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ABSTRACT
We address the problem of clustering the refinements of a
user search query. The clusters computed by our proposed
algorithm can be used to improve the selection and place-
ment of the query suggestions proposed by a search engine,
and can also serve to summarize the different aspects of
information relevant to the original user query. Our algo-
rithm clusters refinements based on their likely underlying
user intents by combining document click and session co-
occurrence information. At its core, our algorithm operates
by performing multiple random walks on a Markov graph
that approximates user search behavior. A user study per-
formed on top search engine queries shows that our clusters
are rated better than corresponding clusters computed us-
ing approaches that use only document click or only sessions
co-occurrence information.

Categories and Subject Descriptors: H.3.3 Information
Search and Retrieval: Clustering; Query formulation

General Terms: Algorithms, experimentation.

1. INTRODUCTION
Web search engines today often complement the search

results with a list of related search queries. The related
searches are either presented at the top or bottom of the
search results page (for Google and Yahoo!) or as a naviga-
tion bar on the left (for Bing). For example, given the query
mars, Google.com returns the related queries mars god of

war, mars planet, venus, jupiter, etc. These related searches
help users to find and explore information related to the
original query. Furthermore, because users often provide
short queries with little or no context, related queries allow
users to specify their information needs [2]. For example,
by clicking on mars god of war, a user signals interest in the
Roman god as opposed to the planet Mars.

Related queries are typically mined from the query logs
by finding other queries that co-occur in sessions with the
original query [16]. Specifically, query refinements, a partic-
ular kind of related queries, are obtained by finding queries
that are most likely to follow the original query in a user ses-
sion. For many popular queries, there may be hundreds of
related queries mined from the logs. However, given the lim-
ited available space on a search results page, search engines
typically only choose to display 5-10 related queries.

We address the problem of clustering query refinements.
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Specifically, our goal is to group the refinements into clusters
that are likely to represent distinct information needs. For
example, for mars, we would like to separate out queries that
pertain to the Roman god Mars, from those that pertain to
facts about the planet Mars, from those that represent other
planets in the Solar System in general, etc.

There are multiple motivations for clustering query refine-
ments and related queries in general. First, having space for
only a few related queries in the results page, it is critical to
select a diverse set that corresponds to different information
needs. We do not want all the related queries for mars to
be about the planet alone, but rather be representative of
the various interests people might have. However, current
solutions to selecting related queries rely more on frequency
than on diversity. For example, while the results of our clus-
tering for mars indicate that the second most popular cluster
pertains to the Mars chocolate bar, none of the queries in
this cluster, e.g., mars candy or mars chocolate bar, individu-
ally appear in the top 10 most frequent refinements for mars.
As a result, this user intent of mars is not represented on the
search results page.

A second motivation is to use clustering to improve the
placement of related queries on the search results page. Re-
lated queries are often placed in rows or columns. If these
columns correspond to cluster groups, they are potentially
easier to understand.

The third motivation is to improve related-query sugges-
tions across user sessions. For example, if a user poses the
query pluto after mars, it is more likely that their interest
is the Solar System rather than the Disney character Pluto
the Dog. Hence, it makes more sense to propose related
searches for pluto that pertain to planets or facts about plan-
ets, rather than Disney characters.

Finally, the clusters provide a summary of all the possi-
ble diverse interests and information needs that people have
about a given query (as expressed by the queries they pose).
For example, our results indicate that for mars, there are
distinct clusters of refinements about planets in the Solar
System, Mars the Roman god, the Mars candy bar, and a
Japanese comic strip. About the planet itself, there are dis-
tinct clusters for facts about the planet, the rovers sent by
NASA, and speculation about life and water on the planet.
Such summaries of the information relevant to a query can
form the basis for other search-result interfaces, such as
mashups that provide topic summaries (e.g., [18]).

One approach to clustering refinements would be to group
them based on their respective search results, e.g., grouping
queries that shared many similar clicked documents [5, 26],



or based on the similarity in the vocabulary of the clicked
documents [3]. However, these techniques fail to achieve all
our clustering goals. For example, for mars, the two possible
refinements venus and jupiter correspond to the same user
intent of researching planets. However, the two queries are
unlikely to retrieve any search results in common, let alone
document clicks, and hence will not be clustered together.

A second approach would be to group refinements based
on their occurrences within user search sessions, e.g., group-
ing queries that co-occur with similar sets of other queries [13].
This approach turns out to be effective for clustering queries
that are unrelated content-wise, e.g., venus and jupiter. How-
ever, there are two challenges with the session data. First,
session co-occurrences can be sparse (in comparison to doc-
ument clicks), especially for less frequent queries, making it
hard to infer statistically significant relationships. Second,
there is a often “drift” in user intent within the same ses-
sion. For example, mars might be followed by neptune and
pluto, then onto pluto pictures and then pluto the dog, mak-
ing many more refinements be transitively related to each
other.

We describe an approach that combines document-click
analysis and session analysis. We model user behavior as a
graph whose nodes are refinements and clicked documents,
such that clusters of nodes in the graph correspond to differ-
ent user intentions. The graph has a natural interpretation
as a Markov model, and we can characterize each refinement-
node in the graph by its distribution vector on the absorb-
ing states of the model. This interpretation also provides a
computational benefit, because we obtain a polynomial-time
clustering algorithm (over the vectors) versus an NP-hard
graph-clustering problem. We describe a set of experiments
that show that users strongly prefer the clusters produced
by our method and provide analysis of the resulting clusters.

2. PROBLEM FORMULATION
We begin by introducing our terminology and formulating

our clustering problem. In our discussion we assume that we
have access to (completely anonymized) search-query log,
and that the queries are divided into sessions. A session is
a sequence of queries posed by a single user within a short
period of time (10 minutes in our case). Our goal is to cluster
query refinements.

Definition 1. A query r is said to be a refinement of a

query q, if r follows q in a session. We denote by R(q) all

the refinements of a query q. 2

Note that q does not need to be the first query in a session
in order for r to be a refinement. Furthermore, the model we
describe is agnostic to how query refinements are collected,
but we provide Definition 1 because it is the most com-
mon method for determining refinements. We also model
co-occurrence of query refinements:

Definition 2. The set of co-occurring queries of qi, de-

noted by Q(qi), is the set of queries qj, such that qi and qj

occur in the same session. 2

We assume that the query log records the documents clicked
in response to a query.

