimental measure, although one can
study generality by assuming that D and DT (and V and
VT) have “similar” statistical properties. On the other hand,
our notion of succinctness is an intrinsic property of a query.
Intuitively, a succinct query will be more general than a less
succinct query that overfits the data. In addition, succinct-
ness is also desirable because it yields more readable (and
more maintainable) queries. When succinctness is a goal
(as it is in this paper), we can obtain theoretical guaran-
tees, e.g., an algorithm can find the most succinct Q within
a family of queries in quadratic time.

Next we present some additional details about decision
trees and QBO.

Classification: Decision trees are used to classify items
into n ≥ 2 classes. A decision tree is simply a binary tree
with each tree node annotated with a predicate. One child
of the node corresponds to the predicate evaluating to true,
and the other child corresponds to the predicate evaluating
to false. Each leaf node is labeled with a class label from
C1, . . . , Cn. For VDP, we restrict n = 2 (tuple present in
the view, or not present in the view).

Thus a decision tree for n = 2 corresponds to a query of
the following form: Q = (p1 ∧ Q′) ∨ (¬p1 ∧ Q′′), where p1

is the splitting predicate, and Q′ and Q′′ are recursively of
the same form. However, note that some queries may not
be directly expressible using decision trees. For example,
the query (((A = 3) ∧ (B = 4)) ∨ (B = 5)), which may
be the query with the smallest number of predicates cannot
be directly expressed as a decision tree (since each node in
a decision tree divides/splits the items into two mutually
exclusive sets).

In our work we not only consider more general queries,
but we also provide a taxonomy of different query families,
showing how complexity of VDP relates to the query family.
In addition, as mentioned earlier, we do not use experimental
generality, but focus on metrics that do not need test data.

Query by Output: In [15], QBO is cast as a classification
problem (into two classes: tuples in V , and tuples not in V)
and decision trees are used to find a compact query. A deci-
sion tree is constructed in a greedy fashion by determining a
“good” predicate to split the tuples into two classes. These
two classes form the root nodes of two decision trees (each
of which is constructed in a recursive fashion). The “good-
ness” of a predicate is assessed using a metric called Gini’s
index [14], and the best predicate is the one that reduces
the Gini’s index the most. Reference [15] does not explic-
itly try to optimize our metrics of succinctness or level or
approximation, nor does it study the tradeoff between these
metrics. Also, it does not consider the different families of
queries that we do.

2. PROBLEM DEFINITIONS
In this paper, we assume that database D is a single re-

lation R. We additionally assume that the relation R and
the view V have the same schema. For V to be a meaning-
ful view of R, it is necessary that V ⊆ R. We assume set
semantics throughout the paper.

Since we deal with single table relations with both V and
R having the same schema, any query Q can be represented
as a selection condition. Any selection condition can be ex-
pressed as a DNF (Disjunctive Normal Form) formula, i.e.,
Q ≡ c1∨c2∨ . . .∨cn. Each ci, called a conjunctive clause, is
of the form pi1 ∧ pi2 ∧ . . . pimi , where each pij is a predicate.
We restrict our predicates to be equalities (e.g., a = 5), in-
equalities (e.g., a 6= 5) or ranges (a ∈ [5, 10]). If Q ≡ c1, i.e.,
if Q contains a single conjunctive clause, then Q is a con-
junctive query (CQ). A DNF selection condition is therefore
equivalent to a union of conjunctive queries (UCQ).

For each family of queries that we consider, we are inter-
ested in obtaining Q such that: (1) Q(R) is as close to V
as possible (i.e., as accurate as possible): Intuitively, Q(R)
should miss out on few tuples from V , and should include
few tuples not in V . (2) Q is as succinct as possible. Next
we introduce a difference measure to quantify the closeness

Movie Director Genre Box office
Kill Bill Quentin Tarantino Action Hit

Pulp Fiction Quentin Tarantino Comedy Hit
Grindhouse Quentin Tarantino Horror Flop

Jurassic Park Steven Spielberg Action Hit
1941 Steven Spielberg Comedy Flop

The Village M.N. Shyamalan Horror Flop
Sixth Sense M.N. Shyamalan Horror Hit

The Godfather F.F. Coppola Action Hit
Donnie Brasco Mike Newell Action Hit

Snatch Guy Ritchie Comedy Hit

Table 1: Relation Instance

Movie Director Genre Box office
Kill Bill Quentin Tarantino Action Hit

Pulp Fiction Quentin Tarantino Comedy Hit
Sixth Sense M.N. Shyamalan Horror Hit

Snatch Guy Ritchie Comedy Hit

Table 2: View Instance

between V and Q(R) (Section 2.1) and a metric of succinct-
ness for queries (Section 2.2). Then, we formally define the
specific problems addressed in this paper (Section 2.3), and
the families of queries we consider (Section 2.4). Finally, in
Section 2.5, we present a summary of our results. We use
the following running example throughout the paper.

Example 2.1. Consider a relation Rmov giving informa-
tion about movies, shown in Table 1. Also consider a rela-
tion Vmov in Table 2, obtained from Rmov through manual
selection of tuples. Henceforth, we use R and V to abbrevi-
ate Rmov and Vmov respectively.

2.1 Difference Metric
Given relations R, V , and a query Q, we say that Q(R)

is close to V if Q(R) has few incorrect or missing tuples.
The difference between two relations of the same schema (in
this case Q(R) and V) is captured by their symmetric set
difference:

Definition 2.2 (Difference). Given two relations R1

and R2, we say that the difference between R1 and R2 is
given by d(R1, R2) = |R1 −R2|+ |R2 −R1|.

Note that the definition above can also be interpreted as
the total number of tuples that need to be deleted or added
to convert relation R1 into relation R2 (or vice versa). The
smaller the difference d(Q(R), V), the closer Q(R) is to V .

There are situations when we may have an additional con-
straint that one of either |V − Q(R)| or |Q(R) − V | should
be 0, i.e., we require Q(R) to be either a superset or a sub-
set of V . For instance, suppose the result of finding a view
definition is given to a human for manual pruning. In such a
case it may be critical to capture all result tuples in V , but
extra tuples in Q(R) can be removed manually. We consider
difference metrics incorporating these additional constraints
in Section 6.

2.2 Query Succinctness
We first introduce the notion of size, for conjunctive queries

and unions of conjunctive queries, and then define succinct-
ness in terms of size. We measure the size of a conjunctive

query (CQ) as its number of predicates. We measure the
size of a union of conjunctive queries (UCQ) as its number
of unions. For UCQs, an alternative metric would include
both number of unions and number of predicates in each
clause. We studied this alternative metric as well for each
of the problems we discuss in this paper, and the algorithms
and complexity are similar. Additionally, if the average size
of each conjunctive clause is similar, the number of unions is
a good measure of the complexity of the queries. We men-
tion differences whenever appropriate, but primarily use the
metric based on number of unions. Thus we have:

Definition 2.3 (Size). The size of a conjunctive query
Q, size(Q), is the number of predicates in Q. The size of a
union of conjunctive queries Q, size(Q), is the number of
unions appearing in Q.

Given two queries from the same family Q and Q′, we say
that Q is more succinct than Q′ if Q has a smaller size.

Definition 2.4 (Relative-Succinctness). Given two
queries Q and Q′ from a family Q of queries, we say that
Q � Q′, i.e., Q is at least as succinct as Q′, if size(Q)≤size(Q′).
We say that Q is more succinct than Q′ if Q � Q′ but not
Q′ � Q.

Example 2.5. Consider a query Q for Example 2.1: (Di-
rector = Quentin Tarantino ∧ Box Office = Hit) ∨ (Director
= Guy Ritchie) ∨ (Movie = Sixth Sense). This query has
three conjunctive clauses, i.e., two unions. Another query
containing three unions is the following: (Movie = Snatch
∧ Box Office = Hit) ∨ (Movie = Kill Bill) ∨ (Movie = Pulp
Fiction) ∨ (Movie = Sixth Sense). Both these queries have
V = Q(R), but the first query has fewer unions, and is there-
fore more succinct.

2.3 View Definition Problems
Next we enumerate the problems we study in the rest of

the paper. The first problem considers whether given R and
V , there is an exact view definition in a certain query family.

Definition 2.6 (Exact View Def. (EVD)). Given re-
lation R, view V , and a query family Q, return a Q ∈ Q such
that V = Q(R), if such a Q exists.

There may be several queries Q such that V = Q(R), as
we’ve seen in Example 2.5. Our next problem addresses the
case when EVD doesn’t have a unique solution, or when it
has no solution at all. When EVD has multiple solutions,
we want the most succinct one. When there is no exact view
definition at all, as a first priority we want the closest query,
and as a second priority we want the most succinct one.

Definition 2.7 (Best View Def. (BVD)). Given re-
lation R, view V , and a family of queries Q, find and return
any Q ∈ Q such that:

(1) there is no Q′ ∈ Q with d(V,Q′(R)) < d(V,Q(R))

(2) ∀ Q′ ∈ Q with d(V,Q′(R)) = d(V,Q(R)), Q � Q′.

In some cases, minimizing the difference may be less criti-
cal than obtaining a succinct view definition. For instance,
an approximate view definition that gets close to V may
suffice, but we would like the most succinct view definition
that achieves the required approximation. The next prob-
lem finds the most succinct view definition that satisfies a
minimum level of approximation specified by a threshold on
the difference metric.

