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Abstract. Entity resolution (ER) is the problem of identifying which records in a database refer to
the same entity. In practice, many applications need to resolve large data sets efficiently, but do not
require the ER result to be exact. For example, people data from the Web may simply be too large to
completely resolve with a reasonable amount of work. As another example, real-time applications may
not be able to tolerate any ER processing that takes longer than a certain amount of time. This paper
investigates how we can maximize the progress of ER with a limited amount of work using “hints,”
which give information on records that are likely to refer to the same real-world entity. A hint can be
represented in various formats (e.g., a grouping of records based on their likelihood of matching), and
ER can use this information as a guideline for which records to compare first. We introduce a family of
techniques for constructing hints efficiently and techniques for using the hints to maximize the number
of matching records identified using a limited amount of work. Using real data sets, we illustrate the
potential gains of our pay-as-you-go approach compared to running ER without using hints.

1 Introduction

Entity resolution [7,28,14] (also known as record linkage or deduplication) is the process of identifying
records that represent the same real-world entity. For example, two companies that merge may want to
combine their customer records. In such a case, the same customer may be represented by multiple records,
so these matching records must be identified and combined (into what we will call a cluster).

An ER process is often extremely expensive due to very large data sets and compute-intensive record
comparisons. For example, collecting people profiles on social websites can yield hundreds of millions of
records that need to be resolved. Comparing each pair of records to estimate their “similarity” can be
expensive as many of their fields may need to be compared and substantial application logic must be invoked.

At the same time, it may be very important to run ER within a limited amount of time. For example,
anti-terrorism applications may require almost real-time analysis (where streaming data is processed in small
batches using operations like ER) to capture a suspect who is on the brink of escaping. Although the analysis
may not be as complete as when the full data is available, the fast processing can increase the chance of
the suspect being captured. As another example, a people search engine may have very limited time for
resolution, in order to provide up-to-date results on celebrities, politicians, and other high profile people in
the news.

In this paper we explore a pay-as-you-go approach to entity resolution, where we obtain partial results
“gradually” as we perform resolution, so we can at least get some results faster. As we will see, the partial
results may not identify all the records that correspond to the same real-world entity. Our goal will be to
obtain as much of the overall result as possible, as quickly as possible.

Figure 1 is a simple cartoon sketch to illustrate our approach. The horizontal axis is the amount of work
performed, say the number of record pairs that are compared (using the expensive application logic). The
vertical axis shows the “quality” of the result, say the number of pairs that have been found to match (i.e.,
to represent the same entity). The bottom curve in the figure (running mostly along the horizontal axis)
illustrates the behavior of a typical non-incremental ER algorithm: it only yields its final answer after it has
done all the work. If we do not have time to wait to the end, we get no results. The center solid line represents
a typical incremental ER algorithm that reports results as it goes along. This algorithm is preferable when
we do not have time for the full resolution.
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Fig. 1. Pay-as-you-go approach of ER

The dotted line in Figure 1 shows the type of algorithm we want to develop here: instead of comparing
records in random order, it looks for matches in the “pairs that are most likely to match,” hence it gets
good quality results very fast. To identify the most profitable work to do early on, the algorithm performs
some pre-analysis (the initial flat part of the curve). The pre-analysis yields what we call hints that are then
used by the subsequent resolution phase to identify profitable work. If we have limited time, in our example
say half of the time taken by the full resolution, our approach is able to give us a much better result than
the traditional algorithms. Of course, in other cases our approach may be counterproductive (e.g., if the
pre-analysis takes too long relative to the available time). Furthermore, not all ER approaches are amenable
to the pay-as-you-go approach.

In this paper we address three important questions. First, how do we construct the hints? All schemes
rely on an approximate and inexpensive way to compare records, e.g., two records are more likely to represent
the same person if they have similar zip codes. However, there are several ways in which the hint can be
encoded. For instance, a hint can be an ordered list of record pairs, sorted by likelihood of matching. A hint
can also be an ordering of the records, that will lead to more profitable work in the resolution phase.

Second, how do we use the hints? The answer to this question depends on the ER strategy one is utilizing,
and as stated earlier, some algorithms are not amenable to using hints. Since there are so many ER strategies
available, clearly we cannot give a comprehensive answer to this second question, but we do illustrate the
use of different types of hints in several representative instances.

Third, in what cases does pay-as-you-go pay off? Again, we cannot give a comprehensive answer but
we do illustrate performance on several real scenarios and we identify the key factors that determine the
desirability of pay-as-you-go.

It is important to note that our work is empirical by nature. Hints are heuristics. We will show they
work well in representative cases, but they provide no formal guarantees. Also, our goal here is to provide
a unifying framework for hints and to evaluate the potential gains. Certain types of hints have been used
before (see Section 9), and we do not claim to cover all possible types of hints.

In summary, our contributions in this paper are as follows:

— We formalize pay-as-you-go ER where our goal is to improve the intermediate ER result. (Section 2) Our
techniques build on top of blocking [20], which is a standard technique for scaling ER.

— We propose three types of hints:
e Sorted List of Record Pairs: The most informative (but least compact) type of hint that contains a

sorted list of record pairs (Section 3).
e Hierarchy of Partitions: A moderately informative and compact type of hint that contains a series

of partitions of records (Section 4).
e Sorted List of Records: The most compact (but least informative) type of hint that contains a sorted

list of records (Section 5).



For each hint type, we propose techniques for efficiently generating hints and investigate how ER algo-
rithms can utilize hints to maximize the quality of ER while minimizing the number of record compar-
isons.

— We extend our approach to using multiple hints. (Section 6)

— We experimentally evaluate how applying hints can help ER do more work up front. (Section 8) We use
actual comparison shopping data from Yahoo! Shopping and hotel information from Yahoo! Travel. Our
results show scenarios where hints improve the ER processing to find the majority of matching records
within a fraction of the total runtime.

2 Framework

In this section, we define our framework for pay-as-you-go ER. We first define a general model for entity
resolution, and then we explain how pay-as-you-go fits in.

2.1 ER Model

An ER algorithm E takes as input a set of records R that describe real-world entities. The ER output is a
partition of the input that groups together records that describe the same real-world entity. For example,
the output F' = {{r1,73}, {r2}, {ra,75,76}} indicates that records r; and rs represent one entity, o by itself
represents a different entity, and so on. Since sometimes we wish to run ER on the output of a previous
resolution, we actually define the input as a partition. Initially, each record is in its own partition, e.g., {{r1},
{ro}Arst, {ra}, {rs}, {re}}-

We denote the ER result of E on R at time ¢ as E(R)[t]. In the above example, if E has grouped {r1 } and
{rs} after 5 seconds, then E(R)[5] = {{r1,r3}, {re}, {ra}, {rs}, {re}}. We denote the total runtime of F(R)
as T(E, R). A quality metric M can be used to evaluate an ER result against the correct clustering of R. For
example, suppose that M computes the fraction of clustered record pairs that are also clustered according
to the correct ER answer. Then if E(R) = {{r1,72,7r3}, {ra}} and the correct clustering is {{r1,r2}, {rs},
{ra}}, M(E(R)) = 1.

Most ER algorithms do their work by repeatedly comparing pairs of records to determine their semantic
similarity or difference. Although ER algorithms use different strategies, the general principle is that if a pair
of records appear “similar,” then they are candidates for the same output partition. (We use the term match
to refer to a pair that is similar enough to go in the same output partition. Details will vary by algorithm.)
Since there are many potential records pairs to compare (W pairs for n records), most algorithms use
some type of pruning strategy, where many pairs are ruled out based on a very coarse computation.

The most popular pruning strategy uses blocking or indexing [20,12,18,8]. Input records are placed in
blocks or canopies according to one or more of their fields, e.g., for product records, cameras are placed in one
block, cell phones in another, and so on. LSH (locality sensitive hashing) [8] can also be used to place each
record in one or more blocks. Then only pairs of records within the same block are compared. The number
of record comparisons is substantially reduced, although of course matches may be missed. For instance,
one store may call a camera-phone a cell phone while another may (mistakenly) call it a camera, so the two
records from different stores will not be matched up even though they represent the same product.

Conceptually then we can think of blocking as defining a set of candidate pairs that will be carefully
compared. The set may not be materialized, i.e., may only be implicitly defined. For instance, the placement
of records in blocks defines the candidate set to be all pairs of records residing within a single block.

2.2 Pay-As-You-Go Model

With the pay-as-you-go model, we conceptually order the candidate pairs by the likelihood of a match. Then
the ER algorithm performs its record comparisons considering first the more-likely-to-match pairs. The key
of course is to determine the ordering of pairs very efficiently, even if the order is approximate.
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Fig. 2. Pay-As-You-Go ER Framework

To illustrate, say we have placed six records into two blocks: the first block contains records 71, ro, and
r3, while the second block contains ry4, 75, and rg. The implicit set of candidate pairs is {ry — o, 11 — 73,
ro—1r3, r4 —7r5...}. A traditional ER algorithm would then compare these pairs, probably by considering all
pairs in the first block in some arbitrary order, and then the pairs in the second block. With pay-as-you-go,
we instead first compare the most likely pair from either bucket, say r5 — r¢. Then we compare the next
most likely, say ro — r3. However, if only one block at a time fits in memory, we may prefer to order each
block independently. That is, we first compare the pairs in the first block by descending match likelihood,
then we do the same for the second block. Either way, the goal is to discover matching pairs faster than by
considering the candidate pairs in an arbitrary order. The ER algorithm can then incrementally construct an
output partition that will more quickly approximate the final result. (As noted earlier, not all ER algorithms
can be changed to compute the output incrementally and to consider candidate pairs by increasing match
likelihood.)

More formally, we define a pay-as-you-go version of an ER algorithm as follows.

Definition 1. Given a quality metric M, a pay-as-you-go algorithm E’ of the ER algorithm E satisfies the
following conditions.

— Improved Early Quality: For some given target time(s) t, < T(E,R), M(E'(R)[ty]) > M(E(R)[ty]).
Target time t, will typically be substantially smaller than T (E, R) and represent the time at which early
results are needed.

— Same Eventual Quality: M (E'(R)[t]) = M (E(R)[t]) for some time t > T(E, R).

The first condition captures our goal of producing higher-quality ER results upfront. The second condition
guarantees that the pay-as-you-go algorithm will eventually produce an ER result that has the same quality
as the ER result produced without hints. In comparison, blocking techniques may return an approximate
ER result where the quality has decreased.

To efficiently generate candidate pairs in (approximate) order by match likelihood, we use an auxiliary
data structure we call the hints. As illustrated in Figure 2, in this paper we discuss three types of hints.
The most general form is a sorted list of record pairs, although as we will see, the list need not be fully
materialized. A less general but more compact structure is a hierarchy where each level represents a partition
of the records grouped by their likelihood of matching. A partition on a higher level is always coarser (see
Definition 2) than a partition on a lower level of the hierarchy. The third structure is a sorted list of records
(not pairs) where records that appear early in the list are more likely to match with each other than records
far down the list.

Note that a hint is not an interchangeable “module” than can simply be plugged into any ER algorithm.
Each hint is a tool that may or may not be applicable for a given ER algorithm. In the following three
sections we describe each hint type in more detail, and show how it can be used by some ER algorithms. For



simplicity we will focus on processing a single block of records (although as noted earlier a single hint could
span multiple blocks). In Section 6, we discuss how to use multiple hints for resolving records.