Definition 3. The document set of a query qi, denoted

D(qi), is the set of documents that users click on after being

presented the answers to qi. 2

Modeling user behavior as a graph: Given the query
logs and a query q, our goal is to cluster the query refine-
ments of q into a set of different information needs. The
intuition underlying our clustering algorithm is that that
two refinements are similar if they lead to the same content
within a typical search session. Our graph model is based
on the following typical user behavior.

Consider a user who might start a search session with an
underlying intent, i.e., some, possibly abstract, information
need. She poses a query she believes will satisfy her informa-
tion need, e.g., mars. If none of the search results satisfy her,
she might pose another query that is likely to better capture
her specific need, e.g., mars pictures. If a result does satisfy
her, she will inspect the results further by clicking on one
or more of them. After clicking on a result, she might also
pose another query to find more results relevant to her in-
formation need, e.g., venus after mars, when the underlying
intent is to research planets.

We construct a graph, G(q) = (V, E), that captures this
behavior as follows (see Figure 1(a) for an example). There
is a node in V for the query q, for each of the query re-
finements in R(q), and for any document that is clicked, i.e.,
every element of ∪r∈R(q)D(r). The set of edges, E, includes:

• for every r ∈ R(q), (q, r), i.e., edges from the query q

to each of its refinements;

• for every r ∈ R(q), and every d ∈ D(r), (r, d), i.e.,
edges from r to each of its clicked documents, and

• for every r ∈ R(q) and ri ∈ Q(r) ∩ R(q), (r, ri), i.e.,
edges connecting co-occurring refinements.

Our discussion is typically in the context of a given query
q, so we refer to the graph simply as G rather than G(q).

We assign weights to edges in G from information avail-
able in the query logs. For edges of the form (r, d) we assign
weight w(r, d) proportional to the probability of clicking on
d as a search result of r. For edges of the form (r, ri), where
r is either the query q or one of its refinements, we assign
weight w(r, ri) proportional to the probability of r and ri

co-occurring in a search session. Note that we do not con-
sider probabilities conditioned on sessions starting with the
query q. This is because it is unlikely that such conditioned
probabilities can be obtained reliably, given the sparsity of
such information in the query logs.

Note that we do not have edges from documents to queries.
This is not a limitation, because if a user were to proceed as
follows: q → r1 → d→ r2 . . . , then r2 is also, by definition,
a refinement of q, and all subsequent interactions after r2

will be accounted in G.

Clustering nodes in the graph: The intuition under-
lying our clustering technique is the following. Two query
refinements of q, ri and rj , represent the same underlying
intent if a user typically reaches the same documents in ses-
sions where q is followed by ri and in sessions where q is
followed by rj .

Consider the following example. When a user poses the
query mars, with the intent of researching planets, it is likely
that she then subsequently queries one or more of venus,
earth, jupiter, etc. In each case, she might click on the
Wikipedia document about the corresponding planet. Other
users with the same intent are likely to pose a subset of the
same queries (albeit in different orders) and click on the
same documents during their search sessions. In contrast, if
the user intent was the Mars candy bar, subsequent refine-
ments are likely to be mars candy, mars chocolate, etc., with



Figure 1: (a) Graph G models user search behavior.
(b) Partition of its refinement nodes into 3 clusters
so as to minimize the cost function in Problem 1.

the document clicks in the corresponding sessions leading to
very different documents.

There are two important points to note that distinguish
our clustering technique from previous work on query clus-
tering [5]. First, we consider entire paths from the query to
the set of documents, rather than just the documents viewed
upon seeing the query answers. This is important because
the path that the user follows provides additional context
about their intent, and for certain queries, the relevant doc-
uments are only found after some exploration. Second, we
consider the paths followed from the refinement ri to rj in
the context of posing the original query q by restricting our
graph to include only the refinements of q (rather than all
user queries). For example, the queries sun and pluto, though
unambiguous in the context of mars, might lead to a different
set of pages (e.g., pages about the company Sun Microsys-
tems and the Disney character Pluto the Dog, respectively)
if they are not in sessions with mars.

We capture the above intuition by hypothesizing that the
set of documents reachable from a query refinement ri, after
starting from the query q, are representative of the user’s
underlying intent in selecting ri after q. We can now for-
mulate our problem as clustering by intent. Specifically, if
there is an edge (ri, rj) in the graph, or both ri and rj have
edges to the same documents, then users in ri’s typical ses-
sion will reach the same documents as users in rj ’s typical
session. On the other hand, if there is no path from ri to rj ,
and they have few (or no) common documents, then users
in ri’s typical session are unlikely to visit the same docu-
ments as users in rj ’s typical session. Accordingly, if we can
cluster the queries such that we minimize (1) the number
of edges between query nodes in different clusters and (2)
the document nodes that have edges from multiple clusters,
then, we effectively satisfy the proposed intuition.

Figure 1(b) illustrates a partition of the query nodes into
3 clusters. There is only one edge (r2, r6) between refine-
ments in different clusters, and only one document d4 with
edges from queries in different clusters. The (q, ri) edges are
excluded since we are only interested in clustering refine-
ments.

Our clustering based on partitioning the graph G natu-
rally maps to a variant of the classical min k-cut problem
[14]. Specifically, suppose we know the number of desirable
clusters k. We can define our clustering objective as follows:

Problem Statement 1. Given a graph, G, and the num-

ber, k, of required clusters, partition the set of refinement

vertices in G into proper subsets R = {R1, . . . , Rk}, such

Figure 2: Normalizing transition probabilities.eps

that the following cost function is minimized:
X

(ri,rj)

w(ri, rj)× 1{ri ∈ Rl, rj ∈ Rm, Rl 6= Rm} +

X

(ri,d)

w(ri, d)× 1{ri ∈ Rl, ∃(rj , d) ∈ E, rj ∈ Rm, Rl 6= Rm}

where 1{c} is an indicator variable equal to 1 if condition c

is true and 0 otherwise.