Definition 2.8 (Approximate View Def. (AVD)).
Given relation R, view V , approximation threshold τ , and a
family of queries Q, check if ∃Q ∈ Q such that:

(1) d(V,Q(R)) ≤ τ
(2) if for any Q′ ∈ Q, d(V,Q′(R)) ≤ τ , then Q � Q′.

and return any such Q if one exists.

For all three problems, we use the difference metric from
Definition 2.2. Also recall from Section 2.1 the alternative
difference metrics that require either |V − Q(R)| = 0 or
|Q(R) − V | = 0, i.e., seeking view definitions that result
in supersets or subsets of V respectively. In Section 6 we
consider two variants of BVD: (1) BVD-Sup, equivalent to
BVD but restricted to view definitions Q satisfying Q(R) ⊇
V ; (2) BVD-Sub, equivalent to BVD but restricted to view
definitions Q satisfying Q(R) ⊆ V .

Definition 2.9 (Approximation Ratio). Given rela-
tion R, view V , a family of queries Q (and τ in the case of
AVD), we say that a solution Q ∈ Q gives an α-approximation
to BVD (AVD resp.) if Q satisfies (1) Condition-1 of Def-
inition 2.7 (Definition 2.8 resp.); and (2) Condition-2 of
Definition 2.7 (Definition 2.8 resp.) by replacing “Q � Q′”
with “size(Q)≤ α.size(Q′)”.

2.4 Families of Queries
We consider the following families of queries:

• CQ1
=: A conjunctive query with a single equality pred-

icate A = a.

• CQ1: A conjunctive query with a single range predi-
cate, i.e., A = a or A 6= a or A ∈ [a1, a2].

• CQ=: A conjunctive query with any number of equal-
ity predicates, but at most one predicate per attribute.

• CQ: A conjunctive query with any number of range
predicates, but at most one predicate per attribute.

• UCQ=: Unions of CQ= queries.

• UCQ: Unions of CQ queries.

• UCQk=: Union of at most k CQ= queries (k ≥ 1).

• UCQk: Union of at most k CQ queries (k ≥ 1).

Example 2.10. (Director = M.N. Shyamalan) is a query
in CQ1

= (and other more general families), while (Director
= M.N. Shyamalan ∧ Genre = Horror) is a query in CQ=.
(Movie = Snatch) ∨ (Movie = Kill Bill) ∨ (Movie = Pulp
Fiction) ∨ (Movie = Sixth Sense) is a UCQ= query, as well
as a UCQ4

= query.

2.5 Summary of Results and Outline
Consider the EVD, BVD, and AVD problems for a rela-

tion R with M attributes and N tuples. Table 3 summarizes
the results we have obtained for all the problems specified
in Section 2.3, showing worst-case complexity and approx-
imation ratios. (Some results from Table 3 are relatively
straightforward, but still included in the paper for complete-
ness.) For UCQk= and UCQk, since the size of the query is
fixed (to k unions), we use an approximation metric differ-
ent from Definition 2.9, requiring different techniques and
analysis (discussed in Section 5).

Note that for some of the problems listed here, we ana-
lyze data complexity, i.e., the complexity on keeping schema
size fixed and varying the size of the data (the number of

Family EVD BVD AVD BVD-Sup BVD-Sub

CQ1
= O(MN) O(MN) O(MN) O(MN) O(MN)

CQ1 O(MN2) O(MN2) O(MN2) O(MN) O(MN2)

CQ= O(MN) O(MNM+1) O(MNM+1) O(MN.2M) O(M.NM+1)
NP-Hard(N,M) NP-complete(N,M)

O(MN2) log N -approx O(MNτ+2) log N -approx

CQ O(MN) O(MN2M+1) O(MN2M+1) O(MN.2M) O(M.N2M+1)
NP-Hard(N,M) NP-complete(N,M) NP-Hard(N,M) NP-Hard(N,M)

O(MN3) log N -approx O(MNτ+3) log N -approx
UCQ= O(MN) NP-complete(N,M) NP-complete(N,M) N/A N/A

PTIME(NM) log N -approx.
UCQ O(MN) NP-complete(N,M) NP-complete(N,M) N/A N/A

PTIME(N2M) log N -approx.

UCQk= O(MNMk+2) O(MNMk+2) N/A O(MNMk+2) O(MNMk+2)
NP-complete(N,M,k) NP-complete(N,M,k) NP-complete(N,M,k) NP-complete(N,M,k)

PTIME 2k-approx

UCQk O(MN2Mk+2) O(MN2Mk+2) N/A O(MN2Mk+2) O(MN2Mk+2)
NP-complete(N,M,k) NP-complete(N,M,k) NP-complete(N,M,k) NP-complete(N,M,k)

PTIME 2k-approx

Table 3: Summary of Results.

tuples in R) as well as combined complexity, i.e., the com-
plexity when neither schema size nor data size is fixed. We
analyze these two cases separately because the data com-
plexity may be different from the combined complexity for
some problems, e.g., BVD for CQ, where the data complex-
ity is PTIME(N), while the combined complexity is NP-
Complete (denoted as NP-Complete(N,M)). Similar no-
tions were first introduced in [17].

Note that we don’t separately consider the BVD-Sup and
BVD-Sub problems for UCQ= and UCQ (marked N/A in
Table 3), as there is always a solution to EVD, and hence
BVD’s solution directly applies to BVD-Sup and BVD-Sub.
Also note that the NP-Completeness results for UCQk= and
UCQk for EVD, BVD and BVD-Sup/Sub only hold if we
allow the parameter k and the schema size M to vary along
with N , the data size. If not, the problems are solvable in
PTIME in N . Further, we don’t consider AVD for UCQk=
and UCQk since the size of all these queries is fixed (k
clauses), therefore, the solution to AVD is no different from
the solution to BVD. The approximation result for AVD for
CQ and CQ= only holds for the special case when the view
definition is required to give a superset of V , i.e., the analog
of BVD-Sup for AVD.

In the remainder of the paper, we present details for all
the results from Table 3, organized as follows. Section 3.1
considers the families of queries CQ1

= and CQ1. Section 3.2
considers the families CQ= and CQ. Section 4 considers the
families UCQ= and UCQ. Section 5 considers the families
UCQk= and UCQk. The BVD-Sup and BVD-Sub problems
are studied in Section 6.

3. FAMILIES OF CONJUNCTIVE QUERIES
We first consider the families of conjunctive queries with

single predicates, i.e., CQ1
= and CQ1 (Section 3.1). We then

consider the families CQ= and CQ of conjunctive queries
with multiple predicates (Section 3.2).

3.1 Single Predicate
Since the results for single-predicate queries are simple in

comparison to the other families of queries, we only state
our main results, in the next two theorems. Details are

presented in Appendix A.

Theorem 3.1. Given a relation instance R with M at-
tributes and N tuples, and a view instance V , each of EVD,
BVD, and AVD can be solved in O(MN) for CQ1

=.

Theorem 3.2. Given a relation instance R with M at-
tributes and N tuples, and a view instance V , each of EVD,
BVD, and AVD can be solved in O(MN2) for CQ1.

Intuitively, for each of these problems, d(V,Q(R)) for all
possible queries Q in the given family of queries needs to
be computed. This computation is significantly aided by
hashing, allowing all counts to be obtained in O(MN).

3.2 Multiple Predicates
Next we consider the view definition problems for conjunc-

tive queries, i.e., families CQ and CQ=. First, we present a
connection between our problems and a set cover formula-
tion, which is used in the rest of the section (Section 3.2.1).
We then study EVD (Section 3.2.2), BVD (Section 3.2.3)
and AVD (Section 3.2.4) problems respectively.

3.2.1 Set Cover Formulation
Given a relation R, and a view V , we create an instance of

the set cover problem as follows: Construct the universal set
U = R − V . Consider the set of single-attribute predicates
P such that P ∈ P iff P (R) ⊇ V . For each P ∈ P we define
a set SP = U − (P (R) ∩ (R− V)).

Intuitively, our aim is to cover all the elements of U ,
thereby eliminating all the incorrect tuples. We perform
this cover by selecting a set of predicates T ⊆ P such that
∪P∈T SP = U . In other words, a cover of U gives a solu-
tion to the EVD for R and V : Since every element of U is
covered, the corresponding set of predicates in conjunction
does not select any tuple in R−V . Moreover, each predicate
selects all tuples of V .

3.2.2 EVD
We first consider EVD for the family of queries CQ=. We

will handle CQ subsequently.

Theorem 3.3. Given a relation R and a view instance V ,
Algorithm 2 checks if there exists a solution to EVD for the
query family CQ= and finds one if there exists in O(MN).

The proof of this result may be found in Appendix Sec.B.1.
The result above can be easily extended for CQ with time

complexity still O(MN). For each attribute, we first pick
the smallest superset range in the view as a predicate. We
further check if there is a single value in the range present
in the relation but missing in the view. (If so, we replace
the range predicate with one predicate involving 6= for the
missing value. Note that if there are multiple values missing
within the range, then there is no EVD.) This check can
be done in O(N) per attribute (O(MN) overall) by using
hashing to count the number of distinct values. We then
check if the conjunctive clause thus formed is an EVD.