3 Sorted List of Record Pairs

In this section we explore a hint that consists of a list of record pairs, ranked by the likelihood that the pairs
match. We assume that the ER algorithm uses either a distance or a match function. The distance function
d(r, s) quantifies the differences between records r and s: the smaller the distance the more likely it is that
r and s represent the same real-world entity. A match function m(r, s) evaluates to true if it is deemed that
r and s represent the same real-world entity. Note that a match function may use a distance function. For
instance, the match function may be of the form “if d(r,s) < T and other conditions then true,” where T is
a threshold.

We also assume the existence of an estimator function e(r, s) that is much less expensive to compute than
both m(r, s) and d(r, s). The value of e(r, s) approximates the value of d(r, s), and if the ER algorithm uses
a match function, then the smaller the value of e(r, s), the more likely it is that m(r, s) evaluates to true.

Conceptually, our hint will be the list of all record pairs, ordered by increasing e value. In practice, the
list may not be explicitly and fully generated. For instance, the list may be truncated after a fixed number
of pairs, or after the estimates reach a given threshold. As we will see, another alternative is to generate
the pairs “on demand”: the ER algorithm can request the next pair on the list, at which point that pair is
computed. As a result, we can avoid an O(N?) complexity for generating the hint.

We now discuss how to generate the pair-list hint, and then how an ER algorithm can use such a list.

3.1 Generation

We first discuss how we can generate pair-list hints using cheaper estimation techniques. We then discuss a
more general technique that does not require application estimates.

Using Application Estimates In some cases, it is possible to construct an application-specific estimate
function that is cheap to compute. For example, if the distance function computes the geographic distance
between people records, we may estimate the distance using zip codes: if two records have the same zip
code, we say they are close, else we say they are far. If the distance function computes and combines the
similarity between many of the record’s attributes, the estimate can only consider the similarity of one or
two attributes, perhaps the most significant.

To generate the hint, we can compute e(r, s) for all record pairs, and insert each pair and its estimate
into a heap data structure, with the pair with smallest estimate at the top. After we have inserted all pairs,
if we want the full list we can remove all pairs by increasing estimate. However, if we only want the top
estimates, we can remove entries until we reach a threshold distance, a limited number of pairs, or until the
ER algorithm stops requesting pairs from the hint.

In other cases, the estimates map into distances along a single dimension, in which case the amount of
data in the heap can be reduced substantially. For example, say e(r, s) is the difference in the price attribute
of records. (Say that records that are close in price are likely to match.) In such a case, we can sort the
records by price. Then, for each record, we enter into the heap its closest neighbor on the price dimension
(and the corresponding price difference). To get the smallest estimate pair, we retrieve from the heap the
record r with the closest neighbor. We immediately look for r’s next closest neighbor (by consulting the
sorted list) and re-insert r into the heap with that new estimate. The space requirement in this case is
proportional to |R|, the number of records. On the other hand, if we store all pairs of records in the heap,
the space requirement is order of O(|R|?).



Application Estimate Not Available In some cases, there may be no known inexpensive application
specific estimate function e(r, s). In such scenarios, we can actually construct a “generic but rough” estimate
based on sampling. This technique may not always give good results, but as we show in Section 8, it can
yield surprisingly good estimates in some cases.

The basic idea is to use the expensive function d to compute the distances for a small subset of record
pairs, and then use the computed distances to estimate the rest of the distances. We do not assume the
records to be in any space (e.g., Euclidean), so d does not have to compute an absolute distance. The main
advantage of this sampling technique is its generality where we can estimate distances by only using the
given distance function. Suppose we have a sample S, which is a subset of the set of records R. We first
measure the actual distances between all the records within S and between records in S and records in R—S.
Assuming that the sample size || is significantly smaller than the total number of records |R|, the number
of real distances measured is much smaller than the total number of pairwise distances. For example, if | R|

. . . (%)+990x10 9945
= 1000 and |S| = 10, then the fraction of real distances we compute is ) = Jo0500 ~ 2%.

Given a fraction of the real distances, we can estimate the other distances.2 One possible scheme captures
the distance between two records r and s as the sum of squares of the difference of d(r,¢) and d(t, s) for
each t € S. Formally, the estimate e(r,s) = Xics(d(r,t) — d(t,s))?. The intuition is that, if r and s are
very close, then they will be almost the same distance from any sample point ¢. For example, if d(r,t1) =
8, d(r,t2) = 10, d(t1,s) = 5, and d(ta,s) = 4, then e(r,s) = (8 — 5)2 + (10 — 4)? = 45. While 45 is not a
“real” distance, we only need to compare the relative sizes of estimates of different record pairs to construct
hints. The estimated distances among records within S and between records in S and R — S must also be
computed the same way as above. Our techniques resemble triangulation techniques where a point is located
by measuring angles to it from known reference points.

The sample set may affect the quality of estimation. In the worst case, the sample can be |S| duplicate
records, and all estimates turn out to be the same for any pair of records. Hence it is desirable for the sample
records to be evenly dispersed within R as much as possible. In practice, selecting a small random subset of
|S| records works reasonably well (see Section 8.5).

3.2 Use

The details on how to use a pair-list hint depend on the actual ER algorithm used. However, there are two
general principles that can be employed:

— If there is flexibility on the order in which functions m(r, s) or d(r, s) are called, evaluate these functions
first on r, s pairs that are higher in the pair-list. This approach will hopefully let the algorithm identify
matching pairs (or pairs that are clustered together) earlier than if pairs are evaluated in random order.

— Do not call the d or m functions on pairs of records that are low on the pair-list, assuming instead that
the pair is “far” (pick some large distance as default) or does not match.

Note that in some cases the ER algorithm with hints will return the same final answer (call it F’) as
the unmodified algorithm (call it F'), but matches or clusters will be found faster. In other cases, the ER
algorithm will return an answer F’ that is different from the unmodified answer F, but hopefully F’ will
have a high quality compared to F'.

We now illustrate how the Sorted Neighbor algorithm [12] (called SN) can benefit from a pair-list hint.
Say a block contains the records R = {ri,r,r3}. The SN algorithm first sorts the records in R using a
certain key assuming that closer records in the sorted list are more likely to match. For example, suppose
that we sort the records in R by their names (which are not visible in this example) in alphabetical order
to obtain the list [rs, ro, r1]. The SN algorithm then slides a window of size w on the sorted record list and
compares all the pairs of clusters that are inside the same window at any point. If the window size is 2 in
our example, then we compare r3 with ro and then ro with 1, but not r3 with r; because they are never in
the same window. We thus produce pairs of records that match with each other. We can repeat this process
using different keys (e.g., we could also sort the person records by their address values). While collecting all
the pairs of records that match, we can perform a transitive closure on all the matching pairs of records to
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produce a partition S of records. For example, if r3 matches with ro and ro matches with r;, then we merge
r1, 2, T3 together into the output S = {{r1,r2,73}}.

To use a pair list as a hint, we define the cheap distance function e(r, s) to be the difference in rank between
records according to the sorted list. That is, given two records r and s, e(r, s) = |Rank(r) — Rank(s)| where
Rank(r) indicates the index of r in the sorted list of the records in R. Intuitively, the closer records are
according to the sorted list, the more they are likely to match. In our example above, our sorted list is
[rs,r2,71], so Rank(rs) = 1, Rank(rz) = 2, and Rank(r;) = 3. Hence, the distance between r; and ry is 1
while the distance between r; and r3 is 2. The modified ER algorithm SN compares the records with the
shortest estimated distances first, we are effectively comparing records within the smallest sliding window,
and repeating the process of increasing the size of the window by 1 and comparing the records that are within
the new sliding window, but have not been compared before. Notice that once the next shortest distance of
records exceeds the window size w, we have done the exact same record comparisons as the SN algorithm.
In addition, we can also stop comparing records in the middle of ER once we have exceeded the work limit
W. For instance, if we set W to only allow one record comparison, then we only compare either (rs,rs) or
(ro,r1) and terminate the ER algorithm.

4 Hierarchy of record partitions

In this section, we propose the partition hierarchy as a possible format for hints. A partition hierarchy gives
information on likely matching records in the form of partitions with different levels of granularity where
each partition represents a “possible world” of an ER result. The partition of the bottom-most level is the
most fine-grained clustering of the input records. Higher partitions in the hierarchy are more coarse grained
with larger clusters. That is, instead of storing arbitrary partitions, we require the partitions to have an
order of granularity where coarser partitions are higher up in the hierarchy.

Definition 2. A partition P is coarser than another partition P’ (denoted as P' < P) when the following
condition holds:

—Vd eP,3dceP st dCec

Figure 3 shows a hierarchy hint for the set of records {r1,r2,73,74,75}. Suppose that the most likely
matching pairs of the records are (r,r2) and (r4,75). We can express this information as the bottom-level
partition {{r1,72}, {rs}, {ra,r5}} of the hierarchy. Among the clusters in the bottom level, suppose that
{r1,72} is more likely to be the same entity as {rs} than {r4,r5}. The next level of the hint can then be
a coarser partition of the bottom level partition where the clusters {r1,r2} and {rs} from the bottom-level
partition have merged.

We now formally define a partition hierarchy hint.



Definition 3. A wvalid partition hierarchy hint H with L levels is a list of partitions Py, ..., Py of R where
P; < Pjyq forany1<j<L.

For example, Figure 3 is a valid partition hierarchy hint where Py = {{r1,72}, {rs}, {ra,r5}} and P, =
{{r1,re, 3}, {ra, 5} (e, P < P2). However, if Py were {{r1}, {r2}, {rs}, {re,r5}}, then H would not be
valid because P; £ Ps.

Within the hierarchy of a partition hierarchy hint, a cluster ¢ in a higher level is connected to the clusters
in the lower level that were combined to construct ¢. We call these clusters the children of c.

Definition 4. The children of a cluster ¢ (denoted as c.ch) in the ith level (i > 1) of a partition hierarchy
hint H is the largest set of clusters S in the (i — 1)st level of H such that V¢ € S,c’ < c.

For example, in Figure 3, the children of cluster {ry,re,r3} in P is the set {{r1,72}, {rs}}, and the
children of cluster {r4, 75} in P, is the set {{r4,r5}}.

A significant advantage of the partition hierarchy structure is that the storage space is linear in the number
of records regardless of the height L. A compact way to store the information of a partition hierarchy is to
keep track of the clusters splitting into their children in lower levels. For example, in Figure 3, there are
two cluster splits: one that splits the cluster {ry,rq,r3,74,75} in P3 into {r1,r2,r3} and {r4, 75} and another
that splits {r1, 2,73} in Py into {r1, 72} and {r3}. Hence we only need to save the information of two cluster
splits. Since a partition hierarchy can have at most |R| — 1 splits, the maximum space required to store the
splits information is linear in the number of records.

4.1 Generation

We propose various methods for efficiently constructing a partition hierarchy. In the following section, we
construct hints based on sorted records, which are application estimates. Next, we discuss how partition
hierarchies can also be generated using hash functions (which are also application estimates) and inexpensive
distance functions (which are not application estimates).

Using Sorted Records We explore how a partition hierarchy can be generated when the estimated dis-
tances between records can map into distances along a single dimension according to a certain attribute
key.