Unlike the classical min k-cut, our goal is to cluster only
the nodes corresponding to query refinements, whereas the
document nodes are not included in the clusters. Using a
simple reduction from the original min k-cut problem, we
can prove that the problem of clustering refinements is NP-
hard for an arbitrary k:

Proposition 1. The problem of clustering the refinements

of a query, as defined in Problem 1, is NP-hard. 2

Although an O(nk2

) algorithm exists for the min k-cut
(for a fixed k) [14], it is not practical for any reasonable k.
There also exist approximation algorithms [21]. In the next
section we describe a more efficient clustering algorithm that
is based on interpreting our graph as a Markov model.

3. MARKOV MODEL INTERPRETATION
The key insight underlying our clustering technique is that

the graph of transitions, G, has a very natural interpreta-
tion as a Markov model, describing transition probabilities
between states. Furthermore, the absorbing states of this
Markov model are the nodes in G corresponding to clicked
documents. As a result, we can characterize each of the
query-refinement nodes in G by the vector of probabilities of
reaching each of the absorbing states. Clustering the query-
refinement nodes based on these vectors is consistent with
our intuition of clustering by user intent. Furthermore, as an
added benefit, the computational complexity of clustering is
significantly lower than that of min k-cut.

Section 3.1 explains how we transform G into a Markov
model; Section 3.2 describes the important properties of the
model; Section 3.3 discusses how our algorithm handles cases
in which users drift to other topics during a session; and
Section 3.4 describes the clustering algorithm.

3.1 Creating a Markov model
Our construction of the graph G naturally lends itself to a

Markov process interpretation. The weights on the edges of
the graph were computed based on the probability of tran-
sitions between the states. Hence, we can view each node as
a Markov state with the edge weights being the transition
probabilities between the corresponding states.

Transition Probabilities: To ensure that the graph rep-
resents a valid Markov chain, we normalize the outgoing
edge weights from each node to sum up to 1. We do so
by defining a parameter ǫ, the document escape probability,
which represents the probability that there will be a tran-
sition from a query-refinement node to a document node.



Consequently, with probability 1−ǫ, there will be transition
from a refinement node to another refinement node (see Fig-
ure 2). Although the value of ǫ does not significantly affect
the results, we will soon see that ǫ is a useful parameter in
our model.

We define the transition probability matrix, P , for the
graph G, as follows:
• for each (ri, d), where d ∈ D(ri), and nd(d|ri) is the

number of times a user clicks on the document d, a
result of the query ri,

P [ri, d] = ǫ×
nd(d|ri)

P

dk∈D(ri)
nd(dk|ri)

• for each (ri, rj), where ri and rj are both refinements
of q and rj ∈ Q(ri) (i.e., rj ∈ R(q) ∩ Q(ri)), and
ns(ri, rj) is the number of sessions in which ri and rj

co-occur,

P [ri, rj ] = (1− ǫ)×
ns(ri, rj)

P

rk∈R(q)∩Q(ri)
ns(ri, rk)

• for each document d (all of which are terminal in G),
we add self-transitions

P [d, d] = 1

Note that due to the sparsity of session logs, we do not re-
strict ns(ri, rj) to only the sessions where rj follows ri, and
instead consider all sessions in which they co-occur. Al-
though it makes edges bidirectional, the weights on edges
are not symmetric (due to the denominator), thus if there
is a strong directionality to some edges, it is still preserved.
Also, as mentioned in Section 2, we restrict the transitions
between refinement nodes to be only those in the context
of the original query q, i.e., its set of refinements R. We
consider transitions to nodes not in R in Section 3.3.

Though the construction of the Markov model is depen-
dent on the original query q, we do not consider q and its
transitions to be a part of the model. This is because, as we
shall soon find out, the transitions from q have no bearing
on our algorithm.

Markov Chain Properties: Recall from the Markov pro-
cess theory [24], that a state is absorbing, if it is impossible
to escape from it, and transient, if there is a non-zero prob-
ability of never returning to it. Using this terminology, each
refinement node is a transient state, while each document
node is an absorbing state (only self-transitions). Moreover,
since at least one absorbing state is accessible from each of
the states, the Markov chain is said to be absorbing. In other
words, if one were to perform an infinite-step random walk
on this Markov chain (starting at any state), one will always
escape the refinement states and be absorbed by one of the
document states.

It follows from Taylor and Karlin [24] (p. 169), that in
our context, the probability of absorption in any particular
absorbing state k depends on the initial state. As seen in
Figure 3, if a random walker starts at r3, she is likely to sat-
isfy her intent at the documents close to r3, i.e. d4, d2, d1, d3.
On the other hand, if she starts at r7, she is likely to satisfy
her intent at d8, d7, d3, d1.

Clustering by Absorption Distributions: We can use
the fact that the absorption distribution is conditioned on
the start node to determine which documents are most de-
scriptive of a query. Specifically, we perform a random walk
starting from each of the refinements ri of the query q, and

obtain their specific absorption distribution vector ~li. Each

Figure 3: 3-Step random walk that originates from
r3 in (a) and r7 in (b). Absorbing document nodes
are highlighted.

entry in ~li will correspond to a document node and equal
the probability of reaching that document at the end of an
infinite random walk starting from ri. Then, to measure
similarity between two refinements ri and rj , we compare

their corresponding absorption distribution vectors ~li and
~lj . This allows us to cluster refinements as points in some
n-dimensional space and find which refinements are likely to
represent the same user intent.

The pseudo-code of the algorithm is shown in Algorithm 1.
The inputs are the graph G(q) constructed as described ear-
lier and the number of desired clusters k. There are two
parameters: ǫ, the document escape probability, and n, a
parameter to the random walk which we describe later. In
the first step, we initialize the transition matrix as described
in this section. We describe each of the other steps of the
algorithm in the next subsections.

