
Human Processing

(Position Paper)

Paul Heymann
Department of Computer Science

Stanford University
Stanford, CA, 94305, USA

heymann@stanford.edu

Hector Garcia-Molina
Department of Computer Science

Stanford University
Stanford, CA, 94305, USA

hector@cs.stanford.edu

ABSTRACT

In the future, humans will work for machines. This paper
proposes an environment focused on modularity and reuse
that makes human programming accessible to regular pro-
grammers. We compare the environment to the two most
common environments available today.

Categories and Subject Descriptors

H.5.m [Information interfaces and presentation (e.g.,
HCI)]: [Miscellaneous]

Keywords

human processing, human programming, human computa-
tion, models

1. INTRODUCTION
Crowdsourcing uses large numbers of humans, available

through the Internet, to perform useful tasks, either for pay
or for free. Crowdsourcing is especially useful for tasks that
are best performed by humans (as opposed to computers),
e.g., tasks that involve image analysis, subjective evaluation,
or natural language skills. We focus on microtasks, tasks
that are usually less than five minutes in duration. (The
overall task may be lengthy, but individual pieces are short.)
Developing a crowdsourcing application involves a lot of

work, e.g., developing a web interface for the human workers
to receive their assignments and return their results, com-
puter code to divide the overall application into individual
tasks to be done by humans, computer code to collect re-
sults, and so on. This paper describes a novel programming
environment that automates many of the programming steps
that must be performed in crowdsourcing applications. We
start by giving a simple crowdsourcing example (Section 2).
We show how a programmer would attack this example using
two existing programming environments, which we call Ba-
sic Buyer (Section 3) and Game Maker (Section 4). Then,
we show how the programmer would attack the same exam-
ple using our novel proposed environment, Human Process-

ing (Section 5). Finally, we contrast all three environments
and describe remaining challenges in the area (Section 6).

2. MOTIVATING EXAMPLE
“Priam,” the editor of a photography magazine, wants to

rank photos submitted to the magazine’s photo contest. For
each environment below, we explain how Priam might go
about accomplishing this task.

Figure 1: Basic Buyer human programming environ-
ment. A human program generates forms. These
forms are advertised through a marketplace. Work-
ers look at posts advertising the forms, and then
complete the forms for compensation.

3. BASIC BUYER
The premise of Basic Buyer (BB) is that workers do short

microtasks for pay, based on listings on a website (a market-

place). The BB environment is modeled on usage of Ama-
zon’s Mechanical Turk [1],1 though a similar environment
could be used with Gambit Tasks [2] or LiveWork [3]. How-
ever, because the programmer in BB targets a marketplace
directly, and interaction patterns with marketplaces vary,
switching marketplaces requires rewriting previous code.

The BB environment (Figure 1) works as follows:
1. The programmer (Priam) writes a normal program.
2. That program can, in the course of execution, create

HTML forms at one or more URLs. This can happen
in any of the usual ways that people currently generate
web forms using web application frameworks.

3. The program can also interact with a marketplace, a
website where workers (users on the Internet visiting
the marketplace) look for tasks to complete. The pro-

1In particular, correspondences for the operations men-
tioned in this section are post → CreateHIT, assign-
ments,get→ GetAssignmentsForHIT, approve→ Approve-
Assignment, reject → RejectAssignment. We ignore
bonuses and qualifications for ease of exposition.

gram can make one of five remote procedure calls to a
monetary marketplace:
post(url, price) → taskid Tell the marketplace to

display a link to url with the information that, if
completed, the worker will be paid price. The
URL url should correspond to a form which
posts to the marketplace. The returned identi-
fier taskid gives a handle for further interaction
with the marketplace related to this posted task.

assignments(taskid) → assignids Return a list of
identifiers assignids for looking up individual
completions of the form associated with taskid.

get(assignid) → dict Get a dictionary that corre-
sponds to a worker submitting the form associ-
ated with the url associated with the taskid as-
sociated with the given assignid. The dictio-
nary contains which worker completed the task
(a workerid) and the results of the form, as key-
value pairs.

approve(assignid) Request that the marketplace
pay the worker associated with assignid the
price associated with the taskid that that as-

signid corresponds to.
reject(assignid) Request that the marketplace not

pay the worker associated with assignid the
price associated with the taskid that that as-

signid corresponds to.
The program posts one or more URLs, waits for assign-
ments, gets the results, and then approves or rejects
the work.