Algorithm 1 shows how we can construct a partition hierarchy hint H using different thresholds T4, ..., 7T,
for partitioning records based on their key value distances. (The thresholds values are pre-specified based
on the number of levels L in H.) For example, say we have a list of three records [Bob, Bobby, Bobji| (the
records are represented and sorted by their names). Suppose that we set two thresholds 77 = 1 and T» =
2, and use edit distance (i.e., the number of character inserts and deletes required to convert one string to
another) for measuring the key distance between records. Algorithm 1 first reads Bob and adds it into a
new cluster both for P; and P, (Step 9). Then we read Bobby and compare it with the previous record Bob
(Step 6). The edit distance between Bob and Bobby is 2. Since this value is larger than 77, we create a new
cluster in P; and add Bobby (Step 9). Since the edit distance does not exceed T», we add Bobby into the first
cluster in P, (Step 7). For the last record Bobji, the edit distance with the previous record Bobby is 4, which
exceeds both thresholds. As a result, a new cluster with Bobji is created for both P; and P,. The resulting
hint thus contains two partitions: P, = {{ Bob}, {Bobby}, {Bobji}} and P, = {{Bob, Bobby}, {Bobji}}.

The following result shows the correctness of Algorithm 1. Proofs for this result and subsequent ones can
be found in Appendix A.1.

Proposition 1. Algorithm 1 returns a valid hint.

Given that the input Sorted is already sorted, Algorithm 1 runs in O(L x | R|) time by iterating all records
in Sorted and, for each record, iterating through all thresholds.



ALGORITHM 1: Generating a partition hierarchy hint from sorted records

1: Input: a list of sorted records Sorted = [r1,r2,...] and a list of thresholds T = [T1,...,T1]
2: Output: a hint H = {P1,...,Pr}
3: Initialize partitions Py, ..., P
4: for r € Sorted do
5. forT; €T do
6: if r.prev.exists() A KeyDistance(r.key,r.prev.key) < T; then
7 Add r into the newest cluster in P;
8: else
9: Create new cluster in P; containing 7
10: return {P1,...,Pr}

Using Hash Functions We can also generate a partition hierarchy based on hash functions with different
probabilities of collision. For example, minhash signatures [13] can be used to estimate set similarity. Or
if an attribute of records contains categorical values, then each record can be hashed as its category. To
generate L partitions for a hint, we can use a family of hash functions Hy, ..., Hr where for any 1 <i < L,
H,; has a lower probability of collision than H;;; and any collision that occurs in H; also occurs in H;y.
The algorithm for constructing the hint is similar to Algorithm 1, except that records are now assigned to
clusters based on their hash values. For example, suppose that we have a set of three records { Bobbie, Bobby,
Bobji}. Given H; that uses the first four characters of a name as a record’s hash value while Hs uses the
first three characters, then P, = {{Bobbie, Bobby}, {Bobji}} while Py, = {{Bobbie, Bobby, Bobji}}. The
complexity of the algorithm is O(L x |R|) because for each level, we iterate all the records and assign each
record to its bucket in each level.

Using Distance Estimation Functions We can also use an inexpensive distance estimator function e(r, s)
to generate a partition hierarchy. The e(r, s) function can be application specific or generated by a sampling
technique (see Section 3.1).

Algorithm 2 shows how we can construct a partition hierarchy hint given the distance estimates. For each
level L; in H, we can use a union-find algorithm [23] to generate a transitive closure of records that have
estimated distances less than a given threshold T;. For example, suppose we have three records r1,72,73
whose estimated distances are set as e(r1,r2) = 1, e(r1,r3) = 2, e(re,73) = 3. Also, suppose that we set T}
=1 and T» = 2. Algorithm 2 first initializes all partitions P, ..., Py into empty sets (Step 3). For the first
pair (rq,r2), we compare its estimated distance 1 with T3 = 1 (Step 6). Since 1 and ry are close enough, we
connect 71 and r9 in P; (Step 7). Next, we compare the estimated distance 1 with 75 = 2. Again, 71 and r9
are connected in Py. We then read the next pair of records (r1, r3). Since the estimated distance is 2, 71 and 73
are connected in P, but not in P;. For the last pair (rq, r3), the estimated distance 3 exceeds both thresholds.
As a result, the resulting hint contains two partitions: Py = {{ry,r2}, {rs}} and P» = {{r1,r2,73}}. In Step
7, one can use a more sophisticated clustering algorithm (instead of a transitive closure) provided that the
clustering results {Py, ..., Pr} satisfy Definition 3.

Notice that when estimating the distances between records, we do not have to actually store the estimates
for each pair of records, which would require a space quadratic in the number of records. Instead, we can
construct the partition hierarchy while generating the estimates. Hence, the space complexity of construction
based on sampling is O(L x |R|). The time complexity for constructing the partition hierarchy is O(|R|* +
L x C(|R])) where |R|? is needed for the sampling and C(|R|) is the complexity of the clustering algorithm
used to generate the partitions of R in the hierarchy.

4.2 Use

Given a partition hierarchy, the next question is how an ER algorithm can actually exploit this information
to maximize the ER quality with a limited amount of work. We assume the ER algorithm is given based



ALGORITHM 2: Generating a partition hierarchy hint from pairwise distance estimates

1: Input: a list of pairs with their estimated distances Pairs = [(r1,s1), (r2,s2), ...], and a list of thresholds T' =
[Th,...,TL]
Output: a hint H = {Py,...,P.}
Initialize partitions P, ..., PL
for (r,s) € Pairs do
for T; € T do
if e(r,s) < T; then

TransitiveClosure(P;, (r, s))

return {Pi,..., Pr}

on what works best for the application or what developers have experience with. In general, there are two
principles that can be employed to use a partition hierarchy:

— If there is flexibility on the order of which records are resolved, compare the records that are in the same
cluster in the bottom-most level of the hierarchy hint.
— If there is more time, start comparing records in the same cluster in higher levels of the hierarchy hint.

Algorithm 3 shows how a partition hierarchy hint can be used by an ER algorithm. Given a set of records
R, an ER algorithm F, a partition hierarchy hint H, and a work limit W, we intuitively resolve the records in
the bottom-level clusters first and progressively resolve more records in higher-level clusters in the hierarchy
until there are no more records to resolve or the amount of work done exceeds W (e.g., the number of record
comparisons should not exceed 1 million).

We illustrate Algorithm 3 using the Single-link Hierarchical Clustering algorithm [9,17] (which we call
HCg). The HCg algorithm merges the closest pair of clusters (i.e., the two clusters that have the smallest
distance) into a single cluster until the smallest distance among all pairs of clusters exceeds a certain threshold
T'. The distance between two records is measured using a commutative distance function D that returns a non-
negative distance between two records. When measuring the distance between two clusters, the algorithm
takes the smallest possible distance between records within the two clusters. Now suppose we have R =
{r1,7r2,73} (which can also be viewed as a list of three singleton clusters) where the pairwise distances are
D(ri,7m2) = 2, D(re,r3) = 4, and D(r1,r3) = 5 with a given threshold T = 2. The HCg algorithm first
merges 71 and 7, which are the closest records and have a distance smaller or equal to T', into {r1,72}. The
cluster distance between {ry,r2} and {rs} is the minimum of D(rq,r3) and D(rz,73), which is 4. Since the
distance exceeds T, {r1,r2} and {rs} do not merge, and the final ER result is {{r1,r2}, {rs}}.

We can use Algorithm 3 to run the HCg algorithm with a hint that is a partition hierarchy. Continuing
our example above where R = {ry,72,r3}, suppose that we are given the hint P, = {{r1,7r2}, {rs}} and
Py = {{r1,7m2,r3}}. Also say that W is set to three record comparisons. According to Algorithm 3, we first
resolve the clusters in P; of the hint. Thus we compare 1 with r9 by invoking Resolve(E,{r1,r2}, h) in
Step 8. Since r; and 7o match, F becomes {{ri,r2}, {r3}}. We also store the ER results of {ry,72} and
{r3} in h. Next, we start resolving records in the cluster {ri, 72,73} in P,. When resolving {ry,r2, 73}, we
first subtract from F the clusters that are subsets of {r1, 72,73}, leaving us with F = {} (Step 7). We now
run Resolve(E, {r1,r2,r3},h) in Step 8. Again, only r; and ro match and we union F' with {{r1,r2}, {rs}}
(Step 9). Assuming Resolve used at least two more record comparisons to resolve {ri, o, r3}, the total work
is larger or equal to the work limit W, and we return the ER result F' = {{r1,r2}, {rs}} (Step 12), which
is the correct answer. Notice that, if W was set to 1 instead of 3, the same ER result F = {{r1,7r2}, {rs}}
would have been returned using only one record comparison.

Proposition 2. Given a valid ER algorithm E, Algorithm 3 returns a correct ER result when Pr = {R}
and W is unlimited.

The complexity of Algorithm 3 is at least the complexity of the ER algorithm F because we can always
use a hierarchy with one level having {R} as its partition. The actual efficiency of the algorithm largely
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ALGORITHM 3: Using a partition hierarchy in ER

1: Input: a set of records R, an ER algorithm FE, a hint H = {P1,..., Pr}, and a work limit W
2: Output: an intermediate ER result F of E(R)
3 F 0, h—10

4: fori=1...L do

5: for c € P; do

6: for child € c.ch do

7 F — F — {clus|clus € F A clus C child}
8: h(c) < Resolve(E, c, h)

9: F — FUh(c)
10: if total work > W then
11: return F'
12: return F

depends on the implementation of Resolve(FE,c,h) in Step 8. In the worst case, E can simply ignore the
information of resolved records h and run E(c) from scratch. However, an ER algorithm can exploit the
information in h to produce Resolve(E, ¢, h) more efficiently. For example, if ¢ = {ri,72,7r3} and we know
by h that r; and ro are the same entity. Then the ER algorithm can avoid a redundant record comparison
between r; and 7s.

4.3 General Incremental Property

We explore an interesting property of an ER algorithm (called “general incremental”) that, when satisfied,
can enable efficient computation given information of previously resolved records. That is, given an input set
of records R and ER results of previously resolved records, we would like F(R) to run faster than resolving
R from scratch. An ER algorithm is incremental [14] if it can resolve one record at a time. We use a more
generalized version of the incremental property [26] for our ER model where subsets of R can be resolved in
any order.

In order to precisely define the general incremental property, we need to formalize the ER definition in
Section 2.1 further. First, we assume that an ER algorithm receives a partition of R (called R,) and returns
a new partition of R. This view does not change our original ER model (where ER partitions a set of records)
because a set of records R = {ri,...,7,} can also be viewed as a set of singleton clusters R, = {{r}, ...,
{rn}}. We denote all the possible partitions that can be produced by the ER algorithm E as F(R,), which is
a set of partitions of R. That is, we assume that ER is non-deterministic in a sense that different partitions
of R may be produced depending on the order of records processed or by some random factor (e.g., the
ER algorithm could be a random algorithm). Hence, E(R,) is always one of the partitions in E(R,). For

example, given R, = {{r1}, {r2}, {rs}}, E(Rp) could be {{{r1,r2}, {rs}}, {{r1}, {re,rs}}} while E(R,) =
{{ri,ra}, {rs}}.