Algorithm 1 clusterRefinementsByIntent(G(q),k,ǫ,n)

P ← initializeTransitionMatrix(G(q),ǫ)
P ′ ← calculateLimitingDistributions(P,n)

L← extractAbsorptionDistributions(G(q),P ′)

R ← clusterVectors(G(q),L,k)
return R

Observe that the similarity of refinements that share clicked
documents depends on the probability mass flowing from
them to the documents. On the other hand, the similarity
of refinements that are connected by edges is proportional
to the weights of their connecting edges. For example, in
Figure 3, if the transition probability of (r2, r6) is w, then
at least w×epsilon of the probability mass originating at r2

is absorbed by d7 and d8 (in contrast to the entire mass flow-
ing directly from r6 to d7 and d8). Thus, for large w, r2 and
r6 are more similar. Thus, by pushing the probability mass
down the edges with more weight, our approach is able to
cluster together refinements connected by high-weight edges.
This way, edges with high weight end up inside of the clus-
ters and edges with low weight – between the clusters, thus
minimizing the cost function in Problem Statement 1.

3.2 Computing the distributions
We now describe how we compute the absorption distribu-

tions of our Markov model. Given the transition matrix P ,
we note that the matrix product P ×P is such that its [i, j]
entry will be the 2-step transition probability from state i to
state j. Following the same pattern, P n[i, j] has the n-step
transition probability from i to j. As n→∞, P n approaches
the limiting distribution. In particular, limn→∞ P n[i, j] en-
try is equal to the limiting fraction of time random walker
spends in state j when starting from state i [24].

Since our Markov chain is absorbing, we can make a stronger
claim. Specifically, the visit probability (also known as hit-

ting probability), i.e., the probability of visiting an absorbing

state d within an n-step random walk starting at some state



ri, is equal to the probability of transitioning from state ri

to state d in n steps. Hence, we can state the following:

Proposition 2. Given the transition matrix P computed

for our Markov model, the row of limn→∞ P n corresponding

to a node v is the visit probability distribution vector of the

random walk started at v over the absorbing states. 2

The visit probability distribution for a refinement ri cap-
tures the probability that a user will eventually reach dif-
ferent documents during a search session that starts with q

and includes ri. It is thus representative of our hypothesized
user intent underlying ri in the context of q.

Using Proposition 2, the method calculateLimitingDis-

tributions(P,n) in Algorithm 1 is then a simple matrix
product P n that approximates the visit probability distribu-
tion for a suitably chosen n (discussed later in this section).

Note here that calculating P n is not the only way to cal-
culate visit (or equivalently, absorption) probabilities. An
alternative method is to use the fundamental matrix of our
Markov chain [24]. Although this method is of the same
computational complexity as the one we use (O(n3) for an
n × n matrix), it requires finding inverse of a matrix and,
thus, is slightly less intuitive. More importantly, for realistic
values of ǫ, we show that our method converges very quickly,
making the matrix-product method even more appealing.

Extracting Absorption Distributions: In any long ran-
dom walk on an absorbing Markov model all the probability
mass gets absorbed by the absorbing states. This implies
that the columns of limn→∞ P n corresponding to the tran-
sient states (i.e., refinements in our case) will always be zero.
Hence, when working with limiting distributions, we only
need to consider the columns corresponding to the document
states (i.e. absorbing states). Using this fact and Proposi-
tion 2, we show in Algorithm 2 how we extract absorption
distributions from P n.

Algorithm 2 extractAbsorptionDistributions(G,P ′)

for ri ∈ R do
~li ← vector of size |

S

rj∈R(q) D(rj)|

for d ∈
S

rj∈R(q) D(rj) do

~li[d] = P ′[ri, d]
end for

end for
L = {~l1, . . . , ~lr}, where r = |R(q)|
return L

Parameters ǫ and n: Recall that the parameter ǫ in our
Markov model controls how likely a user is to click on a doc-
ument from any refinement node. In a sense, this param-
eter controls how “exploratory” we believe the user is, and
in practice it controls the convergence rate of our method.
Our experiments showed that for any practical values of ǫ,
the algorithm converges quickly. For example, with a value
of ǫ = 0.6, after only four iterations (i.e., transition matrix
multiplications), the unabsorbed probability mass remaining
was only (0.4)4 = 0.0256. Even for ǫ = 0.3 (corresponding to
a very “exploratory” browsing behavior), it takes just 7 iter-
ations to absorb over 90% of the probability mass. Since the
number of clustered refinements almost never exceeds 1, 000,
it is possible to calculate P n quickly in practice. Although
changing ǫ and number of iterations does not fundamentally
change the results, we found lower number of iterations (3-5)
and higher values of ǫ (0.5-0.7) to work better, thus suggest-
ing that most queries have rather focused user intents.

Figure 4: From each related query, we add a transi-
tion to the absorbing off-topic state f

3.3 Off-Topic Drift
For ease of exposition, when describing the model, we did

not talk about the possibility of a drift in user intent to
another topic. We have been assuming so far that after is-
suing original query q, the user is always going to satisfy
her current intent by submitting one or more query refine-
ments, and eventually clicking on one of their documents.
Realistically, however, it is possible that before clicking on
any URL, the user may change her mind and submit a query
that would not be among the query refinements of the origi-
nal query q. In other words, the user may abandon whatever
intent or information need she is after and pursue a new in-
formation need. In this section we show how this off-topic
drift could be modeled in our framework.

Specifically, we are going to add to our Markov model a
new state f that will signify the user’s transition off-topic
(see Figure 4). Then, from each of the query refinements
ri ∈ R(q), we add an off-topic transition (ri, f). Once the
user switches off-topic, we assume she does not come back to
the original topic, thus we make f an absorbing state with
no outgoing edges (only a self-transition with probability 1).

To complete our construction, we need to determine the
transition probability for (ri, f). Our original model without
the off-topic drift is essentially equivalent to that probability
being 0. One option would be to set the probability to some
constant, and then respectively normalize other transition
probabilities. However, using a constant seems inaccurate.
Consider the refinements mercury and water on mars for the
query mars. Clearly, mercury is more likely to take us off-
topic, since it has a number of interpretations, such as the
car make and the chemical element, that are unrelated to
the original query mars. Hence, it seems natural to have the
transition probability for (ri, f) be dependent on ri.

Recall from our construction of G, that for a given refine-
ment ri of q we look at transitions in all sessions (whether
they begin with q or not), but only consider the transitions
to other refinements of q. To estimate the drift beginning
from ri we can now look at the transitions from ri to queries
that are not in R(q). If we sum over all such queries q′, we
can effectively gage related query’s off-topic drift.