Require: A1, A2, . . . , An ← attributes of relation and view
Require: b1, b2, . . . , bn ← sizes of view attribute domains
Require: V ← view instance, R← relation instance
1: Q← NULL
2: for i ∈ 1 . . . n do
3: if bi == 1 then
4: vi ← value of Ai in view
5: Q← Q ∧ (Ai = vi)
6: end if
7: end for
8: if |Q(R)| == |V | then
9: return Q

10: else
11: return No EVD
12: end if

Algorithm 2: Algorithm to solve EVD for CQ=.

3.2.3 BVD
We start this section by a straightforward upper bound

for BVD. We then present a lower bound, followed by an
approximation algorithm.

Upper Bound
Let us consider the BVD problem for input R with N tuples
and M attributes, and view V . To obtain an upper bound
for BVD, we simply consider all possible conjunctive queries
over R and pick the best possible one. R has O(NM) or
O(N2M) queries depending on whether our family of queries
is CQ= or CQ. In O(MN) we can compute d(Q(R), V) for
each query. If we assume the schema size M to be a fixed
parameter and vary N , the size of the data, BVD’s data
complexity is PTIME, established by the following theorem.
(We note that if R and V are cross-products of sets of values
for attributes, BVD can be solved in O(MN). Details of
this special case appear in Appendix B.2.)

Theorem 3.4. Given a relation R, view instance V , the
BVD problem has a data complexity of O(MNM+1) and
O(MN2M+1) for the family of queries CQ= and CQ respec-
tively.

Example 3.5. For Example 2.1, the BVD query for CQ=

is (Director = Q.Tarantino ∧ Box Office = Hit), which has
d = 2 due to two missing tuples.

Lower Bound
We have seen an upper bound on the complexity of BVD.
Our next result shows an exponential lower bound in terms

of combined data and schema complexity of R. Recall that
on fixing the number of attributes, the data complexity is
polynomial in N . However, if we allow the number of at-
tributes and the number of tuples in R to both vary, we
show intractability. Our proof uses a relation R where the
number of tuples and number of attributes are polynomials
of each other.

Theorem 3.6. Given R and V , the BVD problem is NP-
Hard in N and M , for CQ= and CQ.

Proof. We give a reverse construction based on the idea
from Section 3.2.1. That is, for each instance of the set cover
problem, we construct an instance of the BVD problem such
that the solution of the BVD instance yields a solution to
the set cover problem. Given an instance of the set cover
problem consisting of the universal set U = {1, . . . , n}, and
subsets S1, . . . , Sm, we construct an input to BVD as follows
(Note that the set cover problem is NP-hard even when the
number of sets m is restricted to a polynomial of n):
R(A1, . . . , Am) contains a tuple ti corresponding to each

element i ∈ U . ti.Aj = 0 if i 6∈ Sj . For every attribute value
in R not assigned 0 based on the rule above, a distinct at-
tribute value is assigned. (Note that there is no tuple marked
with 0 in all attribute values, since we can assume without
loss of generality that every element i ∈ U appears in some
subset Sj .) Add a special tuple t0 to R where ∀j, t0.Aj = 0.
Let V = {t0}.

Since V has a single tuple with all attribute values being
0, for BVD, we only need to consider queries with predi-
cates of the form Aj = 0. Every such predicate corresponds
to picking a set Sj for the set cover. Our goal reduces to
finding the fewest such predicates such that each of the tu-
ples t1, . . . , tn is not picked by at least one predicate, which
is equivalent to finding the smallest cover for U .

The size of our constructed relation R is O(mn), where the
set cover problem has n elements and m attributes. Hence,
BVD is NP-hard in combined data and schema size.

Approximation Algorithm
Now that we’ve established a lower bound on the complexity
of BVD, we next study PTIME (in schema and data of R)
approximation algorithms for solving the problem. We dis-
tinguish two cases: (1) When there is no solution to EVD;
(2) When there exists a solution to EVD.

For Case (1), we employ the algorithm used for Theo-
rem 3.4, i.e., looking at all possible queries and picking the
best one. Our next result is an efficient approximation al-
gorithm for Case (2). Given inputs R and V , we reduce
BVD to the set cover problem based on the construction
in Section 3.2.1. We then use Set Cover’s greedy approxi-
mation algorithm [18]. Since the constructed set cover for-
mulation has O(N) elements, and O(MN) sets (a predicate
corresponding to each value of each attribute) for CQ= and
O(MN2) sets for CQ, we have the following result.

Theorem 3.7. Given relations R and V such that EVD
has a solution for CQ= (CQ resp.), there is an O(MN2)-
time (O(MN3)-time resp.) logN-factor approximation al-
gorithm for BVD.

3.2.4 AVD
We consider the AVD problem for CQ= and CQ. The

worst-case upper bound result of BVD for these families of

queries carries over for AVD as well. First we state the com-
plexity of AVD, in the following theorem, and then present
an approximation algorithm.

Theorem 3.8. Given R and V , the AVD problem is NP-
complete in N and M , for CQ= and CQ.

Proof. NP-hardness of AVD follows from the reduction
in the proof of Theorem 3.6, which also applies when τ = 0.
AVD is in NP because, given a query Q, in PTIME we can
check whether d(V,Q(R)) ≤ τ , and then we check if any
more succinct query Q′ also has d(V,Q′(R)) ≤ τ .

Next we present an approximation algorithm for AVD, un-
der the superset special case described in Section 2. Suppose
we are given a threshold τ along with R and V , and we want
the most succinct query Q that guarantees d(Q(R), V) ≤ τ .
We can approximately solve AVD using our set cover con-
struction when we impose the condition that Q(R) ⊇ V ,
which we call the AVD-Sup problem: Given R and V , we
construct an instance of the set cover problem as in Sec-
tion 3.2.1. We are then interested in a solution that covers
at least δ = (|R− V | − τ) elements. Once again, we can use
set cover’s greedy approximation algorithm. However, we
must solve the set cover for all possible choices of δ elements
from the |R − V | elements. We solve these

(|R−V |
δ

)
≤
(
N
τ

)
set cover problems and pick the best, i.e., smallest, query
among all of them.

Theorem 3.9. Given relations R and V , and threshold τ ,
there is an O(MNτ+2)-time (O(MNτ+3)-time resp.) logN-
factor approximation algorithm for the AVD-sup problem for
CQ= (CQ resp.).

4. UNIONS OF CQ
We now study VDP for a union of conjunctive queries,

i.e., query families UCQ and UCQ=.

4.1 EVD
The following straightforward theorem, proved in Appendix C,

establishes the result for EVD.

Theorem 4.1. Given R, V , there exists a solution to
EVD for UCQ and UCQ= if and only if V ⊆ R.

Therefore, EVD can be solved in O(MN) time. Note that
while the above theorem says that EVD always has a solu-
tion for V ⊆ R, the next example shows that the solution
may not be unique.

Example 4.2. For Example 2.1, the queries (Movie =
Snatch) ∨ (Movie = Kill Bill) ∨ (Movie = Pulp Fiction) ∨
(Movie = Sixth Sense) and (Movie = Snatch) ∨ (Movie = Kill
Bill) ∨ (Director = Q. Tarantino ∧ Box Office = Hit), are both
EVDs for the view.

4.2 BVD
Since there is a query Q′ such that Q′(R) = V , the BVD

query Q has to satisfy Q(R) = V as well. Hence, BVD
reduces to finding the most succinct Q such that Q(R) =
V . In this section we focus on the family UCQ=, but the
algorithms for UCQ are similar.

Require: t1, t2, . . . , tv ← tuples in the view
1: /* Generate */
2: S ← ∅, T ← {t1, t2, . . . , tv}, f ← false
3: while f == false do
4: S ← S ∪ T (use the Exclusion Criterion)
5: R← ∅
6: for i ∈ T do
7: R← R ∪ (sub-clauses of i on dropping 1 predicate)
8: end for
9: discard conjunctive clauses containing incorrect tuples from

R (use the Pruning Criterion)
10: T ← R
11: f ← (R == ∅)
12: end while
13: /* Cover */
14: for all Q such that Q ⊆ S, |Q| = 1..v do
15: if d(Q(R), V) == 0 then
16: return Q
17: end if
18: end for

Algorithm 3: Algorithm to solve the BVD.

4.2.1 Complexity
We now prove that finding a BVD is NP -Complete, by

using a reduction from the Vertex Cover problem.

Theorem 4.3. Given R, V , finding a solution to BVD is
NP -complete in the size of R’s schema and data for UCQ=

and UCQ.

Proof. We give a reduction from the NP-complete Ver-
tex Cover problem [18]: Given an undirected graph G(V,E),
V = {v1, . . . , vm} and E = {e1, . . . , en}, determine the
smallest set Vcov ⊆ V such that all edges in E have at
least one endpoint in Vcov. The vertex cover problem is NP-
complete in N , when m and n are poly(N). (Specifically,
m2 ≥ 2n ≥ m is sufficient for NP-hardness.)