Definition 5. An ER algorithm is generally incremental [26] if for any four partitions Py, Py, Fy, and Fy
such that

- P1 geg and
— Fy € E(P1) and
- kK e E(FlU(PQ—Pl))

then Iy € E(PQ)

For example, suppose we have P, = {{r1}, {ro}}, Po = {{r1}, {r2}, {rs}}, and Fy = {{r1,r2}}. That is,
we have already resolved P; into the result F7. We can then add to F; the remaining cluster {rs}, and resolve
all the clusters together (i.e., we run E({{r1,72}, {r3}})). The result is as if we had resolved everything from

scratch (i.e., from P,). Presumably, the former way (incremental) will be more efficient than the latter by
exploiting the information on records have already been resolved.
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ALGORITHM 4: Efficient Resolve function using information on previously resolved records

1: Input: an ER algorithm E, a set ¢ of records to resolve and a hash table h containing ER results of sets of
records
Output: F' € E({{r}|r € c})
R, — 0
for s € c.ch do
Ry — Rp Uh(s)
if R, = () then
Ry — {{r}lr € ¢}
return E(R))

Proposition 3. Suppose we have a partition S = {s1, ..., sn} of Rp. That is, |Js; = R, and for any 1 <
i,j <n wherei # j, s;Ns;j = 0. Then given a general incremental ER algorithm E, F = E(|J E(s;)) €
E(Ry).

i=1..n

We now propose Algorithm 4 that runs ER on previously resolved records and can be used as the Resolve
function in Algorithm 3. For example, suppose that ¢ = {ry, ra, r3, r4, 75} and ¢’s children c.ch = {{r1,r2, 73},
{re,r5}}. Also say that h({ri,r2,r3}) = {{r1,rs}, {r2}}, and h({re,rs}) = {{re,r5}}. We thus construct
R, as {{r1,73}, {r2}, {ra,rs}} in Steps 4-5. Alternatively, if h did not contain any ER result, then at Step
7 R, would have been set to the singleton partition of ¢, i.e., {{ri}, {r2}, {rs}, {ra}, {rs}}. The algorithm
then returns E(Rp). In the former case where h does contain ER results of previously resolved records,
Algorithm 4 is presumably faster than simply running ER from the singleton partition of ¢ by avoiding
redundant record comparisons.

The following result shows the correctness of Algorithm 4.

Proposition 4. If E is general incremental (satisfying Definition 5), Algorithm 4 correctly returns an ER
result F' € E({{r}|r € ¢}).

We now show that the HCs algorithm is general incremental and can thus be used in Algorithm 4.

Proposition 5. The HCg algorithm is general incremental.

5 Ordered List of Records

We now propose an ordered list of records as a format for hints. In comparison to a partition hierarchy, a list
of records tries to maximize the number of matching records identified when the list is resolved sequentially.
Two significant advantages are that the ER algorithm itself does not have to change in order to exploit
the information in a record list and that there is no required storage space for the hint. On the downside,
finding the right ordering of records in order to guide the ER algorithm to find matching records as much as
possible is a non-trivial task where the best solution depends on the ER algorithm itself. We propose general
techniques for constructing record lists either from a partition hierarchy or from sampling. We then discuss
how a record list can be used by ER algorithms.

5.1 Generation

We propose methods for efficiently constructing a list of records. The following section uses a partition hier-
archy for generation. We also discuss how record lists can be generated using distance estimation functions.
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Using Partition Hierarchies We propose a technique for generating record lists based on a partition
hierarchy. Assuming that an ER algorithm resolves records in the input list from left to right, a desirable
feature of a record list is to order the records such that the ER algorithm can minimize the number of fully
identified entities at any point of time. A fully identified entity is one where the ER algorithm has found all
the matching records for that entity. For example, given a record list [r1, ro, 73] where r1 refers to the same
entity as ro, an ER algorithm fully identifies the entity for {r;, 72} after resolving the first two records and
fully identifies the entity for {r3} after resolving the last record. Another input list could be [rg, r1,72] where
one entity (i.e., {rs}) is already identified after resolving the first record in the list. The first list is better as
a record list in a sense that the only record match between 1 and ro was found early on. The second list is
worse because {r3} was fully identified early on, and the comparison between 1 and r3 was unnecessary and
could have been done after matching 1 and ro. That is, if we are only able to do one record comparison, then
we will find the correct answer when using the record list [ry, 72, 73] and not when using the list [r5, r1, r2].

In general, we want to minimize the entities that are fully identified because they generate unnecessary
comparisons with newer records resolved. We will later capture this idea by minimizing the expected number
of fully-identified entities when the record list is resolved sequentially from left to right. While we can use
other orderings for generating a record list hint, our generation focuses on ER algorithms that follow the
guideline in Section 5.2 where records in the front of the list are compared first.

Given a partition hierarchy H with L levels, we assume each of the partitions Py, ..., P are equally
likely to be the ER answer. That is, each partition has the same chance of being the correct ER result of
R and is thus a possible world of the records resolved. Suppose that we resolve a subset S of R. For each
partition P;, we estimate the number of clusters that are fully identified by resolving S as nEntities;(S)
= Yeep, @ Since each partition is equally likely to be the answer, we define the overall estimate of the
number of entities fully identified by resolving S as EjzlmL(% x nEntities;(9)).

For example, suppose that the partition hierarchy H; has 3 levels where Py = {{r1,72}, {rs}, {ra,r5}},
Py = {{ry, ro, r3}, {ra,rs}}, and Ps = {{r1,72,73,74,75}}. Each partition is equally likely to be the ER
answer. Suppose that we resolve the set of records S = {ry,r2,74, r5}, which is a subset of R. Then according
to our definition of nEntities, the estimated number of entities identified in P; is % + % = 2 because all
records in {r1,r2} and {ry4,r5} have been resolved. For P», the estimation is % + % = % because 2 out of 3
records in {ry, 79,73} and all records in {ry, 75} have been resolved. For P, the estimation is 2. Our overall
estimate for the actual number of entities identified nEntities(S) is thus 2 x (2+ 2 + 2) = %—g, i.e., about
1.5 entities identified.

One could extend our model by allowing each partition to have its own probability of being the ER
answer. That is, for each possible world P;, we add a probability w; indicating the confidence we have on
that possible world. Given that the sum of the weights is 1, the estimated number of fully identified entities
for the set S resolved would be X;—1. 1 (w; x nEntities;(S)). While we have considered the extension, we
have chosen the current simple scheme for two reasons. First, setting the probabilities for each partition is
difficult in practice. Second, the simple scheme usually performs as well as any other scheme using different
probabilities (see Section 8.6).

We now define an optimal record list. Intuitively, we would like to minimize the number of entities fully
identified at any point in time given that the ER algorithm resolves the records in the input list from left
to right. We define a prefix set of a list to be the set of records from the beginning of the list. For example,
the prefix sets of the list [r1,72] are {}, {r1}, and {ri,r2}.

Definition 6. A record list H of R is optimal if any prefiz set P of H has a minimum value of EjzlmL(% X
nEntities;(P)) among all subsets of R with size |P)|.

Interestingly, we can always derive a record list that is optimal according to Definition 6. A key observation
is that nEntities (S) = Yyrcs nEntities({r}), which says that the expected number of entities identified
by a set S is the sum of the expected numbers of entities identified by the records in S. For example,
according to Hy (defined above), nEntities({r1,r3}) = %1 x (nEntities;({r1, r3}) + nEntitiesa({r1, r3})
+ nBntitiess({r1, r3})) = + x (3 + D) +2+23) =Ix(3+i+H)+Ix (3 +1+1) =nEntities({r}) +
nEntities({rs}). Hence, by simply sorting the records in R by their nEntities values in increasing order
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ALGORITHM 5: Generating an optimal record list from a partition hierarchy

1: Input: the set of records R, a hint H = {P1,..., P}
2: Output: an optimal record list H’
3: for r € R do
4:  nEntities({r}) =0
5 fori=1...L do
6.
7
8
9

for c € P; do
for r € c do
nEntities({r}) < nEntities({r}) + + x ‘—i‘
: H' + Sorted records in R by their nEntities values in increasing order
10: return H’

(remember, we want to minimize the number of fully-resolved records), we can derive a record list where
any prefix set has an optimal nFEntities value.

Algorithm 5 derives an optimal record list according to Definition 6. Using Steps 5-8 we compute the
estimated number of entities for each record. According to H; above, record r3 has a nEntities value of
1 x (3 +1+1)= 2 Similarly, r; and ry each have a value of 1 x (3 + 2 + %) = 2L Finally, records ry
and r5 each have a value of ¥ X (3 + 3 + &) = 33 (the fractions were not reduced for easy comparison). We
now sort the records by their nEntities values (Step 9) in increasing order. In our example, we can produce
the record list H' = [r1,r2,74,75,73]. (Records with the same nEntities value can swap positions within
the list.) As a simple verification, no prefix set of size 2 has a nFEntities value smaller than that of {ry,ro},
which is % + % = %.

We now show that Algorithm 5 returns an optimal record list. The proof is given in Appendix A.2.

Proposition 6. Algorithm 5 returns an optimal record list.

The complexity of Algorithm 5 is O(|R| x (L +1log(|R|))) because of the loop in Steps 5-8 and the sorting
of records in Step 9. In special cases, however, the sorting can be done in linear time. For example, if there
is only one level P in the hierarchy, then for a record r, nEntities({r}) = X.cp I{Tﬁ:lﬂcl = ﬁ where ¢, is the
cluster in P containing r. Hence, we can sort the records in R by the sizes of clusters that contain them in
decreasing order. If we are given a maximum cluster size constant MaxSize of P, we can create MaxSize
buckets and assign each record r to the bucket with the index |c,|. We can then generate an optimal record
list by iterating through all the buckets. The sorting can thus be done in O(|R|) time. Using our example
above, suppose that P = {{r1,r2}, {rs}, {ra,rs5}}. Then one optimal record list is [r1,r2, 74,75, 3] because
the cluster in P containing 73 has a size of 1 while the cluster sizes for the other four records are all 2. Here,
we can sort the five records using two buckets (i.e., MaxSize = 2).

Obviously, there are other ways to generate record lists using a partition hierarchy. For example, one
could simply return the records in one of the partitions of the partition hierarchy. Our approach is a general
way to produce record lists and has theoretical guarantees of minimizing the expected number of entities
identified at any point in time.