Formally, for a query refinement ri ∈ R(q), we are going
to set (ri, f) transition probability as:

P [ri, f ] = (1− ǫ)×

P

q′∈(Q(ri)−R(q)) ns(ri, q
′)

P

q′∈Q(ri)
ns(ri, q′)

Accordingly, all transitions (ri, rj) between any two query
refinements ri, rj ∈ R, ri 6= rj will no longer be conditioned
on rj being in R:

P [ri, rj ] = (1− ǫ)×
ns(ri, rj)

P

q′∈Q(ri)
ns(ri, q′)

The varying off-topic drift plays an interesting role in our
clustering. If we leave it out of the model, then the entire
transition probability mass of r is pushed by the random
walk to other nodes that do not quite merit it. For example,
consider the case where ri has a high off-topic probability,



and only one on-topic transition to a different refinement rj .
Ignoring off-topic transitions implies that we are saying that
all the probability mass is transferred from ri to rj . This
will make the absorption distribution of ri and rj almost
identical, deeming them to be more similar than they re-
ally are. This effect can be exacerbated by the probabilities
being pushed transitively along the Markov chain to other
refinement nodes, thereby rendering the clustering ineffec-
tive.

To account for the fact that transition probabilities are not
conditioned on q, we could also decrease slightly the off-topic
probability summed over all q′ ∈ (Qi−R) (we would need to
adjust transitions between queries in R accordingly as well).
This is effectively the middle ground between the original
model with no off-topic probability and the proposed model
where the off-topic probability sum is taken as is. Although
we have not experimented with this much, this could be an
interesting future direction to pursue.

3.4 Clustering
Thus far we described how to map the problem of clus-

tering query refinements into a problem of Euclidean-vector
clustering. We now describe how we implemented the clus-
tering step.

Algorithm 3 clusterVectors(G,L,k)

R ← ∅
for ri ∈ R do
R ← R∪ {ri}

end for
while (|R| > k) and

(maxRl 6=Rm∈R completelink(Rl, Rm) > 0) do
〈Rl, Rm〉 ← arg maxRl 6=Rm∈R completelink(Rl, Rm)
Rl ← Rl ∪Rm; R ← R−Rm

end while
return R

Clustering Algorithm: One of the advantages of our
model is that it can employ any algorithm for clustering Eu-
clidean vectors (e.g., hierarchical, density based, partitional,
graph based) [17, 19].

However, methods that suffer from chaining or are de-
signed for elongated transitive clusters won’t perform very
well in our context [19]. As mentioned before, user intents
tend to drift within sessions, thus many queries may be tran-
sitively (via 2-4 other queries) related to almost every other
query. For this reason, single-link and group-average clus-
tering algorithms perform poorly here. On the other hand,
complete-link clustering is very effective.

We experimented with different clustering algorithms and
similarity measures, and we found complete-link cluster-
ing and cosine similarity to work the best. Algorithm 3

shows our clustering algorithm. Suppose sim(~li, ~lj) is the
cosine similarity between the absorption distributions of re-
finements ri and rj . Then the complete-link similarity be-
tween two sets of refinements Rl and Rm is the minimum
similarity between two of their respective refinements, i.e.,

completelink(Rl, Rm) = min
ri∈Rl,rj∈Rm

sim(~li, ~lj)

The algorithm works by picking the pair of current clusters
that have the highest value for complete-link similarity and
merges them. This proceeds until only the required number
of clusters remain or no more similar clusters are left.

Cosine similarity is effective for comparing two discrete
probability distributions. Meanwhile, complete-link cluster-

ing avoids chaining and provides guarantees on similarity
within each cluster (although it is prone to outliers) [19].

Clustering Dimensionality: The high dimensionality of
the absorption distribution vectors could be a concern for
our algorithm. Hence, we limited the size of the vectors as
follows. First, we only considered up to 80 query refine-
ments. Second, we limited the number of document states
off of each refinement to 15. Together, these conditions lead
to an upper bound of 1200 on the dimensionality of absorp-
tion distribution vectors. These limitations are justified in
practice because refinements beyond the top 80 usually have
probability mass of less than 0.2%, and document clicks be-
yond the top 15 are extremely rare and most of the time
statistically insignificant. Hence, such filtering not only sim-
plifies clustering, but also eliminates potential “noise”.

4. EXPERIMENTS
In this section we evaluate the quality of the clusters pro-

duced with our Markov-model based approach (henceforth
MM). We compare the clusters produced by MM against those
produced by competing approaches that only use document
clicks or only use sessions co-occurrences. The document-
click approach (DC) clusters refinements that have similar
document click sets (Definition 3), while session-query ap-
proach (SQ) clusters refinements that have similar session
co-occurrence queries (Definition 2). Not only do DC and SQ

use the same building blocks as our method, but also repre-
sent the two most common approaches to clustering queries
(document-based [3, 5, 6, 10, 12, 20, 26] and session-based [7,
8, 9, 11, 13, 15, 25, 27]).

We begin by looking at cluster statistics, and then present
the results of a user study of their quality. We then study the
trade-off between producing large clusters and more cohesive
clusters. Lastly, we consider if the clusters can be used to
track user intent and present query suggestions.

4.1 Experimental Settings
Refinement and Document Sets: We used six months of
(completely anonymized) search query logs of Google.com to
obtain document-click and session co-occurrence data. We
consider sessions of 10 minutes duration. For each query q,
ri was considered a refinement, if it followed q in at least
0.2% of the sessions where q was found. We only included
the top 80 most frequent refinements of q in the refinement
set R(q). Likewise, we only included the 15 most-frequent
click documents in the document set D(q).

Implementation: We used the complete-link clustering
algorithm with the cosine vector similarity measure for all
three approaches. In DC, each refinement ri was represented
by a document click vector, with entries for each document d

and value proportional to the number of times d was clicked
in response to query ri. In SQ, each ri was represented by a
session co-occurrence vector, with entries for each refinement
rj and value proportional to the number of sessions in which
ri and rj co-occurred. In MM, ǫ was set to 0.6, based on the
results for a small test set. However, the results only differ
marginally for different values of ǫ.