Priam determines that workers are best at ranking five
photos at a time, so a web page is designed to display five
photos and provide five entry fields for the ranks one through
five. A computer program now needs to be written to read
the photos from a database and generate multiple posts cor-
responding to groups of five photos. The program needs a
strategy to do its work: for instance, it may employ a type
of merge-sort strategy: divide the photos into disjoint sets
of five, and rank each set. Then the sorted sets (runs) can
be merged by repeatedly calling on workers.
In addition to the sorting logic itself, there is a lot of other

“administrative” work that needs to be done. Of course,
assignments need to be approved (paying workers for their
work), but more importantly Priam needs to determine pric-
ing, if and when the work being submitted is good, which
workers are good, and so on. For example, one worker (a
“spammer”) might simply fill in junk in order to get paid.
This spammer would need to be caught and their work ig-
nored. Priam also may not pay enough initially, or may
need to change his price over time depending on market
conditions.

4. GAME MAKER
The Game Maker (GM) environment is modeled on the

“Games with a Purpose”(GWAP) literature [5]. Many games
have been developed, though our model is based most closely
on the ESP Game (a photo captioning game). A key point
in the GM environment is that to date, programmers have
not shared interfaces or source code for popular games. For
example, even though the ESP Game serves many players
each day, it is not possible for Priam to get the (actual) ESP
Game to label his own images. This means that the pro-
grammer usually has to develop and promote a new game,

Figure 2: Game Maker human programming envi-
ronment. The programmer writes a human program
and a game. The game implements features to make
it fun and difficult to cheat. The human program
loads and dumps data from the game.

even if previous examples exist! (Even if the most popular
GWAPs did have open interfaces, it is likely that switching
between GWAPs would require rewriting code.)

The GM environment (Figure 2) works as follows:
1. The programmer (Priam) writes two programs: the

main program and a “game with a purpose.”
2. The game is designed to take input items and com-

pute some function fn of each input item by coercing
players to compute the function during game play. For
example, the ESP Game takes photos as input items
and produces text labels as outputs [5].

3. The interaction between the main program and the
game is simple:
load(item) → itemid Add a new item for humans to

compute the game’s function on. Return an iden-
tifier for the item.

dump() → ((itemid,res),...) Get a list of all re-
sults that have been computed. Each returned
tuple includes an itemid and the result of com-
puting the game’s function on the original item.

4. While the function fn computed is usually quite sim-
ple (e.g., “give some labels for this image”), the game
itself is usually quite complex. This is for two rea-
sons: the game must be fun, and the game must be
difficult to cheat. Making the game fun can be time
consuming, requiring features such as timed game play,
multiple players, leaderboards, and quality graphic de-
sign. Making the game difficult to cheat can be equally
time consuming, requiring features such as random-
ization, gold standards, statistical analysis, and game
design according to particular templates (e.g., “output-
agreement,”“input-agreement” [5]).

5. The game may be a Flash game or any other format,
the fact that it is used for human computation does
not impact the technical details of how we program it.

Priam determines that the magazine’s readers might be
willing to play a game to determine the best photo. As with
the Basic Buyer case, Priam needs to write a program to

Figure 3: Human Processing programming environ-
ment. HP is a generalization of BB and GM. It pro-
vides abstractions so that algorithms can be writ-
ten, tasks can be defined, and marketplaces can be
swapped out. It provides separation of concerns so
that the programmer can focus on the current need,
while the environment designer focuses on recruit-
ing workers and designing tasks.

handle the sorting logic. The program could then use the
load and dump operations to get data in and out of the game.
However, he now also needs to write a game where it is fun
to sort groups of five photos, and then promote the game
online. Lastly, he needs to make sure that players cannot
cheat, either to make a particular contestant’s photo do well,
or for the player to do better by inputting bad data.