Using Distance Estimation Functions We can also use an inexpensive distance estimator function e(r, s)
(application specific or sampling based) to generate a record list. Algorithm 6 shows how we can generate a
list that resembles the given pair list. For example, given the pair list [(r1,72), (r1,73), (r2,73)], we first read
the pair (r1,r2) and append the records r, and r3 to H. For the next pair (r1,r3), we only need to append r3
to H because r; already exists in H. Hence, we generate the record list H = [r1, o, r3]. Of course, the record
list H does not necessarily preserve all the information in the pair list. While some information cannot avoid
being lost, we make the best effort to place the most likely matching records up front in the record list.
Unlike Algorithm 2 where a partition hierarchy hint can be constructed without sorting the list of pairs, a
record list requires the list of pairs to be sorted by the estimated distances of the pairs. Hence, the complexity
of Algorithm 2 is O(|R|? x log(|R|)) where R is the set of input records. Moreover, a space complexity of

14



ALGORITHM 6: Generating a record list based on a list of pairs

Input: a list of pairs with their estimated distances L = [(r1, 1), (r2, $2), .. .]
Output: a record list H
H ]
Sort L by estimated distances in increasing order
for (r,s) € L do
if r € H then
H—H+r
if s ¢ H then
H«—H+s
: return H

—_

O(|R|?) is required to store the estimated distances of all record pairs. In the case where there is limited
time or space, we can approximate the result of Algorithm 2 by only retaining the top-k closest pairs where
k is a parameter reflecting the limited time or space. A heap structure can be used to store the top-k pairs
while estimating the pairwise distances in the sampling scheme. We then consider all the other pairs to be
infinitely distanced. The time complexity of Algorithm 2 is then O(k x log(k)) while the space complexity
O(k). In Section 8.3, we experimentally show that limiting &k can significantly improve the time and space
requirements with almost no decrease in quality.

5.2 Use

A record list can be applied to any ER algorithm that accepts as input a record list. A key advantage of
using record lists is that the ER algorithm itself does not have to change. The following principle can be
employed to benefit from a record-list hint:

— If there is flexibility in the order of which records are resolved, resolve the records in the front of the list
first.

Again, our goal is to help the ER algorithm with hints to efficiently return an answer F’ that has high
precision and recall relative to the unmodified answer F'.

As an example, we consider hierarchical clustering based on a Boolean comparison rule [3] (called HCp),
which can benefit from record lists. The HCp algorithm combines matching pairs of clusters in any order
until no clusters match with each other. The comparison of two clusters can be done using an arbitrary
function that receives two clusters and returns true or false, using the Boolean comparison function B to
compare pairs of records. For example, suppose we have R = {ry,r2,73} (which can also be viewed as a list
of three singleton clusters) and the comparison function B where B(r1, r2) = true, B(ra, r3) = true, but
B(r1, r3) = false. Also assume that, whenever we compare two clusters of records, we simply compare the
records with the smallest IDs (e.g., a record 73 has an ID of 2) from each cluster using B. For instance,
when comparing {r1, r2} with {rsz}, we return the result of B(r, r3). Depending on the order of clusters
compared, the HCp algorithm can merge {r1} and {ro} first, or {ro} and {rs} first. In the first case, the
final ER result is {{r1,7r2}, {r3}} (because the clusters {r1} and {ro} match, but {ry,72} and {r3} do not
match) while in the second case, the ER result is {{r1,r2,73}} (the clusters {r2} and {rs} match, and then
{r1} and {rq, r3} match). Now given a record list [rq,r2,73] (the ordering is arbitrary and is set to illustrate
the behavior of HCp), the HCg algorithm first compares r; and ro. If we set the work limit W to one record
comparison, then HCp will terminate returning {{r1,72}, {rs}}.

6 Using Multiple Hints

Until now, we have assumed that one hint is generated per block. However, depending on the type of hint
and the number of attributes used to generate the hint, we may have to generate multiple hints in order to

15



accurately capture the order information of record pairs. For example, suppose that we are resolving people
records and there are two ways to order the pairs of records: by their name or address similarities. If we
are generating a list of pairs hint, then we could choose one of two attributes — name or address — and use
it to sort the pairs into one hint. Another option is to combine the name and address similarity into one
similarity (e.g., by taking a weighted sum of the values) and generate one hint. Finally, we can generate two
separate hints for the two attributes. In this section, we assume that multiple hints of the same type are
generated (corresponding to the last case in the above example) and discuss three options on how to exploit
them while resolving records.

The first straightforward option is to repeatedly resolve the block of records for each hint and combine
the results. For example, we could resolve the people with the closest names first and then resolve those
with the closest addresses first and union the matching records. While this method is easy to apply to any
type of hint, the overall runtime of resolving records may slow down due to redundant record comparisons
for different hints.

Another option is to merge the multiple orderings into one ordering and then resolve the records once
using this new combined hint. For example, given two sorted lists of records, we can merge the lists by
sorting the records according to their sum of ranks in the two sorted lists. As another example, if we are
combining two partition hierarchies, we could combine each level by performing a meet operation on the
corresponding partitions. While combining hints may result in a loss of information of the ordering of pairs,
the main advantage is that there is only one hint to use when resolving records and thus no redundant record
comparisons.

The final option is to exploit the multiple hints simultaneously without combining them into one hint.
For example, if there are two sorted lists of record pairs, then we can start reading the first pairs of records
from both hints. If any record pair from one hint has already been read from the other hint, then we can
read the next pair of records. While this option has the potential to fully exploit the ordering information
of all the hints, deciding how exactly we can exploit the multiple hints is not obvious.

7 Determining which Hint to Use

As mentioned in Section 2.2, an ER algorithm may only be compatible with some types of hints (or with none
at all), depending on the data structures and processing used. In this section we provide some hint selection
guidelines and then illustrate how the guidelines apply to the ER algorithms we have already introduced.

If the ER algorithm compares pairs of records, and there is an estimator function e that is cheaper than
the distance function d, a pair-list hint may be useful. If there is no estimator function e, then sampling
techniques can be used to estimate the other distances. Next, if the ER algorithm clusters records based on
their relative distances, then a hierarchy hint could be useful for focusing on the relatively closer records
first. Finally, if the ER algorithm performs a sequential scan of records when resolving them, a record list
hint may help compare the records that are more likely to match first.

Figure 4 summarizes our three hint types and the techniques used to generated them (see Section 8.1
for details). The figure also shows the ER algorithms we used in Sections 3 through 5 to illustrate each hint
type. Although we could use a hierarchy hint or a record-list hint for the SN algorithm, the pair-list hint can
be used most naturally because SN basically compares pairs of records that are likely to match in a given
order. We use a partition hierarchy hint for the HCs algorithm because HC's can naturally resolve subsets
of R with the guidance of the partition hint. While HCs can also use a record list as a hint, the record
list is designed to work better for ER algorithms that resolve records sequentially. For the HC'p algorithm
we use a record lists hint because HCp sequentially resolves its records. The HCp algorithm could also
use a partition hierarchy as its hint. However, we would have to modify HCp and thus change its efficient
algorithm for comparing records.
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Fig. 4. Hints to generate and ER algorithms to run

8 Experimental Results

In this section, we evaluate pay-as-you-go ER on real data sets and show how creating and using hints can
improve the ER quality given a limit on how much work can be done. We assume that blocking [20] is used
(see Section 2), as it is in most ER applications with massive data. With blocking, the input records are
divided into separate blocks using one or more key fields. For instance, if we are resolving products, we can
partition them by category (books, movies, electronics, etc). Then the records within one block are resolved
independently from the other blocks. This approach lowers accuracy because records in separate blocks are
not compared, but makes resolution feasible. (See [18,27] for more sophisticated approaches.) From our point
of view, the use of blocking means that we can read a full block (which can still span many disk blocks) into
memory, perform resolution using hints, and then move on to the next block. In our experiments we thus
evaluate the cost of resolving a single block, except for Section 8.8 where we perform scalability experiments
by resolving multiple blocks. Keep in mind that these costs should be multiplied by the number of blocks.
Finally in our experiments, we generate one hint for each block. Our approach can easily be extended to
multiple hints using the techniques described in Section 6.

We start by describing our experimental setting in Section 8.1. In Section 8.2, we show how using hints
can improve the ER quality with limited amounts of work. In Section 8.3, we investigate the CPU time
and space overhead for creating hints and discuss the tradeoffs between the overhead and benefit of using
hints. In Section 8.4 we investigate the right number of levels in a partition hierarchy hint. In Section 8.5, we
explore the impact of the sample size on the accuracy of hints using sampling techniques. In Section 8.6, we
experiment on record lists generated from partition hierarchies using an extended model where partitions in
the hierarchy now have different confidence values. In Section 8.7, we discuss how partition hierarchy hints
can still enhance ER algorithms that are not incremental. In Section 8.8, we show how hints can be used to
enhance ER in practical scenarios where the datasets can be very large. Finally, in Section 8.9, we show how
our hint generation algorithms scale.

8.1 Experimental setting

In this section, we describe the settings used for our experiments. Our algorithms were implemented in Java,
and our experiments were run on a 2.4GHz Intel(R) Core 2 processor with 4 GB of RAM.

Quality Metric Since ER results may now be incomplete, it is important to measure the quality of an
intermediate ER result. We compare an intermediate result with a “Gold Standard,” which is the result of
running ER on the same dataset to the end. Notice that we are not measuring the correctness of the ER
algorithm itself, but instead determining how “close” the intermediate results are to the exhaustive result.
Since ER results are partitions of the input set of records, we consider all the input records in the same
output cluster to be identical. For instance, if records r and s are clustered into {r,s} and then clustered
with ¢, all three records r, s,t are considered to be the same (i.e., to match).

Suppose that the Gold Standard G contains the record pairs that match for the exhaustive solution while

set .S contains the matching pairs for the intermediate result. Then the precision Pr is ICTQ‘S‘ while the recall
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Re is ‘C\TQ\SL If the precision Pr is always 1 (i.e., the incremental algorithm always reports true matches), we
use Re, the fraction of matching pairs found, as our quality metric. Otherwise, we can use the F; metric,
which is defined as %7 as the quality metric (for more general ER metrics, see [19]).

We will use recall as our metric for all the experiments sections (except for Section 8.7) because the

precision is always 1 for any intermediate ER result.

Real Data The comparison shopping dataset we use was provided by Yahoo! Shopping and contains millions
of records that arrive on a regular basis from different online stores and must be resolved before they are
used to answer customer queries. Each record contains attributes including the title, price, and category of
an item. We experimented on a random subset of 3,000 shopping records that had the string “iPod” in their
titles and 2 million shopping records. When scaling ER on 2 million shopping records (see Section 8.8), the
average block size was 124 records while the maximum block size was 6,082 records. Hence, the random
subset of 3,000 shopping records can be considered as one (relatively large) block. We also experimented on
a hotel dataset provided by Yahoo! Travel where tens of thousands of records arrive from different travel
sources (e.g., Orbitz.com), and must be resolved before they are shown to the users. We experimented on
a random subset of 3,000 hotel records located in the United States. Each hotel record contains attributes
including the name, address, city, state, zip code, latitude, longitude, and phone number of a hotel. Again,
the 3,000 hotel records can be considered as one block. While the 3K shopping and hotel datasets fit in
memory, the 2 million shopping dataset did not fit in memory and had to be stored on disk.

Hints and ER Algorithms For our experiments we use the three ER algorithms used to illustrate our
hints (and summarized earlier in Figure 4). In this sub-section we provide some implementation details for
the ER algorithms used.

The SN algorithm uses a Boolean match function for comparing two records. When comparing shopping
records, the Boolean match function B compares the titles, prices, and categories. When comparing hotel
records, B compares the states, cities, zip codes, and the names of the two hotels. We generate a pair list
using cheap distance functions or from sampling. When generating record lists using cheap distance functions,
we used the estimate function e(r, s) = |Rank(r) — Rank(s)| using the title (name) attributes of shopping
(hotel) records as the sort key. When generating pair lists using sampling, we only computed and stored the
top-((w —1) x |R| — W) closest pairs (i.e., the number of record pairs that would be compared by SN
given the window size w) to limit the time and space overhead. We also used a random sample of 10 records.