Query Set: We considered the top 10, 000 most popular
refined English queries in the search query log. We filtered
the ones that had fewer than 80 refinements, leaving us with
≈ 7900 queries, which were used in the rest of this section.

Number of Target Clusters: We clustered the top 80
refinements into 20 clusters. Although there may be fewer
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Figure 5: Distribution of queries over the number
of clusters that contain their top 20 related queries

than 20 user intents for each query, the document click and
session co-occurrence data is sparse for many queries and
cannot be used to reliably cluster less popular refinements.
As we see in Section 4.4, with fewer than 20 clusters we
jeopardize the cohesiveness of clusters.

Note that the complete-link clustering algorithm can al-
ternately have a stopping condition based on a similarity
threshold (rather than number of clusters). However, when
comparing multiple approaches, we would have to separately
pick the best possible similarity threshold for each one, mak-
ing the comparison tricky. Using a fixed number of clusters,
we are asking a fairer comparison of cluster quality given
comparable stopping conditions and hence comparable clus-
ter sizes. In Section 4.4, we analyze the results for different
numbers of target clusters.

4.2 Cluster Statistics
Before we analyze the quality of the clusters produced by

the three methods, we first look at their ability to find simi-
larities between the top refinements of a query. Specifically,
given the top 20 refinements of a query, we are interested in
the number of clusters each method groups them into. The
clustering results are not useful if a method groups the top
refinements into either a very small number of clusters or
into a very large number of clusters.

Figure 5 shows the distribution of the number of clusters
that each method places the top 20 refinements in. The x-
axis shows the number of clusters, while the y-axis shows the
number of user queries with that number of clusters. Note
that the clusters themselves were computed using the top
80 refinements, and hence while there might be 20 clusters
overall, only 5 might include top 20 refinements.

As can be seen, MM, in general, clusters the top refinements
into fewer clusters. On average, the top 20 refinements are
grouped into 9 clusters using MM, 10 clusters using SQ, and 12
clusters using DC. More importantly, there are many more
queries under the SQ and DC curves on the right side of the
graph than under the MM curve. This indicates that there
are many queries for which clustering using MM is feasible,
when clustering using SQ or DC may not be possible at all.
This result is interesting because it indicates that MM is not
merely performing an average of SQ and DC by combining the
information they rely on.

4.3 User Study
We performed a user study with human evaluators to com-

pare the quality of the clusters generated by MM, DC, and SQ.
We randomly selected 400 queries from our original query
set and clustered the top 80 refinements for each query using

each of MM, DC, and SQ. For each method we created a cluster

group that lists the clusters for the top 20 refinements of the
query, i.e., it only lists the top 20 refinements and the clus-
ters to which they belong. For example, Figure 6 shows the
cluster groups generated by MM for some of the queries in the
user study. For each query, the cluster groups for the three
algorithms are presented side by side to the evaluators.

The evaluators were given three tasks for each query. The
first task was to rate each cluster group on the scale: -2
(Poor), -1 (Bad), 0 (Acceptable), 1 (Good), and 2 (Excel-
lent). The second task was to (optionally) indicate if each
of the cluster groups was under-clustered or over-clustered.
The third task was to indicate which of the three cluster
groups were the best (and worst) overall. The task descrip-
tion informed them that determining the quality of a cluster
group was highly subjective, and that their decision should
depend on how related they believed the refinements in each
cluster were and whether they believed that some related
refinements had not been clustered together. They were
informed that a good cluster group would typically cluster
together refinements that referred to the same entity, cluster
together different instances of a single underlying concept,
and cluster together different related properties of the same
entity. Any cluster group that clustered together seemingly
unrelated refinements would be a bad one.

The evaluations were conducted on Google’s search eval-
uation framework [22]. Each query was evaluated by three
different people and a particular person could evaluate at
most 36 different queries. Overall, 400 × 3 = 1200 eval-
uations were performed by about 36 evaluators. For each
query, and for each evaluator, the order in which the three
cluster groups were presented were selected at random. The
evaluators work remotely and are experienced side-by-side
testers for Web search results.

Cluster Group Ratings: The Overall Ratings columns in
Table 1 summarize the results from the first task where each
cluster group was rated on a scale of -2 to +2. The Mean

column presents the rating for each method averaged over all
1200 ratings. MM has a higher mean rating than DC, which has
a higher mean rating than SQ. The difference between their
ratings is statistically significant: the confidence intervals
that cover 95% of the probability mass, assuming Gaussian
distribution, for each of the methods do not overlap (the
95% Bounds column).

Under/Over Clustering: The Under Clustered and Over

Clustered columns in Table 1 indicate the fraction of queries
for which the cluster groups generated by each method were
rated to have too many or too few clusters respectively. The
Ratings columns list the raw number of evaluations (out of
1200), while the Queries columns only consider queries (out
of 400) in which at least two out of the three evaluators
agreed on the rating. The table shows that the results of MM
are found to be under-clustered in the least number of cases.
DC and SQ are found to be under-clustered in about a third
of the cases. MM over-clusters in a few more queries than DC,
but much less than SQ. Overall we find that MM was found to
under- or over-cluster for only 25% of the queries, much less
than that for DC (44%) and SQ (47%).

Best and Worst: The Best and Worst columns in Table 1
aggregate the results for the best/worst cluster group rat-
ings. As before, the Ratings columns have the the raw num-
ber of evaluations, while the Queries columns show the num-



Table 1: MM is on average rated higher, deemed under- or over-clustered for fewer queries (only 25% combined),
and found to be the best for many more queries than DC and SQ (over 400 queries each with 3 evaluators).

Method
Overall Ratings Under Clustered Over Clustered Best Worst

Mean 95% Bounds Ratings Queries Ratings Queries Ratings Queries Ratings Queries
MM 0.650 [0.600, 0.700] 282 65 (16%) 211 36 (9%) 616 214 (54%) 166 25 (6%)
DC 0.473 [0.419, 0.527] 479 142 (36%) 203 31 (8%) 356 90 (22%) 329 88 (22%)
SQ 0.056 [-0.003, 0.117] 447 127 (32%) 268 52 (13%) 216 40 (10%) 695 243 (61%)

ber of queries for which at least two of the evaluators agreed
on their best (or worst) rated cluster group. Note that
for some queries no two evaluators agreed on the best (54
queries) or worst (44 queries) cluster group. Our method,
MM, was deemed to be the best cluster group for 54% of the
queries, and the worst for only 6% of the queries.