5. HUMAN PROCESSING
The Human Processing (HP) environment builds upon the

BB and GM environments through abstraction. The HP
environment (Figure 3) works as follows:

1. The programmer (Priam) writes a normal program.
The programmer may also write one or more imple-
mentations of (see below) human drivers, human tasks,
marketplace drivers, or recruiters. However, the point
of the HP enviroment is to maximize code reuse, so
ideally, existing implementations should cover the pro-
grammers’ common use cases.

2. A human driver is a program which manages an as-
sociated web form or other user interface (so that the
main program and other components do not have to
talk directly to the user interface). It is so named be-
cause it manages the interaction with humans, much
like a device driver manages a physical device on a
computer. A human driver supports four operations:
open() → driverid Make the associated user inter-

face available to remote users. By remote users

we mean workers in the BB model, players in the
GM model, or other people capable of completing
tasks. Returns an identifier for the driver.

send(driverid, msg) Send message msg to the driver
to change its behavior. In Priam’s case, if he was
using a driver for a game like the ESP Game he

would use a send operation to load input photos.
get(driverid) → (d,e) or 0 Get a (result) data

object d from the interface, with execution con-
text e about how that data object was acquired.
If no new data is available, return nothing. get

is how results are returned from the driver. Both
d and e are dictionaries of key-value pairs. For
example, Priam’s photo comparison interface re-
turns d as
{ranks: (1,4,2,3,5), taskid: TID183}

(ranks are the output, and tasks are defined be-
low) and e as
{workerid: WID824}

(a worker who completed the task).
close(driverid) Make the associated user interface

unavailable to remote users.
A human program opens a driver and then sends setup
messages. Human drivers for web forms may only re-
ceive one setup message, though those for games may
be sent many messages to load inputs. Execution con-
text comes from user interaction, for example, how
long did the task take and which worker completed
it? Such information can help with quality control in
the main program. Finally, the human driver is closed.
Note that by itself, a human driver can make its associ-
ated user interface available to remote users. However,
it does not handle the problem of finding remote users
to interact with the user interface.

3. The programmer reuses or defines structures called hu-

man task descriptions. A human task description con-
sists of an input schema, an output schema, a human
driver, a web form, and possibly other metadata. A
human task description can be instantiated into one
or more human task instances. These instances con-
tain information as key-value pairs such as when the
task started, a price if any, and so on. For example, a
task description for Priam’s case might look like ...
{input: (photo1, photo2, photo3, ...),

output: (int, int, int, int, int),

webform: compare.html,

driver: comparer.py}

... while a task instance might look like ...
{start: 20090429,

price: $0.07,

taskid: TID272}.
4. A marketplace driver provides an interface to a

marketplace. Marketplaces are a general term for
both monetary marketplaces like Amazon’s Mechan-
ical Turk [1] (websites where workers are paid in
money) and gaming marketplaces like GWAP (web-
sites where users choose among many games and are
paid in points or enjoyment). The environment may
have many drivers for different marketplaces, and these
drivers may have different interfaces depending on
what the marketplaces themselves support.

5. The programmer avoids programming to any particu-
lar marketplace driver if at all possible. Instead, the
programmer targets a recruiter, which is a program
that serves as an interface to one or more marketplace
drivers.2 Recruiters support at least one operation:
recruit(taskid) Ensure that the task instance

2In practice, some services like Dolores Labs’ CrowdFlower
may also be viewed as a form of recruiter.

taskid is completed by workers. The recruiter
uses the task instance to find out how the user in-
terface associated with the task is accessed. For
example, if it is a web form, the task instance
includes the URL of the web form. Then, the
recruiter interacts with one or more marketplace
drivers. In the case of the marketplace from the
BB environment, one strategy might be to gradu-
ally increase the price until workers complete the
web form. The recruiter also interacts with the
human driver associated with the task instance to
determine when no more workers are needed.

6. The environment includes a library of human algo-

rithms to encourage code reuse. A human algorithm is
a parameterized program which can handle many pos-
sible needs. (For example, it might include algorithms
for sorting, clustering, and iterative improvement [4].)
Often, it will be parameterized by human task descrip-
tions, but other parameters might be used as well. For
example, a pair-wise sort algorithm might take a hu-
man task description consisting of a human driver and
web form to compare two items. The human task de-
scription would determine if the items compared were
photos, videos, or something else.