The HCg algorithm uses a distance function for comparing two records. When the comparing shopping
records, the distance function D measures the Jaro distance [28] between the titles of two records. For the
hotel records, D measures the Jaro distance of the names of two records. We generate partition hierarchies
in three ways: using sorted records, hash functions, and sampling. By default, we set the number of levels of
a partition hierarchy to 5. While increasing the number of levels helps us find more matching records early
on, the benefits diminish from a certain point (see Section 8.4). The partition hierarchies based on sorted
lists were balanced binary trees with the highest level containing a single cluster with all input records.
The partition hierarchies based on hash functions used the prefixes of titles (names) as the hash values of
shopping (hotel) records. When generating partition hierarchies using sampling, we clustered records with
similar titles (for the shopping dataset) or names (for the hotel dataset) using several string comparison
thresholds. We randomly selected 10 records for our samples. (In Section 8.5, we show that small sample
sizes are sufficient for reasonable results.) A partition hierarchy is suitable for the HCg algorithm because
the hint suggests sets of records to resolve first, and the HCgs algorithm can easily resolve subsets of records
at a time.

The HC'p algorithm uses a Boolean match function for comparing two records. When comparing shopping
records, the Boolean match function B compares the titles, prices, and categories. When comparing hotel
records, B compares the states, cities, zip codes, and the names of the two hotels. We generate a record list
from a partition hierarchy (generated with hash functions) and from sampling. When generating a partition
hierarchy used for constructing a record list, we used minhash signatures [13] generated from titles (names)
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Fig. 5. Recall of ER algorithms using hints against work or runtime, 3K shopping/hotel records

as the hash values of shopping (hotel) records. When generating record lists using sampling, we tested two
schemes. For the complete sampling scheme, we computed and stored all the estimate distances of pairs (i.e.,

[RIX(R[=1)
2

pairs) and generated a record list. For the partial sampling scheme, we only computed and stored

the top-(5 x|R|) closest pairs to limit the time and space overhead. In both schemes, we used a random

sample of 10 records.

In all our algorithms, we avoid expensive comparisons when possible by comparing in phases. For example,
when comparing two shopping records, we compare the category, price, and title attributes, in that order. If
the categories do not match, we avoid comparing the prices and titles. If the categories match, but not the
prices, we avoid comparing the titles. This way, we can avoid many expensive title string comparisons. When
experimenting on large datasets, we use various blocking techniques (see Section 8.8) to further scale ER.
While more optimizations can be used on the base ER algorithms, our focus is to show the relative benefits
of using hints compared to when they are not used.
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8.2 Hint Benefit

In this section, we explore the benefits of using hints by measuring the recall values for various ER algorithms
using different hints. Figure 5(a) shows how a pair list can help the SN algorithm compare the most likely
matching record pairs for 3,000 shopping records. We experimented on the SN algorithm using two types of
hints. Recall that the SN algorithm first sorts the records by a certain key. In our implementation, we sorted
the records by their titles and then slid a window of size 100, comparing only the record pairs within the
same window. The first hint we used was to order the pairs of records according to their difference in rank
according to the sorted list. That is, the difference in rank was considered the distance between two records.
The second hint we used estimated the pairwise distance between the records using the sampling technique
(see Section 3.1) and compared the records with the closest estimated distance first. In our experiments, we
set the sample size to 10 records. (In Section 8.5, we show that even a sample this small produces reasonable
results.) Notice that when using the sampling technique, the SN algorithm does not use a sliding window
on a sorted list of the records, but simply compares the pairs of records as dictated by the pair list.

As more records are compared using the match function B, the quality of SN using hints rapidly increases.
For example, the quality of SN using a pair list generated from cheap distance functions achieves 0.96 recall
with only 12.5% of the record comparisons required when running SN without hints. The quality of SN
using the sampling technique achieves 0.8 recall with 0.78% of the entire work. While the sampling techniques
gives a high recall early on, it does not give 1.0 recall even after performing as many comparisons as the
SN algorithm without hints. The reason is that there are still matching record pairs that would have been
found by SN without hints, but are further down the pair list and will eventually be compared if more pairs
are compared (recall that the SN algorithm only compares a small fraction of the total record pairs using
a sliding window). In Section 8.5, however, we show that the sampling technique is actually very good at
finding all matching pairs that are not necessarily within the same window. Finally, the recall of SN without
hints increases linearly with more record comparisons.

Figure 5(d) shows how a partition hierarchy can help the HCg algorithm to quickly identify matching
records for 3,000 shopping records. The bottom-right plot (in Figure 5(d)) shows the progress of the original
HCg algorithm where records are clustered only after all pairs of base records are compared. Notice that
the clustering of records does not involve record comparisons, which is why the original HCs algorithm has
a jump in recall from 0 to 1 when 100% of the record comparisons are done. The actual runtime for the
second clustering step is very small (0.004s). The random hierarchy plot shows how a randomized partition
hierarchy helps the ER quality. Here, the records are clustered in a random fashion without any similarity
comparisons. As a result, the plot shows a linear increase of recall as the number of record comparisons
increases. The other three plots use partition hierarchies generated from a sorted list, hash functions, and
sampling. Among them, a partition hierarchy based on sampling gives the slowest increase in recall where
we get 0.51 recall with 14% of the comparisons HC's uses without hints. The main reason for the relatively
low recall is that the partitions in the hierarchy were highly skewed where some clusters in a partition were
very large. As a result, the partitions in the hierarchy were not “pinpointing” the likely matching records.
Moreover, setting the thresholds for creating the partitions was not a trivial task, making this approach
relatively difficult to use. When using a partition hierarchy hint generated from a sorted list, we achieve 0.99
recall with 16% of the total comparisons of HCs without hints. Finally, when using a hint generated using
hash functions, we achieve a similar result of 0.89 recall using 6.5% of the total comparisons.

Figure 5(g) shows how record lists can help the HCp algorithm to identify matching records early
without modifying the ER algorithm itself. Again, we experimented on 3,000 shopping records. When using
a record list generated from a partition hierarchy, we obtain 0.61 recall with 50% of the comparisons used
by HCp without hints. Record lists generated from complete or partial sampling give similar results where
we obtain 0.67 recall with 50% of the total comparisons. In contrast, the HCp algorithm without hints
obtains 0.47 recall for 50% of its comparisons. While the complete and partial sampling schemes produce
near-identical recall results against the number of record comparisons done, we will see in Section 8.3 that the
partial sampling scheme outperforms the complete sampling scheme in recall against the actual ER runtime.
Although the record list does not generally improve HC'p as much as partition hierarchies improve HCyg,
the main advantage is that all these benefits were achieved without modifying the HCp algorithm itself.
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Hint Generation Time Overhead$pace Overhead (Const/Use)

Sho3K| Ho3K Sho3K Ho3K

. ., |Cheap dist. functions|| 0.005 0.19 22 /22 7.8 /7.8
Pairs List Sampling 016 | 356 | 22 ? 22 7.8 ; 7.8
Sorted records 4E-4 2E-4 ||0.07 / 0.07 0.02 / 0.02
Hierarchy Hash functions 1E-4 1E-4 ||0.08 / 0.08 0.03 / 0.03
Sampling 0.02 0.01 0.08 / 0.08 0.03 / 0.03

Partition hierarchy | 7E-4 0.01 0.08/0 0.03/0

Record List| Complete sampling || 0.09 1.07 349 /0 119 /0

Partial sampling 0.02 0.31 1.15/0 04/0

Fig. 6. Time and space hint construction overhead depending on the type of hint, 3K shopping/hotel records

Figures 5(b), 5(e), and 5(h) show the hint results when resolving 3,000 hotel records. Unlike the shopping
dataset where multiple records can match, the records in the hotel datasets mostly come from two data
sources that do not have duplicates within themselves, so relatively few clusters have a size larger than 2.
The hotel results show that a partition hierarchy based on sampling or any record list performs better on
hotel data than when they are used on shopping data. Figures 5(c), 5(f), and 5(i) show the recall values of
ER algorithms against runtime and will be explained in Section 8.3.

8.3 Hint Overhead

In this section we explore the CPU and memory space overhead of using hints. We first explore the time
and space overhead of constructing and using hints. We then show the tradeoffs between the overhead and
benefit of using hints from various perspectives.

Time and Space Overhead The time overhead of a hint consists of the time to construct the hint and
the time to use the hint. While we will measure the construction time for hints, the time overhead of using
the hints themselves is not significant. The usage time overhead for accessing a pair list is a simple iteration
of the pairs in the list. The usage time overhead for accessing a partition hierarchy is an iteration of the
clusters from the bottom partition to top. There is no time overhead for using a record list because we simply
reorder the input list of records.

The “Time Overhead” column in Figure 6 shows the construction time overhead for each type of hint in
Figure 4 (we explain the space overhead later). The sub-column head Sho3K means 3,000 shopping records
while the sub-column head Ho3K means 3,000 hotel records. Each construction time overhead was produced
by dividing the construction time of a hint by the CPU time for running the ER algorithm without using
any hints. For example, the construction time for a partition hierarchy based on hash functions using 3,000
shopping records is 0.0001x the time for running the HCs algorithm without hints.

The overhead for constructing pair lists based on cheap functions depends on the number of pairs com-
pared (which depends on the window size w). The larger the window size, the larger the construction time
overhead. The overhead for constructing pair lists based on sampling is more expensive because all record
pairs are compared before taking the top matching pairs. The time overhead for resolving 3,000 hotel records
is 3.56x, which means that the time to construct the hint takes longer than running the ER algorithm itself.
In this case, it is better to simply run the ER algorithm. The overhead for constructing partition hierarchies
based on sorting or hashing is very small compared to running the HCyg algorithm because the record com-
parisons in HCg are relatively expensive. Even if sampling is used (which requires a runtime quadratic in
the number of input records), the construction time overhead is 0.02x for shopping records because the cost
for estimating distances is much cheaper than computing the real distances. The overhead for constructing
a record list from a partition hierarchy is relatively small compared to running the HCp algorithm because,
again, the record comparisons in HCg are relatively expensive. However, when constructing a record list with
complete sampling, the time overhead for HCs resolving 3,000 hotel records is 1.07x. The partial sampling
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scheme significantly improves the complete sampling scheme where the time overhead for the same hint and
data is 0.31x. Note that this improvement comes with almost no penalty in recall (see Figure 5(h)).

The “Space Overhead (Const/Use)” column in Figure 6 shows the space overhead for each type of hint.
The space overhead of a hint consists of the memory space needed for constructing the hint and the memory
space needed to use the hint while running ER. Both of these costs can be significant and will be explored. The
words “Const” and “Use” indicate the construction space overhead and usage-space overhead, respectively.
The construction space overhead of a hint was computed by dividing the memory space needed for creating
the hint by the memory space needed to store the input record list. The usage-space overhead of a hint was
computed by dividing the memory space needed for storing the constructed hint by the memory space of the
input record list. For example, the construction space overhead of a record list based on a partition hierarchy
is 0.08x the space needed to store 3,000 shopping records while the space needed to store and use that hint
(i.e., the usage overhead) is 0. Note that the space overhead is dependent on the size of the input records
(i.e., if the records are larger, then the space overhead will decrease).