Discussion: We now look at the reasons that are likely to
underlie the observed results.

First, we note that document clicks (and hence DC) are
very effective in identifying synonymous refinements, e.g.,
the queries uss enterprise and star trek enterprise that refer
to the space ship in the Star Trek series. This is because
there are often documents that mention more than one ex-
pressions for the same underlying intent. However, they are
ineffective in identifying multiple entities of some underlying
type, e.g., the queries jupiter, neptune, earth, etc., that refer
to planets in the Solar System. This is because there are
more documents that are likely to focus on each of the indi-
vidual entities rather than those that mention all of them.
As a result DC is likely to produce more clusters (Figure 5)
and hence is deemed to be under-clustering.

Interestingly (and rather surprisingly) DC was also found
to be over-clustering for some queries. A closer look indi-
cates that for such queries there is a single document that
has almost all of the information about the query, e.g., the
Wikipedia page or a home page. This results in multiple re-
finements being lumped in with the refinement that targets
the corresponding single web page, e.g., tiffany necklaces gets
lumped with tiffany.com, and michael phelps height is lumped
with michael phelps wiki.

Second, session co-occurrences (and hence SQ) are effec-
tive in identifying more indirectly related refinements, but
less effective in identifying synonyms. For example, for mars,
SQ clusters all planets together, but not mars bar and mars

candy. However, for some queries SQ clusters refinements
that are often posed in close succession in sessions, but they
do not correspond to real-world notions of similarity, e.g.,
map of china and population china, or barak obama, hillary

clinton, john mccain and mike huckabee (all presidential can-
didates, but from different political parties). SQ is also some-
times not effective enough to account for the off-topic drift
(which is not modeled explicitly), e.g., nasa, mars phoenix,
and mars pictures are grouped with the planets clusters.

Third, MM like DC, is able to discover synonymous refine-
ments using document-click information. In addition, the
random walk ensures that similarities are spread among the
refinements transitively based on the session co-occurrences.
Thus, MM is deemed to be under-clustering for very few queries.
At the same time, the modeling of off-topic drift and the
use of complete-link clustering ensures that it is less likely
to over-cluster. Thus, it is able to effectively combine both
types of information in a way that the whole is greater than

the sum of parts. As a result it has both low under- and
over-cluster ratings, higher mean ratings, and is deemed the
best by a big margin in comparison to DC and SQ.

The examples in Figure 6 illustrate some of the strengths
of MM. For england, it is able to separate out the expressions

for different entities in the British Isles from other countries
in Europe. Likewise, for mama mia, it is able to separate out
refinements that refer to the recent movie, the song (along
with the performers abba), the broadway musical, and its
Las Vegas spin-off. For enterprise, it is able to separate out
references to the rental car company from its sales unit and
the space ship.

Lastly, we note that the cases in which MM over-clusters
appear to be independent from DC and SQ. Specifically, it oc-
curs when one of the top refinements has the same or more
possible underlying intents than the original query (e.g.,
jaguars as a refinement of jaguar). The ambiguous refine-
ment co-occurs with many of the refinements of the original
query and during the course of the random walk transitively
makes all of them similar, thereby over-clustering. We se-
quester some obviously ambiguous refinements by marking
those that are an edit distance of 1 from the original query.
We ignore all incoming edges to these refinements during the
random walk and exclude them when invoking clusterVec-

tors. After the clustering terminates, we invoke cluster-

Vectors again to assign the ambiguous nodes to their most
similar cluster. This ensures that they do not play role in
transitively making all refinements similar. However, we
note that detecting ambiguous refinements is still an area
for future work.

4.4 Coverage and Cohesion
We now take a closer look at the tradeoff between cluster

sizes, i.e., the number of queries in each cluster, and cluster
cohesiveness, i.e., the relatedness of the queries within clus-
ters. We would ideally like to produce larger clusters, but
without sacrificing cohesion. We note that coverage and co-
hesion are analogous to recall and precision in Information
Retrieval systems.

Coverage: To measure the size of a cluster, we assign a
weight to each refinement that is proportional to the number
of sessions in which it occurs. Specifically, the weight of ri is

n(ri|q)
P

rj
n(rj |q)

, where n(ri|q) is the number of sessions in which

ri occurs after q. The coverage of a cluster is the cumulative
weight of all the refinements within that cluster. Since we
are primarily interested in the most important clusters, we
take the cumulative value of coverage for the top k clusters
(in decreasing order of coverage) to be a measure of the
ability of an algorithm to create large clusters.

Cohesion: To measure the relatedness of the queries within
a cluster, we use a method based on topic similarities. Briefly,
we use a text classifier (called a topic model [23]) to predict
the set of topics that each query spans. Since a typical search
query only has a few words, in order to get a representative
topic distribution vector, we use the snippets of the top-8
search results for the query to be representative of its tex-
tual context, and apply the text classifier on each of the
snippets. The topic distribution of a query is then an aver-
age topic distribution of its snippets and the relatedness of
two queries is the cosine similarity between their topic dis-
tribution vectors. We compute the cohesion for particular



Figure 6: Clusters produced by our MM approach for the top 20 refinements of the queries mars, england, mama

mia, and enterprise.
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Figure 7: Cohesion-Coverage curves for the top 4
clusters produced by MM, DC, and SQ as we decrease
the number of target clusters from 50 to 15.

cluster to be the minimum of the pair-wise cosine similar-
ities between the topic distribution vectors of the different
queries in a cluster. We take the average value of cohesion
for the top k clusters (again in decreasing order of coverage)
to be a measure of the cohesiveness of the clusters produced
by an algorithm.