The Human Processing environment is the novel environ-
ment we propose and have partially implemented in a
project at Stanford called HPROC.
In the HP environment, Priam’s workload is much re-

duced. A pairwise sorting algorithm Human-Pair-Sort is
already included in the library. Priam may define a hu-
man driver and web form for comparing two photos, though
these might already be available. Then, Priam defines a
human task consisting of comparing two photos using the
human driver, web form, and appropriate schemas. Lastly,
Priam runs Human-Pair-Sort with his human task and a
pre-defined recruiter. An example pre-defined recruiter is
one that increases prices one cent each hour using Amazon’s
Mechanical Turk, though more complex recruiters exist.

6. DISCUSSION
HP extends BB and GM in compelling ways:
• Cost. BB excels for small numbers of tasks where pro-

grammer time is valuable. GM excels for large num-
bers of tasks where cheaper work is valuable. HP excels
at both by providing payment optimizing recruiters
and the opportunity to degrade to either BB or GM.

• Ease. BB quickly becomes complicated as the pro-
grammer gets bogged down in trivia like pricing. GM
requires heavy attention to game play and cheaters.
HP allows the programmer to focus on the tasks to be
completed, rather than infrastructure.

• Reuse. There are no mechanisms in BB for reusing al-
gorithms, forms, or administrative functionality. Cur-
rent GM implementations do not share interfaces, and
games tend to be specialized to specific use cases. By
contrast, abstractions in HP allow for a library of in-
frastructure. Algorithms can target recruiter inter-
faces, recruiters can target market drivers, and so on.

• Independence. Programs in BB tend to be focused on
a particular marketplace. Programs in GM tend to
be tied to a particular web site’s gaming user base.
By contrast, programs written to HP have an inde-
pendence due to marketplace drivers. (Likewise, algo-

rithms, human drivers, and forms may have a similar
independence.) Switching marketplaces or other in-
frastructure can require substantial rewriting in BB or
GM, but does not in HP.

• Algorithms. General algorithms can be written to tar-
get a higher level interface in HP, but it is not clear
how general algorithms can be reused in BB or GM.

• Separation of Concerns. Researchers or infrastructure
writers can focus on improving recruiters, algorithms,
and human drivers in HP, independent of a main pro-
gram’s code.

The more environments that implement HP, the easier it
will be to leverage disparate work in algorithms, recruiters,
and human drivers.

There are three main challenges in the future for HP.
1. Verification, Quality Control. GM focuses a great deal

on verification, but BB and HP do not. How should
we identify bad output? How do we identify high and
low quality workers? We would like to see a generic,
modular way to handle verification and quality control
in an environment like HP.

2. Recruiters. We would like to see arbitrarily advanced
recruiters. For example, not only would we like to see
recruiters that price tasks on monetary marketplaces,
but we would also like to see recruiters that can choose
amongst alternative, equivalent task plans based on
price and quality.

3. Algorithms. Algorithms targeted for the HP environ-
ment need to be developed for various purposes. For
example, sorting with people is not the same as sort-
ing with a computer! The HP environment provides a
natural way to benchmark algorithms, based on cost,
time, input, and output with a given recruiter.

Handling algorithmic design, verification, and quality con-
trol will further increase the ease of using HP. Advanced
recruiters can improve the results produced by the main pro-
gram (both in terms of cost and quality). We believe that
HP is a strong foundation for future work in human compu-
tation, allowing for much greater reuse and modularization
of common functionality.

7. REFERENCES
[1] http://www.mturk.com/.

[2] http://getgambit.com/.

[3] http://www.livework.com/.

[4] G. Little, L. Chilton, M. Goldman, and R. Miller.
TurKit: Tools for Iterative Tasks on Mechanical Turk.
In HCOMP ’09: SIGKDD Workshop on Human

Computation.

[5] L. von Ahn and L. Dabbish. Designing Games with a
Purpose. Commun. ACM, 51(8):58–67, 2008.