The space overhead for pair lists is proportional to the number of record pairs stored (which depends
on the window size w). While the current space overhead for shopping records is 22x, one could reduce the
window size to reduce the overhead if necessary. (Of course, reducing the number of pairs stored comes at
a price of reducing the recall of SN.) The space overhead is same regardless of the how the list was made
because the sampling technique store exactly the same number of record pairs as when using cheap functions.
The space overhead for partition hierarchies based on sorted records and hash functions is reasonably small
(0.07-0.08x for shopping records) because the hierarchy size is linear in the number of records. A partition
hierarchy based on sampling has a reasonable construction space overhead (0.08x for shopping records)
because we do not actually store the pairwise distance estimates computed by the sampling technique. The
record-list hint based on a hierarchy hint has a construction space overhead of 0.08x because the partition
hierarchy hint was based on hash functions. The record-list hint based on complete sampling has a large
construction space overhead (349x for shopping records) because of the quadratic space required. This result
is the largest space overhead a sampling scheme can have where all distance estimates between records are
sorted and stored. The partial sampling scheme, however, shows a much lower and reasonable space overhead
(1.15x for shopping records). We achieve this significant improvement with near-identical recall results (see
Figures 5(g) and 5(h)). Finally, both record-list hints do not have usage-space overhead.

Tradeoff between Time Overhead and Benefit We now observe how the construction time overhead
of a hint actually affects the overall runtime of ER. We experiment on 3,000 shopping records. Figures 5(c),
5(f), and 5(i) show the recall values of ER results as a function of the ER runtime. The plots do not
differ significantly from Figures 5(a), 5(d), and 5(g), respectively. While the construction time overhead are
reflected in the plots, only the plots for using pair lists based on sampling and record lists based on complete
and partial sampling show visible construction time overhead. When using pair lists based on sampling,
it takes 1.45 seconds for SN to perform better than SN without hints. We also observe that the runtime
needed to cluster records by HC's after the pairwise distances is negligible (0.004s) compared to the total ER
runtime. The results show that hints can benefit ER in runtime even with the construction time overhead.

We demonstrate how hints are helpful in finding “most” of the matching record pairs efficiently. Figure 7
shows how efficient hints are when obtaining 0.8 recall using 3,000 shopping records. For each hint type, we
measure its construction time overhead (x-value). We then measure the time for the ER algorithm using
the hint to achieve 0.8 recall divided by the ER runtime without hints (y-value). For example, a partition
hierarchy generated from sampling for SN takes 0.01x the time to run HCg without hints (x-value). Also,
the time for HCg with this hint to get 0.8 recall takes 0.37x the time to run HCs without hints (y-value).
Hence, the total runtime of SN using the hierarchy is 0.38x the runtime for SN without hints. Notice that
in the case where the sum of the x and y values of a point is 1 (i.e., if the point is on the diagonal line
X +Y = 1), then running ER with hints to obtain 0.8 recall takes the same time as running ER fully
without hints. Hence, a hint is useful when its point is below the diagonal line. Our results show that all
hints have points below the diagonal line, which means that our hints can efficiently identify 80% of the
matching record pairs.
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Fig. 7. Construction time versus time to obtain 0.8 recall, 3K shopping records

Figure 8 shows how the construction time of a hint can affect the point when using a hint starts to help.
At one extreme, if there is no construction time, then hints can improve ER progress within a short time.
On the other hand, if the construction time is very large, it may take many record comparisons until the
overhead starts to pay off. For each hint type, we vary the construction time and convert it into number of
record comparisons performed. For example, suppose HC's does Z record comparisons without using hints.
Then we can set the construction time of a partition hierarchy based on sampling to be equivalent to, say,
35% of Z. For each construction time, we also derive the number of record comparisons when ER using hints
starts to achieve higher recall than ER without hints. When using a partition hierarchy based on sampling
it takes about 46% of Z comparisons for the overhead of constructing the hint to pay off (see the right-most
black-circle in Figure 8). The “ideal” plot would be exactly the Y = X plot where no matter the overhead
of constructing the hint, we immediately start benefitting by using the hints. For each hint, there is a point
where the hint can no longer benefit ER with larger construction times. For example, if the construction
overhead for a partition hierarchy based on sampling exceeds 35% of Z (i.e., if we go beyond the right-most
black-circle), then the HCp algorithm using the hint can never perform better than HCp without hints.
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Fig. 8. Construction time impact on hint payoff point, 3K shopping records

8.4 Choosing the Number of Levels

Figure 9 shows the impact of the number of levels in the recall achieved by a given number of record
comparisons. We resolved 3,000 shopping records using the HCg algorithm using a hierarchy hint generated
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from the records sorted by their titles. Each hierarchy has { R} as its highest-level partition and was a binary
tree where each cluster {r1,...,7,} had exactly two children {ry,...,7n} and {rai1,...,7,}. As a result,
the more levels there are in the hint (increasing from 3 to 9), the steeper the recall curve becomes. For
example, while using a hint with 3 levels gives a 65% recall for 25% of the total comparisons done by HCg
without hints, using a hint with 7 levels gives a 98% recall with only 15% of the total comparisons. Starting
from 7 levels, however, the recall improvement becomes negligible. When the number of levels increase from
3 to 9, the hint construction time overhead ranges from 1.4E-4x to 5.3E-4x and the space overhead 0.07x to
0.08x. Hence, the time and construction space overhead do not significantly change with varying numbers of
levels.
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Fig. 9. Number of levels impact on recall, 3K shopping records

8.5 Sampling Performance

Figure 10 shows how the sample size affects the sampling scheme. We resolved 3,000 shopping records using
a pair list as a hint where we simply compared pairs of records using a Boolean match function B following
the order in the hint and performed a transitive closure at the end. The sample sizes ranged from 2 to 1000
and were chosen randomly from the input set of records. We also ran the naive method where records were
compared in a random order. The ER result was compared with the entire result of comparing all pairs of
records using B and performing a transitive closure at the end. As a result, even a sample size of 2 produced
a result significantly better than the random comparisons result and close to the result using a sample size
of 1,000. Notice that the sample size = 2 plot sometimes performs better than the sample size = 10 plot.
This result implies that simply having a larger sample size does not guarantee strictly better ER results. In
summary, our sampling results show that small sample sizes suffice for near-optimal results.

8.6 Using Weights on Partition Hierarchy Levels

We consider the scenario where the HCp algorithm uses a record list hint generated from a partition
hierarchy. In Section 5.1, we discussed an extension of the partition hierarchy model where each partition
can have a weight (or confidence value) associated with it. In this section, we vary the weights when generating
record lists and see the impact the weights have on the quality of HCp. We can use Algorithm 5 to generate
an optimal record list by replacing Step 8 with the line “nEntities({r}) « nEntities({r}) + w; x ﬁ.”
Figure 11 shows for each combination of weights, the final recall of running HCp on 3,000 shopping
records where the work limit is set as half the number of comparisons HCp would have performed without
hints. For example, if w; = 1 and all the other weights are 0, we only use the bottom-most partition of

the hierarchy for generating the record list. In Figure 11, the recall values range from 0.431 to 0.634. Not
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surprisingly, the minimum recall occurs when ws = 1, which means that only the highest-level partition was
used to generate the record list. Any other weight assignment gives better results than setting ws = 1. The
recall when all weights have equal values (i.e., each weight is %) is 0.618, which is not significantly lower than
the highest recall possible. We conclude that using equal weights is a reasonable strategy with the benefit

that one does not have to fine-tune the weights of the hierarchy.
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Fig.11. Weights impact on accuracy, 3K shopping records

8.7 Non-incremental ER algorithms

We now experiment with ER algorithms that do not satisfy the general incremental property (see Defi-
nition 5). A non-incremental ER algorithm is not guaranteed to return a correct ER result when using
Algorithm 4 for resolving clusters (see below). In this section, we experiment on the complete-link hierarchi-
cal clustering algorithm (called HC¢), which is identical to the HCg algorithm (see Section 4.2) except that
the distance between two clusters is defined by the maximum pairwise distance between their records. To see
how using a partition hint can incorrectly alter the ER result of HC¢, suppose that we have R = {ry, 73,73}
where the pairwise distances are D(r1,72) = 2, D(ra,r3) = 2, and D(r1,73) = 5 with a given threshold T
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= 2. The ER result would be {{r1,r2}, {r3}} because {r;} and {ro} match while {ry,72} and {r3} do not
(having a distance of 5). However, if the partition hierarchy hint contains one partition {{r1}, {re,r3}}, then
HC¢ will resolve {ry,rs} first and will merge 73 and r3. Since {r1} and {rz,r3} do not match, the ER result
is {{r1}, {re,rs}}. However, this result can never occur when running F(R) without hints. We measure the
accuracy of an intermediate ER result using the F; measure defined in Section 2.1. Our experiments were
done using 3,000 shopping records.

Figure 12 shows the accuracy results of running HC¢c against the number of record comparisons per-
formed. Among all schemes, using a partition hierarchy hint generated from a hash function produces an ER
result with 0.98 accuracy using only 6% of the record comparisons required for a naive approach without
hints. The experiments show that partition hierarchy hints can produce highly-accurate ER results with few
record comparisons even if the ER algorithms are not general incremental.

R TR RT T S T
08| /* o g
K .
5z 06 H: -~ i
g * o
3 I
Q 1
o !
< o4ft i
SK ol
: Generated from sampling —+—
0.2k ’ Generated from hash functions i--->--- |
“fr /e Generated from sorted list ---*:---
] Random hierarchy &
No hints —-m-—
0 i I I I I
0 20 40 60 80 100 120

Percentage of record comparisons

Fig. 12. Non-incremental algorithm accuracy, 3K shopping records

8.8 Early Termination on Large Datasets

We now scale our techniques on 0.5-2 million shopping records. Since the records do not fit in memory,
we used blocking techniques as described in the beginning of Section 8. We used minhash signatures [13]
for distributing the records into blocks. For the shopping dataset, we extracted 3-grams from the titles of
records. We then generated a minhash signature for each records, which is an array of integers where each
integer is generated by applying a random hash function to the 3-gram set of the record.

While hints can help maximize the ER quality, it is not obvious exactly when to stop ER without
knowledge on how many more matching records need to be identified. We compare three possible schemes
on when to terminate ER:

— No Limit: We simply run ER without hints to the end.

— Popcorn Scheme (Limit Rate): We stop when the rate of newly found matching pairs drops below a
threshold. The analogy is making popcorn where we stop cooking when the frequency of pops drops
below a certain level.

— TV Dinner Scheme (Limit Computation): We limit the number of record comparisons based on the
number of records to be resolved. The analogy is heating a TV Dinner in a microwave oven for a fixed
amount of time as specified by the cooking instructions.

We used the HCg algorithm and partition hierarchy hints generated from sorted lists. The first Popcorn
scheme is useful when we want to maximize recall and yet minimize the runtime as much as possible. In
our implementation, we terminate ER when the rate of finding new matching pairs among all record pairs
compared drops below 1%. For example, for the next 200 record pairs compared, if fewer than 2 pairs
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Scheme |Runtime(hrs) Recall
0.5M|1M|2M (|0.5M|1M |2M
No Limit | 0.4 |1.8]| 15 1.0 {1.0]1.0
Popcorn | 0.12 |0.37| 2.5 || 0.98 [0.98|0.99
TV Dinner| 0.08 {0.26| 1.3 | 0.6 | 0.6 | 0.6

Fig. 13. Runtime and recall for different schemes, 2M shopping records

matched, then we terminated HCg. The rate was checked after each level iteration in the hierarchy. The
second TV Dinner scheme is useful when there is only a given amount of time for the application to run. In
our experiments, we set the computation limit to be 10% of the total number of record pairs in the current set
of records to be resolved. For example, when resolving a cluster of size 20, we ran at most about % x 20x19
= 19 record comparisons.