Given an instance of the vertex cover problem, we con-
struct an instance of BVD as follows: Create a relation
R(A1, . . . , Am) consisting of n tuples t1, . . . , tn. ti.Aj = 0
if and only if vertex vj is an endpoint of edge ei. All other
entries in R are assigned distinct values. Further, let the
view V = R. Now, to construct a solution to BVD, the only
useful conjunctive clauses are of the form (Aj = 0), which
corresponds to selecting vertex vj in the vertex cover. Any
vertex cover can be represented as a union of conjunctive
clauses corresponding to each vertex. Hence, there exists
a vertex cover of size k if and only if there is a UCQ with
k conjunctive clauses solving BVD. It is easy to see that
the decision version of the problem is in NP, hence BVD is
NP-complete in the size of the data and schema.

Note that the same hardness proof above holds even if the
metric for succinctness is not the number of unions, but is
instead the total number of predicates in the DNF formula.
The proof holds because only conjunctive clauses of size 1
are useful in the above reduction. As a result, both the
metrics are equivalent (i.e., the total number of predicates
= total number of clauses).

4.2.2 Two-phase Algorithm
Although BVD is NP-complete in general, Algorithm 3

describes a two-phase algorithm for an exhaustive search.
Further, we can apply certain criteria to reduce the search
space, as described shortly.1 Our algorithm operates in two
1The worst-case guarantees don’t change.

phases: Generate and Cover. The Generate phase gener-
ates all the potentical candidate conjunctive clauses in a
top-down fashion (conjunctive clauses with m predicates,
then m− 1 predicates, and so on), starting with the tuples
themselves as conjunctive clauses (line 2), and removing one
predicate at a time to form smaller conjunctive clauses (line
7). (T is the set of conjunctive clauses generated in the
previous iteration, S contains all the clauses generated so
far, and R is the candidate set of clauses to be added in
the next iteration.) These conjunctive clauses should not
select any tuples not in the view (i.e., incorrect tuples) —
this condition is checked in line 9. Instead, we could also use
the following condition to directly prune good conjunctive
clauses from bad ones. However, for this condition to be ap-
plied, we need to incur the cost of maintaining conjunctive
clauses containing incorrect elements.

Lemma 4.4 (Pruning Criterion). If for a conjunc-
tive clause with s predicates, there is a (s + 1) predicate
conjunctive clause (with one extra predicate) which selects
any tuples not found in V , then the conjunctive clause with
s predicates can be removed from the set of candidate con-
junctive clauses.

Note that the pruning condition is remniscent of the prun-
ing found in other domains, including finding all functional
dependencies [6] and association rule mining [1].

The number of conjunctive clauses generated and added
to S is governed by the size of the view, which may be
much smaller than the relation. We could use the following
criterion to further reduce the size of S.

Lemma 4.5 (Exclusion Criterion). If a conjunctive
clause with s predicates has been selected, then all conjunc-
tive clauses with the same s predicates and r, r ≥ 1 addi-
tional predicates can be removed from S.

The Cover phase picks k conjunctive clauses (where k goes
from 1..n) from the candidate conjunctive clauses such that
all tuples in V are covered/selected. All combinations of
k conjunctive clauses from the set of candidate conjunctive
clauses are tried for this purpose until one is found with
d = 0 (line 15). The returned query is simply the union of
those conjunctive clauses. Note that if we were to use the
metric counting number of predicates in the DNF, then we
would need to try all combinations of conjunctive clauses,
and return the one with the smallest number of predicates.

Note that this phase is expensive computationally (even
though we mentioned several methods to reduce the size
of the candidate set S), so we describe an approximation
algorithm to reduce the complexity in the next section.

Also note that the BVD algorithm is remniscent of the
Quine-McCluskey procedure for finding minimal DNF for
a boolean function [10] (and more generally other boolean
formula minimization techniques [4]). The problem in that
case is Σp2-complete [16].

As an aside, note that we can use database properties to
simplify the input to BVD, such as using the following rule.
Our paper doesn’t delve into exploring more such properties.

Lemma 4.6 (Func. Dependency Pruning). Given R,
V input to BVD/AVD, if R satisfies the FD X → Y , then
we can drop attributes Y −X from R and V to get an equiv-
alent formulation of the problem.

4.2.3 Approximation Algorithm
We now describe an approximation algorithm for the Cover

phase of the BVD algorithm.

Theorem 4.7. Given R with N tuples and M attributes,
a view V , there exists a PTIME (in N) algorithm that finds
a logN-approximation to the optimal solution: If the opti-
mal solution has k unions, our algorithm produces at most
k logN unions.

Proof. In the following, we give an L-reduction from
BVD to the set cover problem. We can then use the greedy
algorithm for set cover that guarantees a logN factor ap-
proximation ratio [18].

There are a polynomial (in N) number of CQ= queries
over R: There are at most N possible predicates over each
attribute, and hence at most (N + 1)M conjunctive queries.
Create an instance of set cover where the universe U is the
set of all tuples in R. Each conjunctive query C forms a
subset S ⊆ U containing precisely the tuples selected by
C. The optimal solution to the set cover problem gives the
optimal UCQ containing the conjunctive queries selected in
the set cover’s solution.

At each stage the greedy algorithm picks the best con-
junctive clause, i.e., one that covers maximum number of
tuples from the view. The algorithm terminates when all
the tuples in the view have been selected.

Note that for the metric that counts the total number of
predicates in the DNF formula, we can describe a similar ap-
proximation algorithm using a reduction to the weighted set
cover problem [18], where the cost of each set corresponding
to a conjunctive clause is the number of predicates present in
the conjunctive clause. In this case at each stage the greedy
algorithm picks the conjunctive clause that has the largest
ratio of the number of new tuples from the view covered to
the cost of the clause.

4.3 AVD
We first present the complexity of finding an AVD, then

explain how we can adapt Algorithm 3 for AVD.

4.3.1 Complexity

Corollary 4.8. Finding a solution to AVD for UCQ=

and UCQ is NP -complete in the schema size and the data
size.

The hardness proof is easy to see on setting τ = 0 for the
reduction in Theorem 4.3. Additionally, AVD is in NP be-
cause given a solution Q to the AVD which has k unions, we
can test all possible UCQs Q′ of size upto k (a polynomial
in n) and check if d(Q(R), V) < d(Q′(R), V), all in PTIME.

4.3.2 Two Phase Algorithm
We now describe a modification of Algorithm 3 for AVD.

As before, the algorithm has two phases, Generate and Cover.
In the Generate phase, we can apply a natural generaliza-
tion of the pruning criterion. In addition, we can apply the
following criteria, which are different from the criteria used
for BVD.

Lemma 4.9 (Inclusion Criterion). If a conjunctive
clause Q selects > τ tuples not present in the view, then Q
is not included in S.

Lemma 4.10 (Exclusion Criterion). If a conjunctive
clause Q with s predicates has been selected, then all con-
junctive clauses with Q′ the same s predicates and r, r ≥ 1
additional predicates that have d(Q′(R), V) = d(Q(R), V)
can be removed from S.

5. BOUNDED UNIONS
In this section we consider the families of queries where

the number of unions is bounded by k, i.e., the families
UCQk= and UCQk. Section 5.1 considers the case when k
is not fixed and Section 5.2 considers the case when k is a
fixed parameter. Recall, since the AVD problem reduces to
the BVD problem when the query size is fixed, we do not
separately consider the AVD problem.

5.1 Variable Parameter
The following theorem establishes the complexity of solv-

ing EVD and BVD when k is a variable parameter.

Theorem 5.1. Given input relation R with N tuples and
M attributes, and a view instance V , the EVD and BVD
problems are NP-complete in N,M and k for UCQk= and
UCQk.

Proof. The problem is clearly in NP: Given a UCQk= or
UCQk query Q, we can check in PTIME whether Q is a
solution to EVD or if there are any queries with a smaller
difference. The hardness result follows from the hardness
of BVD for UCQ= and UCQ (Theorem 4.3). In the proof
of Theorem 4.3, we constructed an input instance R and V
where checking if there was a BVD UCQ (or UCQ=) with at
most k unions was NP-hard. This instance can be reduced
to checking if there is an EVD for UCQk or if there is a BVD
for UCQk with difference 0.

5.2 Fixed Parameter
If k is fixed, we have the following theorem.

Theorem 5.2. Given a relation R and a view V , the
BVD and EVD problem can be solved in O(MNMk+2) for
UCQk= and in O(MN2Mk+2) for UCQk.

The theorem follows from the fact that all candidate queries

in UCQk= (in UCQk resp.) can be enumerated in
(
NM

k

)
(
(
N2M

k

)
resp.) and it takes at most O(MN2) to calculate

the difference for each of these queries.
Since the approach above is exponential in M and k,

we look for an approximate solution that is more tractable
for the BVD problem. There are two main results in this
section: a greedy approximation algorithm for BVD (Sec-
tion 5.2.1), and an inapproximability result on a family of
greedy algorithms (Section 5.2.2). As explained next, our
greedy algorithm gives an approximation ratio under a weaker
notion than approximating the difference metric. However,
the inapproximability result from Section 5.2.2 shows that
no greedy algorithm can achieve a good approximation ratio
under the stronger notion.