Cohension-Coverage Curves: Figure 7 plots the values
of cohesion (Y-axis) against coverage (X-axis) for the top 4
clusters as we decrease the number of target clusters from
50 (top left) to 15 (bottom right) in steps of 5. The cov-
erage and cohesion values are averaged over 100 randomly
selected queries from our query set. As can be seen, for all
three approaches, as we decrease the number of target clus-
ters, the coverage increases, while the cohesion decreases.
We find that DC achieves the highest cohesion, but is unable
to increase coverage beyond 0.59. This is not surprising. As
already highlighted, DC is able to identify synonymous re-
finements (highest cohesion), but is restricted in its ability
to discover other kinds of relations (lower coverage). On
the other hand, SQ is not effective in finding synonyms (and
hence it starts with lower cohesion), but is able to identify
other relations based on session co-occurrences (higher cov-
erage). MM is able to exploit session co-occurrences, transitiv-
ity, and document clicks to identify more relations (highest
coverage), but is able to account for topic drift and limit
transitivity (by complete-link) in order to prevent incorrect
decisions (higher cohesion).

Parameter Selection: We can use the cohesion-coverage
curve to also select parameters for the clustering algorithm.
Based on our target application, we can require a certain
level of cohesion among the clusters, and choose the number
of target clusters to be the corresponding value. For exam-
ple, to ensure an average cohesion of 0.85, MM should be set to

at least 20 target clusters. Similarly, we could plot cohesion-
coverage curve for other parameters, e.g. document escape
probability, and use it to select the values.

We note that all the three curves have a slight knee when
the number of clusters is at 20, i.e., a sharper slope is ob-
served as the target number of clusters decreases to 15. In
precision-recall curves this typically indicates a suitable pa-
rameter choice that balances their tradeoff. In our case too,
we believe that 20 represents a sweet spot in achieving good
coverage at acceptable cohesion. Note that this does not
mean that all queries have 20 distinct prominent intents. It
is rather the result of the facts that there can often be nu-
merous outlier user intents (e.g., the mars manga refers to a
Japanese comic strip) and the fact that session co-occurrence
and document click information will be sparse for less fre-
quent refinements.

4.5 Intents within a session
Finally, we describe an experiment that measures how

users drift between intents. Our purpose is twofold. First, if
the clustering algorithm manages to identify intents within
a session, then we could use the clusters to suggest better
refinements to the user. Second, one of the intuitions under-
lying our clustering approach is that users do not go back
and forth between different intents within a session. Our
approach accounts for the possibility that the user’s intent
may drift (either before satisfying the information need or
after), but the assumption is that once the user drifted to
a different intent, they typically do not return to the origi-
nal intent. It is interesting to go back and see whether this
behavior is indeed true.

Specifically, we perform the following experiment: Sup-
pose a session has the form q, r1, r2, . . . , rn. Given the results
of a clustering algorithm, we denote by C(ri) the cluster to
which the refinement ri belongs. For each ri, 2 ≤ i ≤ n,

• if C(ri) = C(ri−1), we consider it a success, and

• if C(ri) 6= C(ri−1) and there exists a k < i − 1, such
that C(ri) = C(rk), then we consider it a failure.

In the first case, a refinement suggestion from the present
cluster could be deemed as useful. In the second case, the
user has drifted to a different intention and back, which
means our suggestion would be irrelevant, but also implies
that our clustering algorithm may not be identifying intents
correctly. The success rate is the numbers successes divided
by the sum of successes and failures.

We performed the experiment on 500,000 random sessions
extracted from the query log. Our results show that MM has
the highest success rate: 81.5%. In contrast, SQ and DC has
success rates of 75.5% and 51.8%. The fact that DC did



worse than others is not surprising because it does not rely
on session data. What is most interesting is that MM beat SQ.
SQ is optimized for exploiting co-occurrence of refinements
in sessions, but since it does not capture intent as finely as
MM, it is likely to be less successful in tracking intents (and
hence suggesting queries).

5. RELATED WORK
Our work combines the analysis of document-click and ses-

sion co-occurrence information. There has been quite a bit
of previous work that considered each of these in isolation.
In addition, our work is distinguished in that it considers
the query refinements in the context of an original query.

In addition to the works of Beeferman and Berger [5],
Baeza-Yates, et al. [3], and Wen et al. [26], Craswell and
Szummer used short backward random walks to find relevant
documents [10], while Mei et al. used hitting time of the
random walk to pick relevant queries [20]. There have also
been several query-expansion methods that rely on the click-
through information [6, 12].

In terms of analyzing session data, Cucerzan and Brill
ranked query refinements based on the session co-occurrence
frequency [11]. Chien and Immorlica mined refinements
based on their temporal correlation in sessions [9]. Fonseca
et al. used the session co-occurrence information to cluster
refinements queries [13], while Boldi et al. used the session
co-occurrence data to construct a query-query Markov graph
to generate query suggestions [7]. More recently, Wang et
al. [24] used session information to cluster global query qual-

ifiers, e.g., pictures in mars pictures, and ranked the quali-
fiers that are most relevant for an input query. In contrast,
our approach considers all refinements, not just qualifiers,
and clusters them in the context of the original query, not
globally. Finally, there have been attempts to specify query
suggestions based on the search trail of queries issued by the
user [8, 15, 27]. For example, Cao et al. first used document
clicks to cluster queries and then separately used session in-
formation to match user search trail to a query cluster.

Although we present our clustering objective as a variant
of the min k-cut, our graph formulation of the problem can
also be similarly mapped to the correlation clustering [4].
Correlation clustering, motivated by document clustering,
gives an advantage over the classical min k-cut in that it
does not require a pre-specified k number of target clusters.
In spite of this, the problem is still NP-hard and needs to
be approximated [1, 4].

6. CONCLUSION
We describe an algorithm for clustering query refinements

that combines information from document-clicks and from
user sessions. We formulated the problem as graph-clustering
problem on a graph that models user behavior. The graph
has a natural interpretation as a Markov model, and we were
able to translate it to the clustering problem of the vectors
of absorption distributions. Our experiments show that our
clustering techniques are clearly favored by users and have
the potential of being used for query suggestion.

There are several directions for future work, including de-
veloping better treatment of ambiguous queries, and devel-
oping methods for leveraging the clusters of refinements to
improve the search experience.
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