Figure 13 shows how the two schemes perform compared to when ER runs without hints. We measured
the entire ER runtimes including the IO costs for reading and writing blocks on disk. However, the bottleneck
for the entire ER process was the CPU time to resolve the blocks in memory. While the Popcorn scheme
tends to give better recall, it does not guarantee termination within a given amount of time. On the other
hand, while the TV Dinner scheme has the advantage of having a predictable runtime, it may not always
give the best recall results. The runtime improvements (at most 11.5x) are not as high as what we observed
in the 3,000 shopping dataset results. (According to Figure 5(f), we can obtain 0.99 recall about 18x faster
than running ER without hints using partition hierarchies generated from sorted lists on 3,000 shopping
records.) The reason is that in our scenario many blocks were not large enough for hints to help as much
(i.e., the overhead of constructing hints did not pay off as much), so the average benefit of using hints was
relatively low. Nevertheless, using hints can still significantly improve the runtime of ER on large datasets
(by 3.3-11.5x) while still obtaining high recall.

8.9 Scalability of Generating Hints

Table 14 shows the scalability results for generating hints. The construction times for hints scale well with
the exception of generating a record list using complete sampling (for 2M records, the memory overflowed).
However, by using partial sampling instead, we can obtain scalability with minimal loss in quality (see
Section 8.2).

Hint| Generation [|0.5M|1M | 2M
PL Cheap dist. fns|| 4 9 20
Sampling 47 120 | 309
Sorted records 3 6 12
H |Hash functions|| 8 11 | 16
Sampling 40 |130| 379
Par. hierarchy || 11 19 | 31
RL |Com. sampling|| 291 |1256{O0OM
Par. sampling || 53 |158 | 597

Fig. 14. Hint generation time (secs), 2M shopping records

9 Related Work

Entity Resolution has been studied under various names including record linkage [21], merge/purge [12],
deduplication [22], reference reconciliation [6], object identification [24], and others (see [7,28] for recent
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surveys). Most of the ER works have focused on optimizing the overall runtime. In contrast, our approach
takes a pay-as-you-go approach that optimizes the intermediate results of ER. Our approach is useful when
either the data set is too large to resolve within a reasonable amount of time, or when there is a work /runtime
limit on resolving even just a few records.

Blocking techniques [18, 2, 12] focus on improving the overall runtime of ER where the records are divided
into possibly overlapping blocks, and the blocks are resolved one at a time. Locality sensitive hashing [8] is a
method for performing probabilistic dimension reduction of high-dimensional data and can also be used as a
blocking technique. A number of works [1, 5] propose efficient similarity joins. Our pay-as-you-go techniques
improve blocking by also exploiting the ordering of record pairs according to their likelihood of matching to
produce the best intermediate ER results.

A number of ER works [6, 25] implicitly use hints by comparing record pairs in the order of their similarity.
More recently, a framework for clustering records based on similarity join results [11,10] has been proposed.
Here, the duplication detection framework consists of two stages: an efficient similarity join, which returns
similarities between likely matching records, and a clustering stage where records are clustered based on the
given similarities. While these systems may already use hints, we believe our work is the first to explicitly
identify and study a wide range of hints that yield results early. Given the explosion of data around us, we
believe that many future ER systems will benefit from early termination techniques that try to make the
maximum progress possible using limited time and resources.

Another line of works propose similarity search [30,4,29] techniques where indices or blocking criteria
are used for quickly finding the records that are likely to match with a single record. In contrast, our work
focuses on resolving all the records (instead of just one) by using hints, which provide information on the
best record pairs that are more likely to match.

There has been a recent surge of works on pay-as-you-go information integration [16,15] on large scale
data. Our works are in the same spirit of these works where we incrementally resolve records given the
limited amount of time and resources we have. Our work focuses on the ER domain and improves existing
ER algorithms to produce results in a pay-as-you-go fashion using hints.

10 Conclusion

We have proposed a pay-as-you-go approach for Entity Resolution (ER) where given a limit in resources
(e.g., work, runtime) we attempt to make the maximum progress possible. We introduce the novel concept
of hints, which can guide an ER algorithm to focus on resolving the more likely matching records first.
Our techniques are effective when there are either too many records to resolve within a reasonable amount
of time or when there is a time limit (e.g., real-time systems). We proposed three types of hints that are
compatible with different ER algorithms: a sorted list of record pairs, a hierarchy of record partitions, and
an ordered list of records. We have also proposed various methods for ER algorithms to use these hints. Our
experimental results evaluated the overhead of constructing hints as well as the runtime benefits for using
hints. We considered a variety of ER algorithms and two real-world data sets. The results suggest that the
benefits of using hints can be well worth the overhead required for constructing and using hints. We believe
our work is one of the first to define pay-as-you-go ER and explicitly propose hints as a general technique for
fast ER. Many interesting problems remain to be solved, including a more formal analysis of different types
of hints and a general guidance for constructing and updating the “best” hint for any given ER algorithm.

APPENDIX

A Proofs

A.1 Hierarchy of record partitions

PROPOSITION 1 Algorithm 1 returns a valid hint.
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Proof. A higher level partition P is always coarser than a lower level partition P’ because a higher threshold
is used to split records in the sorted list. Hence, P’ < P. Since higher level partitions is always coarser than
lower level partitions, H is a valid hint according to Definition 3.

PROPOSITION 2 Given a valid ER algorithm E, Algorithm 8 returns a correct ER result when Py, = {R}
and W is unlimited.

Proof. Given that W is never satisfied, E' can always run to the end. Since P;, = {R}, the final result F' =
E(Ry), which is the correct result by definition.

PROPOSITION 3 Suppose we have a partition S = {s1, ..., sp} of Rp. That is, Us; = R, and for
any 1 < 4,5 < n where i # j, s;iNs; = 0. Then given a general incremental ER algorithm E, F =

EU;z1., E(si) € E(Rp)-

Proof. We show that, if E satisfies the general incremental property, then E({J,_, ,, E(si)) € E(R,). We
define the followillg two not_ations: a(k) = User,—(s1,....s51 £(5) and B(k) = Useys, ..., s} 5 To prove that
F = E(a(0)) € E(R,) = E(B3(]S])), we prove the more general statement that F € E(a(k) U 8(k)) for
k €{0,..., |S|}. Clearly, if our general statement holds, we can show that F' € E(3(|S|)) = E(R,) by setting
k=S|

Base case: We set k = 0. Then F = E(a(0)) € E(a(0)) = E(a(0) U 5(0)) .

Induction: Suppose that our statement holds for k = n, i.e., F = E(a(0)) € E(a(n) U B(n)). We want
to show that the same expression holds for & = n + 1 where n + 1 < |S|. We use the general incremental
property by setting Py = $p4+1 and P = a(n+1) U S(n+1). The first condition P; C P is satisfied because
B(n+1) contains P;. We then set Fy = E(Py) = E(sp41) and Fy = E(Fy U (Pa—P1)) = E(E(sp+1) Ua(n+1)
U B(n)) = E(a(n) U B(n)). The general incremental property tells us that I, € E(P) = E(a(n +1) U
B(n+1)). Thus, any E(a(n) U 8(n)) € E(a(n+1) U B(n+1)). Using our induction hypothesis, we conclude
that F = E(a(0)) € E(a(n) U B(n)) C E(a(n+1) U B(n + 1)).

PROPOSITION 4 If E is general incremental (satisfying Definition 5), Algorithm 4 correctly returns an
ER result F € E({{r}|r € c}).

Proof. Tn the case where R, # () in Step 5, we have R, = ,¢. ., E(s). By Proposition 3, the final ER result
E(Ry) = E(Uce.cn E(s)) € E(c). Otherwise, if R, = ) in Step 5, then again by Proposition 3, E(R,) =
E({{r}lr € ¢} = E(U,c. E({r}) € E().

PROPOSITION 5 The HCg algorithm is general incremental.

Proof. We first define the notation of connectedness for HCs. Two records r and s are connected under D,
T, and R, if there exists a sequence of records [r1 (=), ..., r, (= s)] where for each pair (r;,7;+1) in the
path, either D(r;,r;41) <T or 3c € R, s.t. r; € ¢, 1541 € c.

We now prove the following Lemma.

Lemma 1. Two records r and s are connected under D, T, and R, if and only if r and s are in the same
cluster in E(R,) using the HCs algorithm.

Proof. Suppose that r and s are in the same cluster in E(R)). If r and s are in the same cluster in R,,, then r
and s are trivially connected under D, T', and R,,. Otherwise, there exists a sequence of merges of the clusters
in R, that grouped r and s together. When two clusters ¢; and ¢; in R, merge, all the records in ¢; and c¢;
are connected by transitivity because two records within ¢; or ¢; are trivially connected and there exists at
least one pair of records from ¢; and ¢; whose distance according to D does not exceed T'. Furthermore, for
any two clusters (not necessarily in R),) that merge, all the records in the two clusters are also connected by
transitivity. Since the clusters containing r and s merged at some point, r and s are thus connected under
D, T, and R,. Conversely, suppose that r and s are connected as the sequence [r1(=7),...,r,(= s)] under
D, T, and R,. If r and s are in the same cluster in R,, they are already clustered together. Otherwise, all
the clusters that contain r1,...,r, eventually merge together according to the HC's algorithm, clustering r
and s together.
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Lemma 1 directly implies that HCg returns a unique solution. Suppose that there are two possible
solutions for E(R,): F1 and F». Without loss of generality, suppose that the records r and s are in the
same cluster in F;, but not so in F5. Then 7 and s are connected under D, T', and R, according to F; and
Lemma 1, but not connected according to Fs, which is a contradiction.

We now prove that the HCg algorithm is general incremental. In Definition 5, suppose that the three
conditions hold, i.e., P, C Py, F; € E(P,), and Fy € E(F;U(P,— P)). Since HC returns a unique solution
regardless of the order of records resolved, the ER results E(P;) and E(Fy U (P, — P1)) are both unique.

A.2 Ordered List of Records
PROPOSITION 6 Algorithm 5 returns an optimal record list.

Proof. We first prove that nEntities(S) = XycsnEntities({r}). The reason is that nEntities(S) = Xj—1...(1 X
Yeep, ‘S‘Q‘CI) = ETGSEjzlmL(% X Yeep, I{T‘i‘ﬂcl) = X,.csnEntities({r}). Now given a prefix S of R sorted by
nEntities values, we show that nEntities(S) < nEntities(S’) for any S’ C R. Suppose that there exists
an S’ C R such that nEntities(S) > nEntities(S’) while |S| = |S’|. Then there exists an ' ¢ S where
nEntities({r’'}) is smaller than the nEntities value of the |S|th record in the record list. However, we have

just contradicted the fact that the record list is sorted by the nEntities values.
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