Given input R, V , our result shows that the greedy algo-
rithm gives a query Qalgo with a good approximation ratio
for one of two metrics: (i) the difference metric between
Qalgo and V , and (ii) the good-bad metric, i.e., the total
number of tuples in V produced by Qalgo minus the number
of tuples not in V produced by Qalgo. Define:

dalgo = min{|V |, |V −Qalgo(R)|+ |Qalgo(R)− V |}

gbalgo = |V | − dalgo

The metrics for the optimal solution, dopt and gbopt, are de-
fined similarly. Intuitively, d measures the difference, while
gb measures the total number of “good tuples” (tuples in V)
returned by the query minus the number of “bad tuples” (tu-
ples not in V) returned by the query. Let the approximation
ratios based on d and gb be rd and rgb respectively. That is,

rd =
dalgo
dopt

and rgb =
gbopt
gbalgo

Ideally, for any algorithm, we want rd and rgb to be as small
as possible, but Section 5.2.2 shows that greedy algorithms
cannot guarantee good approximations under any of these
metrics independently. Next, in Section 5.2.1 we consider
approximating α = min{rd, rgb}.

5.2.1 Approximation Guarantee
Given input R and V , we employ the following greedy

algorithm, GreedyKUCQ, to solve BVD for UCQk= and
UCQk: GreedyKUCQ iteratively picks the best conjunc-
tive query until k conjunctive queries are picked. At each
step, the best conjunctive query is the one that maximizes
the gain in the gb metric, i.e., reduces the difference metric
by the most. That is, we pick the conjunctive query that
gives the largest number of new good tuples (tuples in V)
minus the number of new bad tuples (tuples not in V). The
algorithm terminates when k conjunctive clauses have been
picked or when there is no query with gain > 0.

When R has N tuples and M attributes, GreedyKUCQ
runs in polynomial-time in N and k: There are O(NM) con-
junctive queries in CQ= (O(N2M) for CQ resp.), and at each
iteration it takes time ∼ O(NM) (O(N2M) resp.) to pick
the next best conjunctive clause, and we have at most k iter-
ations. The following theorem establishes an approximation
guarantee for GreedyKUCQ.

Theorem 5.3. Given input R, V , GreedyKUCQ gives
a solution to the BVD problem satisfying α = min{rd, rgb} ≤
(2k − 1), for UCQk= and UCQk.

Proof. Suppose Vopt = Qopt(R), where Qopt is the opti-
mal solution to the BVD. Let y = |V ∩Vopt|, x = |Vopt−V |,
and z = |V − Vopt|. Therefore, we have:

dopt = (x+ z) (1)

gbopt = (y − x) (2)

Since k conjunctive queries put together give y good tuples
(i.e., tuples in V , and x bad tuples (i.e., tuples not in V),
there must exist a conjunctive query Q∗ that gives at least
y
k

good tuples and at most x bad tuples. We show that our
result holds for the query Q∗, and since Qalgo is at least as
good as Q∗, our result follows.

d∗ ≤ (z + y − y

k
) + x = (z + x+ y(1− 1

k
)) (3)

gb∗ ≥ (
y

k
− x) (4)

Using Equations 1 and 3, we have:

rd ≤
(z + x+ y(1− 1

k
))

x+ z
(5)

Using Equation 2 and 4, we have:

rgb ≤
y − x
y
k
− x (6)

Suppose for some parameter β:

(y − x)
y
k
− x = β (7)

Then, we have

(
y

k
− x) =

y − x
β
⇒ y

x
=
k(β − 1)

β − k (8)

Substituting the above in Equation 5, we get:

rd ≤
z+x+x(1− 1

k
)(
k(β−1)
β−k)

z+x

=
z+x+

x(k−1)(β−1)
β−k

z+x
≤ (1 +

(k − 1)(β − 1)

β − k) (9)

Therefore, from Equations 6, 7, and 9, we have:

(rgb ≤ β) and (rd ≤ (1 +
(k − 1)(β − 1)

β − k)) (10)

Therefore,

α ≤ min{β, (1 +
(k − 1)(β − 1)

β − k)} (11)

The minimum of the two expressions above is always ≤ 2k.
This follows from the fact that the second expression is
monotonically decreasing for β ≥ k, and we get β = (2k−1)
by solving the following:

β = (1 +
(k − 1)(β − 1)

β − k)

5.2.2 Lower Bound
The following theorem states the straightforward result

that GreedyKUCQ gives the optimal solution to BVD for
k = 1 for both the d metric as well as the gb metric.

Theorem 5.4. Given inputs R, V , GreedyKUCQ gives
the optimal solution to the BVD problem for UCQ1

= and
UCQ1, under the difference metric d as well as the “good-
bad” metric gb.

Our next result, proved in Appendix D, shows that for
k > 1, GreedyKUCQ can independently perform poorly
for the gb and the d metrics, thus justifying the approxima-
tion metric of α for GreedyKUCQ.

Theorem 5.5. GreedyKUCQ can give an arbitrarily bad
approximation ratio when the gb and d metrics are consid-
ered independently.

• There exists an input Rgb and view instance Vgb with
N tuples, such that for the BVD problem for UCQk=
and UCQk, for k > 1, using GreedyKUCQ, we have
gbopt ∼ N , gbgreedy = 0, and therefore get an approxi-
mation ratio rgb →∞.

• There exists an input Rd and view instance Vd with
N tuples, such that for the BVD problem for UCQk=
and UCQk, for k > 1, using GreedyKUCQ, we get
an approximation ratio rd = N(1− 1

k
).

We now prove that we can perform arbitrarily bad if we
use any greedy algorithm with a greedy function from a
large class of functions. Consider a family of algorithms
GreedyLin with linear greedy functions : f(g, b) = αg−βb,
where g is the number of tuples in V returned by a conjunc-
tive query Q, b is the number of tuples not in V returned
by Q, and α, β are positive constants. Also, we assume that
at each step the function only evaluates conjunctive clauses
based on the “new” tuples, i.e., the ones that have not been
selected by the conjunctive clauses picked already.

Additionally, the algorithm could stop (before k unions
are picked) if the conjunctive clause that is selected by the
algorithm has no gain (i.e., number of new good tuples -
number of new bad tuples < 0), could be constrained to
always return k unions or could stop when there are no tu-
ples left in V that have not been covered by the conjunctive
clauses picked. (Our next result applies to all the aforemen-
tioned stopping conditions.) Also, note that GreedyKUCQ
∈ GreedyLin.

Theorem 5.6. Given inputs R with N tuples and M at-
tributes, V , for the BVD problem for UCQk= and UCQk,
for k > 1, for any GreedyLin algorithm G using a greedy
function f(g, b) = αg − βb, (1) There is a case for which
rgb → ∞. (2) There is a case for which rd = O(N), i.e,
rd →∞ when N →∞.

Proof.
(1) Note that f(γ, γ) > f(γ−1, γ) holds for any γ. Consider
the following situation. We have two sets of conjunctive
clauses, Set I: k conjunctive clauses each of which covers N

k

distinct good tuples and N
k

distinct bad tuples, and Set II:

k conjunctive clauses each of which covers N
k

distinct good

tuples and the same N
k

+ 1 bad tuples. Any GreedyLin
algorithm would pick only conjunctive clauses from Set I.
(It may choose to not pick any conjunctive clauses, or stop
once k conjunctive clauses have been picked.) In any case,
we have gbgreedy = 0. However, the optimal algorithm would
pick k unions from Set II, giving rise to gbopt = N(1− 1

k
)−1.

Thus, for k > 1, rgb =∞.
(2) Consider the following situation. We have two sets of
conjunctive clauses, Set I: a single conjunctive clause which
covers all N good tuples and α

β
(N − N

k
) bad tuples, and

Set II: k conjunctive clauses each of which covers N
k

distinct
good tuples and the same 1 bad tuple. Any GreedyLin
algorithm would pick only conjunctive clauses from Set I,
for the following reason:

α ·N − β · α
β

(N − N

k
) > α

N

k
− β

If the GreedyLin algorithm picks no clause, dgreedy = N .
If it picks just one clause (from Set I), dgreedy = N − (N −
α
β

(N− N
k

)) = α
β
N(1− 1

k
). On picking additional conjunctive

clauses, dgreedy is strictly greater, since the same good tuples
would be covered, but additional bad tuples get covered.
Thus in any case, we have dgreedy = O(N). However, the
optimal algorithm would pick k unions from Set II, giving
rise to dopt = N − kN

k
+ 1 = 1. Thus, rd = O(N).

Note that these results would also hold for a much more
general class of functions. In particular, any greedy algo-
rithm that uses a function that satisfies f(γ, γ) > f(γ−1, γ)
or f(γ, γ) > f(γ, γ + 1) for any γ = αN < N

k
would have

gbopt = O(N) and rgb =∞.
Note that the BVD problem for UCQk= is reminiscent of

the red-blue cover problem [5] and the partial set cover prob-
lem [11]. Both these problems define a collection of elements
with some positive elements and some negative elements,
and a collection of sets each of which cover some positive
and some negative elements. Sets need to be chosen such
that the positive elements are covered without too many
negative elements. However, both of these problems do not
have a constraint on the number of sets that can be picked,
and therefore represent slightly different problems involving
different techniques and approximations.

6. BEST SUBSET AND SUPERSET VD
In this section, we consider variants of the BVD problem

with certain additional constraints, for the different families
of queries. The first problem we consider is that of the best
query that results in a subset of the given view instance.
This case is especially important if we cannot afford to have
any extraneous tuples in our query result as compared to the
view instance (i.e., no false positives), but we are allowed to
miss a few tuples.

Definition 6.1 (best subset view def. (bvd-sub)).
Given relation R, view V , and a family of queries Q, find
Q ∈ Q such that all three of the following hold

1. Q(R) ⊆ V
2. there is no Q′ ∈ Q, Q′(R) ⊆ V with d(V,Q′(R)) <
d(V,Q(R))

3. for all Q′ ∈ Q, Q′(R) ⊆ V with d(V,Q′(R)) = d(V,Q(R)),
Q � Q′.

The second problem we consider is that of the best query
that is a superset of the given view instance. This case is
especially important if we cannot afford to have miss any
tuples from the view instance (i.e., no false negatives).

Definition 6.2 (best superset view def. (bvd-sup)).
Given relation R, view V , and a family of queries Q, find
Q ∈ Q such that

1. V ⊆ Q(R)

2. there is no Q′ ∈ Q, V ⊆ Q′(R) with d(V,Q′(R)) <
d(V,Q(R))

3. for all Q′ ∈ Q, V ⊆ Q′(R) with d(V,Q′(R)) = d(V,Q(R)),
Q � Q′.

We state the following theorem without proof:

Theorem 6.3. If a relation instance R and a view in-
stance V have an EVD for a family of queries Q (i.e., ∃Q ∈
Q such that Q(R) = V), then the solutions of the problems
BVD, BVD-Sup and BVD-Sub are the same.

Based on the above theorem, we don’t need to separately
study BVD-Sup and BVD-Sub for UCQ= and UCQ. Also
note that the same approach used for EVD and BVD in The-
orem 5.1 may be used for solving BVD-Sup and BVD-Sub
for UCQk and UCQk=. Next we describe algorithms to solve
the BVD-Sup and BVD-Sup problems for each conjunctive
query family.

6.1 CQs with a single predicate
BVD-Sup Problem: We first consider the BVD-Sup prob-

lem. For conjunctive queries with only equalities, we simply
consider the attributes that are constants in the view and
form CQs out of them. We have the following theorem.

Theorem 6.4. Given a relation instance R and a view
instance V , the procedure above finds the BVD-Sup over
queries in CQ1

= in O(MN).

Full details of how clauses corresponding to each value of
each attribute are evaluated and the proof of the theorem
above are in Appendix E.1. Instead, we give details for
queries in CQ1, which subsume the results for CQ1

=.
For CQ1

=, we consider the smallest superset ranges of at-
tribute values in the view V . If we were to include ranges,
then for any attribute Ai, we could have the conjunctive
clauseQ = j ≤ Ai ≤ k. However, we restrict j = minAi∈V {Ai}
and k = maxAi∈V {Ai}, because any range that does not in-
clude all of [j, k] would not satisfy the condition of Q(R) ⊆
V , and any range that contains other elements cannot be
better because it can only include tuples that are not in
V . Let the proportion of tuples with values in [j, k] for at-
tribute Ai be pi in the relation R. Thus, we would have
d(V,Q(R)) =

di = pi ∗ |R| − |V |

The conjunctive clause that minimizes di above over all
1 ≤ i ≤ n is the BVD-Sup if we include range queries.

The procedure above makes one pass of each column to
compute the min and the max (O(MN)), plus one pass per
attribute to compute pi (O(MN)), thus the complexity of
the procedure is O(MN).

Extending the procedure for 6= is also O(MN): For each
attribute, count the number of values of the attribute in R
that hash to the same location as a value for the same at-
tribute in V . We can count this number in O(MN). The
difference between this number and the size of V is the dif-
ference when we have an 6= predicate with that attribute.

Theorem 6.5. Given a relation instance R and a view
instance V , the procedure above finds the BVD-Sup over
queries in CQ1 in O(MN).

BVD-Sub Problem: All queries Q in CQ= for which the
number of tuples in V that are selected by Q is the same
as the number of tuples in R that are selected by Q are
potential candidates for the BVD-Sub problem. We have
the following theorem.

Theorem 6.6. Given a relation instance R and a view
instance V , the procedure above finds the BVD-Sub over
queries in CQ1

= in O(MN).

The details of the potential candidate solutions for the BVD-
Sub problem and the proof of the theorem are in Appendix F.

For ranges, we have a similar check of cardinalities to
shortlist potential queries: Queries corresponding to ranges

for any given attribute are considered for which the number
of tuples in the relation R with the attribute having a value
in that range is the same as the number of tuples in the view
V with the attribute having a value in the same range.

For ranges, for any attribute Ai, we could have the con-
junctive clause Q = j ≤ Ai ≤ k. Let the proportion of
tuples with values in [j, k] for attribute Ai be pj,ki in the

relation R and qj,ki in the view V . Note that the number
of tuples in [j, k] in V are the same as the number of tuples

in R, and thus pj,ki ∗ |R| = qj,ki ∗ |V |. Thus, we would have
d(V,Q(R)) =

dj,ki = (1− qj,ki) ∗ |V |

Let the attribute Aī and values j̄, k̄ be the ones that mini-
mizes dj,ki over all 1 ≤ i ≤ n, 1 ≤ j ≤ k ≤ mi. The solution
of the BVD-Sub problem is the range Q = j̄ ≤ Aī ≤ k̄.

The procedure above makes 1 pass of each column to com-
pute qj,ki = Σkl=1q

l
i − Σj−1

l=1 q
l
i and pj,ki for all attribute value

pairs. The statistics can be collected in O(MN) using hash-

ing, and in O(MN2) we can compute dj,ki for all i, j, k and
also make sure that the number of tuples in V and R for
that attribute value pair is the same. Thus, we have a com-
plexity of O(MN2). Note that the complexity of adding 6=
predicates is O(MN) as well.

Theorem 6.7. Given a relation instance R and a view
instance V , the procedure above finds the BVD-Sub over
queries in CQ1

= in O(MN2).

Note that we can speed up the procedure by noticing that if
the number of tuples in range [j, k] are the same in R and V ,
then we do not need to consider any sub-range [j+δ1, k−δ2].

Example 6.8. The BVD-Sup query in CQ1
= for our movies

example is (Box Office = Hit), while the BVD-Sub query is
one of many queries, including (Movie = Snatch) or (Direc-
tor = Guy Ritchie). Note that the BVD-Sup in this case has
d = 3, while the BVD-Sub has d = 3 as well.

6.2 CQs with Multiple Predicates
The NP-hardness of BVD-Sup and BVD-Sub follows from

the result of Theorem 3.6, since our reduction to BVD had
an EVD. Next we consider upper bounds for each of these
problems.

BVD-Sup: If we assume that size is the same for all con-
junctive queries, we can find the BVD-Sup over queries in
CQ and CQ= in O(MN). We omit the details here — they
may be found in Appendix E.2.

Example 6.9. The BVD-Sup query in CQ= for the Movies
example is not the same as the BVD (and therefore has a
larger difference from the view V), but is in fact, the same
as the BVD-Sup query in CQ1

=: (Box Office = Hit).

To find the BVD-Sup for our original definition of size
(based on number of attributes in the query), we first con-
struct a conjunctive query formed by selecting all predicates
corresponding to attributes that are constants in the view.
We then enumerate all its subsets of predicates, and select
the best one. In practice, we can perform a “smarter” top-
down search eliminating predicates from the query one at
a time and terminating the search when any subset of at-
tributes is not a solution to BVD-Sup. The top-down search,
however, does not improve the worst-case complexity.

Theorem 6.10. The worst case complexity for BVD-Sup
is O(MN.2M) for CQ= and CQ.

BVD-Sub: For finding the BVD-Sub query in the family
CQ= and CQ, we enumerate all candidate queries that are
subsets of the view V and pick the one with the smallest
difference. Note also that if we are evaluating queries in a
top down fashion, we can use the following lemmas.

Lemma 6.11 (Stopping Criterion). If there is no query
Q with k predicates that satisfies Q(R) ⊆ V , then there are
no queries Q with < k that satisfies Q(R) ⊆ V .

Lemma 6.12 (Pruning Criterion). The only queries
Q with k predicates that need to be considered are those that
are formed from those in k+ 1 by eliminating one predicate.

We make one pass in O(NM) to compute the difference
for each conjunctive clause (there are atmost O(NM) con-
junctive clauses in CQ= and atmost O(N2M) conjunctive
clauses in CQ), thus we have:

Theorem 6.13. The complexity of BVD-Sub on CQ= is
O(MNM+1) and on CQ is O(MN2M+1).

Example 6.14. The BVD-Sub query in CQ= for the Movies
example is the same as the BVD, i.e., (Director = Tarantino
∧ Box Office = Hit).

7. CONCLUSIONS AND FUTURE WORK
This paper addressed the view definitions problem (VDP),

considering succinctness and approximation constraints and
a variety of query families. We identified three subprob-
lems, EVD, BVD and AVD, and studied the complexity of
solving each of the three subproblems for each query fam-
ily. We provided polynomial-time optimal algorithms for
the tractable cases and approximation algorithms for the
intractable cases. Table 3 in Section 2.5 summarizes our
findings for all the problems.

Some specific open problems remain, such as an approxi-
mation algorithm for AVD for unions of conjunctive queries.
More generally, in this paper we considered only views de-
rived by selection predicates over a single relation. Extend-
ing our results to arbitrary select-project-join (or beyond)
queries is an important avenue of future work.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. pages 487–499, 1994.

[2] Philip A. Bernstein. Applying model management to
classical meta data problems. In CIDR, 2003.

[3] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster.
Putting context into schema matching. In VLDB ’06.

[4] Robert King Brayton, Alberto L.
Sangiovanni-Vincentelli, Curtis T. McMullen, and
Gary D. Hachtel. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, 1984.

[5] R. Carr, S. Doddi, G. Konjevod, and M. Marathe. On
the red-blue set cover problem. In SODA ’00, pages
345–353.

[6] H. G-Molina, J. Widom, and J. D. Ullman. Database
Systems: The Complete Book. Prentice-Hall, 2002.

[7] A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applications. IEEE Data Engineering Bulletin, 18(2),
1995.

[8] L. Haas. The theory and practice of information
integration. In Proc. of ICDT, 2007.

[9] A. Y. Halevy. Answering queries using views: A
survey. VLDB Journal, 4, 2000.

[10] E. J. McCluskey. Minimization of boolean functions.
The Bell System Technical Journal, 1956.

[11] P. Miettinen. On the positive–negative partial set
cover problem. Inf. Process. Lett., 108(4):219–221,
2008.

[12] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[13] Pierre Senellart and Georg Gottlob. On the
complexity of deriving schema mappings from
database instances. In Proc. PODS, pages 23–32,
Vancouver, Canada, June 2008.

[14] P. N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison-Wesley, 2006.

[15] Q. T. Tran, C. Y. Chan, and S. Parthasarathy. Query
by output. In Proc. of ACM SIGMOD, 2009.

[16] C. Umans, T. Villa, and A. L. Sangiovanni-Vincentelli.
Complexity of two-level logic minimization. IEEE
Trans. on CAD of Integrated Circuits and Systems,
25(7):1230–1246, 2006.

[17] Moshe Y. Vardi. The complexity of relational query
languages (extended abstract). In STOC ’82.

[18] V. V. Vazirani. Approximation Algorithms.
Springer-Verlag, 2001.

APPENDIX
A. SINGLE EQUALITY PREDICATE

Consider the problem of finding a query with a selection
condition consisting of a single conjunctive clause containing
one predicate, i.e., query families CQ1

= and CQ1. In this
case all queries are of the same size, and therefore are all
equally desirable. Therefore, we try to find the query Q
in each of these query families that minimizes d(Q(R), V).
This query would then be the BVD for this family. If in
fact the BVD query Q is such that d(Q(R), V) = 0, then Q
is also an EVD. Additionally, if d(Q(R), V) ≤ τ , then Q is
also an AVD — Note that the second condition in the AVD
problem definition is trivially true because Q1 � Q2 is true
for all queries (since all queries are equivalent). Thus, we
now proceed to give algorithms to find the BVD for each sub-
family of the family of Single Predicate Conjunctive Queries.

We now introduce some notation. Let the attributes of
R be A1, A2, . . . , Am. Without loss of generality, for any
attribute Ai, let the domain Ai be {1, 2, . . .mi}.

Single Equality-Predicate CQ
We first consider the BVD problem for CQ1

=. Let the pro-
portion of tuples with value j for attribute Ai be pji in

the relation R and qji in the view V . Then, if we were to
pick (Ai = j) as the selection condition for query Q, then
d(V,Q(R)) would be:

dji = pji ∗ |R| − q
j
i ∗ |V |+ (1− qji) ∗ |V |

We simply pick the attribute Ai and value j that minimizes
dji above. Let this value dji be dmin.

While collecting statistics for each value in {1, 2, . . . ,mi}
corresponding to attribute Ai, we scan the ith column of
both R and V . If we assume hashing is an O(1) opera-
tion, we get statistics per column in O(N), where N is the
number of tuples. There are M such columns. Computing
values dji for all i, j is another O(MN) operation. Thus the
complexity is O(MN). On the other hand, if we do not as-
sume hashing is an O(1) operation, we can sort the column
in O(N logN), giving a complexity of O(MN logN).

Theorem A.1. Given a relation instance R and a view
instance V , the procedure above finds the EVD/BVD/AVD
over queries in CQ1

= in O(MN).

This entry is listed in Table 3 in the first 3 columns of the
first row.

For Example 2.1, the best query (with d = 3) is any of
(Genre = Comedy) – two missing tuples, one extra tuple,
(Director = Q. Tarantino) – two missing tuples, one extra
tuple, or (Box Office = Hit) – three extra tuples.

Single Predicate CQ
We now consider the BVD problem for CQ1, by picking the
best query from queries of the form Ai op j, for each op in
{=, 6=}. We then also consider ranges, for predicates of the
form Ai ∈ [j, k].

Consider inequality predicates, i.e., for any attribute Ai,
we could have the query Q ≡ (Ai 6= j). Thus d(V,Q(R)) =

d 6=ji = (1− pji) ∗ |R| − (1− qji) ∗ |V |+ (qji) ∗ |V |

Let the attribute Ai and value j be the one that minimizes
d 6=ji above over all 1 ≤ i ≤ n, 1 ≤ j ≤ mi. Let this value

d 6=ji be d6=min. The complexity of computing this value is the
same as the complexity for equality predicates.

Consider range predicates, i.e., for any attribute Ai, we
could have the query Q = j ≤ Ai ≤ k. Let the proportion
of tuples with values in [j, k] for attribute Ai be pj,ki in the

relation R and qj,ki in the view V . Thus, we would have
d(V,Q(R)) =

dj,ki = pj,ki ∗ |R| − q
j,k
i ∗ |V |+ (1− qj,ki) ∗ |V |

Let the attribute Ai and values j, k be the ones that mini-
mizes dj,ki above over all 1 ≤ i ≤ n, 1 ≤ j ≤ k ≤ mi. Let

this value dj,ki be d
[]
min.

Statistics for a given range [a, b] can be simply computed

using the difference of two sums
∑b
k=1 p

k
i −

∑a−1
k=1 p

k
i . The

values
∑j
k=1 p

k
i can be computed for all j in one pass for

each i, i.e., after collecting statistics pji for each column i,
we use one additional pass to sum the statistics. Thus, all
the sums for a column can be computed in O(N), if hashing
is O(1). Thus the necessary statistics (i.e., the sums) are

collected in O(MN). However, we need to compute dj,ki , for

all i, j, k, which takes O(MN2) to obtain d
[]
min.

The BVD query corresponds to the Q with the minimum

value d′ out of dmin, d
6=
min, d

[]
min.

Theorem A.2. Given a relation instance R and a view
instance V , the procedure above finds the EVD/BVD/AVD
over queries in CQ1 in O(MN2) overall. If CQ1 does not
contain range queries, then the procedure is O(MN).

This entry is listed in Table 3 in the first 3 columns of the
second row.

Require: b1, b2, . . . , bn ← cardinalities of attributes in view, in
decreasing order

Require: m← cardinality attributes in relation
1: lowest← −1
2: best← 0
3: product← 1
4: for i ∈ 1 . . . n do
5: product← product× bi
6: if lowest > mi − 2 · product then
7: best← i
8: lowest← mi − 2 · product
9: end if

10: end for
11: conjunct← ∅
12: for i ∈ best..n do
13: pick any value v from Bi
14: conjunct← conjunct ∧ v
15: end for
16: return conjunct

Algorithm 4: Algorithm to solve the BVD for the special
case of R and V being cross-products of sets of values for
attributes.

B. FAMILY OF CQ

B.1 EVD
Proof of Theorem 3.3: Let us assume that an EVD query
Q ∈ CQ= exists. If the cardinality of attribute Ai in the view
V is 1 (i.e., Ai = vi for some vi for all tuples in V), then we
can add Ai = vi as a predicate to Q (i.e., Q′ ← Q ∧ (Ai =
vi)), if it is not already present, without changing Q(R).
Also note that if cardinality of Ai in V > 1, then Q cannot
have Ai = v for any v, because then Q(R) 6= V since some
tuples in V are not selected by Q. Thus any EVD Q can
be converted into one of the form Q′ = ∧i(Ai = vi) over all
Ai that have cardinality 1 in the view. In Algorithm 2, the
constructed query Q is precisely Q′ above. Now all that is
remaining is to check if Q′(R) = V for existence of an EVD,
because any other EVD Q, if it exists, can be converted into
Q′ with Q(R) = Q′(R).

Checking if each attribute is a constant in the view can
be done in O(N) and for all attributes in O(MN). Com-
puting Q(R) is O(MN). Thus overall, we have O(MN)
complexity.2

B.2 BVD for CQ: Cross Product Special Case
Next we examine the special case when both the relation

R and the view V are formed as cross products of sets of
attributes. For example, the relation could be all tuples of
the form {1, 2} × {1, 2}, and the view could be the tuples
{1, 2} × {1}.

Formally, let A1, A2, . . . , An be the attributes of R. If Ai
takes values from the set Ai, then R = A1 ×A2 × . . .×An.
Additionally, we assume that the view is a cross product as
well: V = B1 × B2 × . . . × Bn, where Ai in the view takes
its values from the set Bi ⊆ Ai. Additionally, assume that
|A1| =|A2| = . . .= |An| = m. Let |Bi| = bi. WLOG, assume
that b1 ≥ b2 ≥ . . . ≥ bn. We have the following theorem:

Theorem B.1. If R and V are both cross products as de-
scribed above, and if the size of the sets Ai are all equal to
m, then Algorithm 4 returns a solution to the BVD for CQ=

in O(MN).

Proof. In a conjunctive query Q, for each attribute Ai,
there are two possible cases: either the attribute is given

a value, or the attribute is not present in the conjunctive
clause. If the attribute is given a value v, we let Ci = {v},
else let Ci = Ai. Clearly, Q(R) = C1 × C2 × . . .× Cn.

For each attribute Ai, consider three numbers fi, gi and
hi, where fi = |Bi − Ci|, gi = |Ci − Bi|, and hi = |Bi ∩ Ci|.

The difference d(V,Q(R)) would then be the following:

d = extra+missing

= (Πi(fi + hi)−Πihi) + (Πi(gi + hi)−Πihi)

= c+ Πi(gi + hi)− 2Πihi

where c is a constant independent of the conjunctive clause
chosen.

We now wish to find the optimal set of gi, hi to minimize
the number above. Clearly, for each attribute i, we either
have (1) gi+hi = m, and hi = bi (2) gi+hi = 1, and hi = 1.

If we choose k attributes to give values to in the conjunc-
tive clause, Πi(gi + hi) will be mk, but Πihi will be atmost
b1 · b2 · . . . · bk. Thus our candidates for the best conjunctive
clause are precisely those which select a value (1) for An
from Bn, or (2) for An from Bn and for An−1 from Bn−1, or
(3) . . ., or (n) for An from Bn and for An−1 from Bn−1 and
. . . and for A1 from B1. These are precisely the conjunctive
clauses considered in Algorithm 4.

C. UCQ
Proof of Theorem 4.1: If V 6⊆ R, then there is no query
that can select the tuples in V − R, and hence no EVD.
Now, let V ⊆ R. Let tuples t1, t2, . . . , tn be the only tuples
in the view, where ti = (ai1, ai2, . . . , aim). Consider the
query corresponding to the selection condition: ∨ni=1(A1 =
ai1 ∧ . . . ∧ Am = aim). This query selects only the tuples
t1, t2, . . . , tn and none other.2

D. GREEDYKUCQ

Proof of Theorem 5.5:
(1) Construct an input such that no conjunctive query has
gb ≥ 0, therefore GreedyKUCQ doesn’t pick any conjunc-
tive query, which is equivalent to the predicate false. There-
fore, gbgreedy = 0. However, suppose there are at least k
conjunctive queries Q1, . . . , Qk, each with (N

k
− 1) good el-

ements and N
k

bad elements. Suppose for i 6= j, Qi and
Qj don’t share any good elements. Further, suppose all Qi
have the identical set of N

k
bad elements. Then, by picking

these k conjunctive queries we get a total of (N − k) good
elements and N

k
bad elements, thus gbopt ≥ (N(1− 1

k
)− k),

giving the required result.
(2) Construct an input such that there exists one special
conjunctive query Q∗ with N good tuples and (N − N

k
) bad

tuples. That is, Q∗ covers all elements in Vd but also has
N − N

k
elements in Rd − Vd. In addition, consider k con-

junctive queries Q1, . . . , Qk, each consisting of N
k

good tu-
ples and 1 bad tuple. Further, let the k sets of good tuples
be completely disjoint, and this cover Vd completely, and
let all of Q1, . . . , Qk have the same one bad tuple. In the
construction above:

∀i : gb(Q∗) =
N

k
> gb(Qi) = (

N

k
− 1)

Therefore, the greedy solution picks Q∗ and stops after that,
achieving dgreedy = (N − N

k
), where as dopt = 1. Therefore,

rd = N(1− 1
k

). 2

E. BVD-SUP

E.1 CQs with a single predicate
In this section, we describe how to find the BVD-Sup for

the family of queries CQ1
=. For any attribute Ai that is a

constant in the view V , let the domain Ai be {1, 2, . . .mi}.
Let the proportion of tuples with value j for attribute Ai be
pji in the relation R. Let Ai = j for all tuples in the view.
Then, if we were to pick Ai = j as the conjunctive clause Q,
then d(V,Q(R)) would be:

di = pji ∗ |R| − |V |

We simply pick the conjunctive clause corresponding to at-
tribute Ai that minimizes di above. Let this value di be
dmin. If there is no such conjunctive clause, we return the
conjunctive clause true. We have the following theorem:

Theorem E.1. Given a relation instance R and a view
instance V , the procedure above finds the BVD-Sup over
queries in CQ1

= in O(MN).

Proof. Since all queries in CQ1
= have atmost one at-

tribute given one value, we need to consider all single-attribute
queries that are supersets of the view V . If an attribute Ai
has more than one value in the view V , then no conjunctive
clause of the form Ai = vi would be permissible, because
they would not include all the tuples in the view V . Thus
we can only consider queries formed from attributes that
are constants in the view V . Those are precisely the queries
considered above.

The procedure above makes one pass of each column to
check if the attribute values are the same O(MN), plus one
pass per attribute to compute pji , O(MN), thus we have a
time complexity of O(MN).

E.2 CQs with multiple predicates
The results in this section assume that the size is the same

for all conjunctive queries.
We find the solution to the BVD-Sup problem for queries

in CQ= by picking all attributes that have a single value in
the view V , and taking their conjunction. That is, if Ai = vi
for all tuples in the view V , we add (Ai = vi) as a predicate
to the conjunctive query. We add all such predicates to the
BVD-Sup query Q.

Theorem E.2. Given a relation instance R and a view
instance V , the procedure above finds the BVD-Sup over
queries in CQ= in O(MN).

Proof. Let the best query be Q. We can only make Q
“better” by adding additional predicates (thereby constrain-
ing it further) as long as we maintain V ⊆ Q(R). Thus, if
we add the predicate Ai = vi for all i where Ai has a sin-
gle value vi for all tuples in the view, then we make Q only
better. Also note that no predicate corresponding to Aj for
which there are multiple values in the tuples in the view V
can appear in Q, because otherwise V ⊆ Q(R) would be vi-
olated (since some tuples would be missed). Thus the best
query will contain Ai = vi for all attributes with a single
value in the V , and no predicates corresponding to other
attributes, since all attributes are covered, and since a con-
junctive clause can have at most one predicate per attribute.

The procedure above makes one pass of each column to
check if the attribute values are the same, so we have a
complexity of O(MN).

For the BVD-Sup queries in CQ, we form a conjunctive
clause with one range corresponding to each attribute, where
the range is between the values that are the minimum and
maximum values for the given attribute in the view.

Theorem E.3. Given a relation instance R and a view
instance V , the procedure above finds the BVD-Sup over
queries in CQ= in O(MN).

Proof. Trivially, the conjunctive clause described above
covers all the tuples in the view V . We need to prove that
there is no other query that is smaller that covers all the
tuples in the view V . If in a new “smaller” query if there
is an attribute that is assigned a range that excludes some
elements from the range [min, max], then it would be missing
some tuples from V . Thus the query selected above is the
best possible.

The procedure above makes one pass of each column to
find the min and the max attribute values for each attribute,
so we have a complexity of O(MN).

F. BVD-SUB: SINGLE PREDICATE CQ
We now describe the procedure to solve the BVD-Sub

problem for CQ= in detail. First let us characterize the
kind of queries in CQ= that could be potential solutions of
the BVD-Sub problem.

We can only pick conjunctive clauses of the form Ai = j
where the number of tuples in V with value j for attribute
Ai is the same as the number of tuples in R with value j
for Ai. For all such conjunctive clauses, we compute the
difference d, as follows:

For any attribute Ai, let the domain Ai be {1, 2, . . .mi}.
Let the proportion of tuples with value j for attribute Ai
be pji in the relation R and qji in the view V . Note that

pji ∗ |R| = qji ∗ |V |, using our condition above. Then, if
we were to pick Ai = j as the conjunctive clause Q, then
d(V,Q(R)) would be:

dji = (1− qji) ∗ |V |

We simply pick the conjunctive clause corresponding to the
attribute Ai being set the value j that minimizes dji above.

Let this value dji be dmin.

Theorem F.1. Given a relation instance R and a view
instance V , the procedure above finds the BVD-Sub over
queries in CQ1

= in O(MN).

Proof. The only conjunctive clauses that are candidate
solutions for the BVD-Sub problem are those for whichQ(R) ⊆
V . Thus the query Q does not contain any tuples not in V .
Such queries (Ai = vi) in CQ1

= are precisely the ones for
which there are no extraneous tuples corresponding to Ai
having value vi in the relation but not present in the view
V . Thus the queries should have the same number of tuples
in the view V with value j as are present in the relation R.
These are the queries we consider above.

The procedure above makes 1 pass of each column to com-
pute qji for each attribute value, and 1 pass also making sure
that the number of tuples in V and R for each attribute
value is the same. All of these statistics can be computed in
O(MN) using hashing.

